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Abstract

The moving sofa problem, posed by L. Moser in 1966, asks for the
planar shape of maximal area that can move around a right-angled
corner in a hallway of unit width. It is known that a maximal area
shape exists, and that its area is at least 2.2195 . . .—the area of an
explicit construction found by Gerver in 1992—and at most 2

√
2 ≈

2.82, with the lower bound being conjectured as the true value. We
prove a new and improved upper bound of 2.37. The method involves
a computer-assisted proof scheme that can be used to rigorously derive
further improved upper bounds that converge to the correct value.

1 Introduction

The moving sofa problem is a well-known unsolved problem in geometry,
first posed by Leo Moser in 1966 [3, 10]. It asks:

What is the planar shape of maximal area that can be moved
around a right-angled corner in a hallway of unit width?

We refer to a connected planar shape that can be moved around a corner
in a hallway as described in the problem as a moving sofa shape, or
simply a moving sofa. It is known [5] that a moving sofa of maximal area
exists. The shape of largest area currently known is an explicit construction

∗Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
†Department of Mathematics, University of California, Davis, One Shields Ave, Davis,

CA 95616, USA. Email: romik@math.ucdavis.edu
Key words: moving sofa problem, geometric optimization, branch-and-bound,

computer-assisted proof, experimental mathematics.
2010 Mathematics Subject Classification: 49Q10.

1



Figure 1: Gerver’s sofa, conjectured to be the solution to the moving sofa
problem. Its boundary is made up of 18 curves, each given by a separate an-
alytic formula; the tick marks show the points of transition between different
analytic pieces of the boundary.

found by Joseph Gerver in 1992 [5] (see also [12] for a recent perspective on
Gerver’s results), known as Gerver’s sofa and shown in Figure 1. Its area
is Gerver’s constant

µG = 2.21953166 . . . ,

an exotic mathematical constant that is defined in terms of a certain system
of transcendental equations but which does not seem to be expressible in
closed form. Gerver conjectured that µG is the largest possible area for
a moving sofa, a possibility supported heuristically by the local-optimality
considerations from which his shape was derived.

Gerver’s construction provides a lower bound on the maximal area of a
moving sofa. In the opposite direction, it was proved by Hammersley [8] in
1968 that a moving sofa cannot have an area larger than 2

√
2 ≈ 2.82. It is

helpful to reformulate these results by denoting

µMS = max
{

area(S) : S is a moving sofa shape
}
,

the so-called moving sofa constant (see Finch’s book [4, Sec. 8.12]; note
that Finch refers to Gerver’s constant µG as the “moving sofa constant,” but
this terminology currently seems unwarranted in the absence of a proof that
the two constants are equal.) The above-mentioned results then translate
to the statement that

µG ≤ µMS ≤ 2
√

2.

The main goal of this paper is to derive improved upper bounds for µMS.
We prove the following explicit improvement to Hammersley’s upper bound
from 1968.
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Theorem 1 (New area upper bound in the moving sofa problem). The
moving sofa constant µMS satisfies the bound

µMS ≤ 2.37. (1)

More importantly than the specific bound 2.37, our approach to proving
Theorem 1 involves the design of a computer-assisted proof scheme that can
be used to rigorously derive even sharper upper bounds; in fact, our algo-
rithm can produce a sequence of rigorously-certified bounds that converge
to the true value µMS (see Theorems 5 and 8 below). An implementation
of the scheme we coded in C++ using exact rational arithmetic certifies 2.37
as a valid upper bound after running for 480 hours on one core of a 2.3
GHz Intel Xeon E5-2630 processor. Weaker bounds that are still stronger
than Hammersley’s bound can be proved in much less time—for example, a
bound of 2.7 can be proved using less than one minute of processing time.

Our proof scheme is based on the observation that the moving sofa
problem, which is an optimization problem in an infinite-dimensional space
of shapes, can be relaxed in many ways to arrive at a family of finite-
dimensional optimization problems in certain spaces of polygonal shapes.
These finite-dimensional optimization problems are amenable to attack us-
ing a computer search.

Another of our results establishes new restrictions on a moving sofa shape
of largest area, and specifically on the angle by which such a shape must ro-
tate as it moves around the corner. Gerver proved [5, Th. 1] that the motion
of a largest area moving sofa shape around the corner can be parametrized
such that its angle of rotation increases monotonically and continuously from
0 to some terminal angle β, with π/3 ≤ β ≤ π/2—that is, a largest area mov-
ing sofa must undergo rotation by an angle of at least π/3 as it moves around
the corner, and does not need to rotate by an angle greater than π/2. As
explained in the next section, Gerver’s argument actually proves a slightly
stronger result with π/3 replaced by the angle β0 = sec−1(µG) ≈ 63.22◦.
We will prove the following improved bound on the angle of rotation of a
moving sofa of maximal area.

Theorem 2 (New rotation lower bound in the moving sofa problem). Any
moving sofa shape of largest area must undergo rotation by an angle of at
least sin−1(84/85) ≈ 81.203◦ as it moves around the corner.

There is no reason to expect this bound to be sharp; in fact, it is natural
to conjecture that any largest area moving sofa shape must undergo rotation
by an angle of π/2. As with the case of the bound (1), our techniques make it
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possible in principle to produce further improvements to the rotation lower
bound, albeit at a growing cost in computational resources.

The paper is arranged as follows. Section 2 below defines the family of
finite-dimensional optimization problems majorizing the moving sofa prob-
lem and develops the necessary theoretical ideas that set the ground for the
computer-assisted proof scheme. In Section 3 we build on these results and
introduce the main algorithm for deriving and certifying improved bounds,
then prove its correctness. Section 4 discusses specific numerical examples
illustrating the use of the algorithm, leading to a proof of Theorems 1 and 2.
The Appendix describes SofaBounds, a software implementation we devel-
oped as a companion software application to this paper [9].

Acknowledgements. Yoav Kallus was supported by an Omidyar Fellow-
ship at the Santa Fe Institute. Dan Romik thanks Greg Kuperberg for a
key suggestion that was the seed from which Proposition 4 eventually grew,
and John Sullivan, Joel Hass, Jesús De Loera, Maria Trnkova and Jamie
Haddock for helpful discussions. We also thank the anonymous referee for
helpful suggestions.

2 A family of geometric optimization problems

In this section we define a family of discrete-geometric optimization problems
that we will show are in a sense approximate versions of the moving sofa
problem for polygonal regions. Specifically, for each member of the family,
the goal of the optimization problem will be to maximize the area of the
intersection of translates of a certain finite set of polygonal regions in R2. It
is worth noting that such optimization problems have been considered more
generally in the computational geometry literature; see, e.g., [7, 11].

We start with a few definitions. Set

H = R× [0, 1],

V = [0, 1]× R,
Lhoriz = (−∞, 1]× [0, 1],

Lvert = [0, 1]× (−∞, 1],

L0 = Lhoriz ∪ Lvert.
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Figure 2: a) The rotated and translated L-shaped corridor Lα(u1, u2). (b)
The “butterfly set” B(β1, β2).

For an angle α ∈ [0, π/2] and a vector u = (u1, u2) ∈ R2, denote

Lα(u) =
{

(x, y) ∈ R2 : u1 ≤ x cosα+ y sinα ≤ u1 + 1

and − x sinα+ y cosα ≤ u2 + 1
}

∪
{

(x, y) ∈ R2 : x cosα+ y sinα ≤ u1 + 1

and u2 ≤ −x sinα+ y cosα ≤ u2 + 1
}
,

For angles β1, β2, denote

B(β1, β2) =
{

(x, y) ∈ R2 : 0 ≤ x cosβ1 + y sinβ1

and x cosβ2 + y sinβ2 ≤ 1
}

∪
{

(x, y) ∈ R2 : x cosβ1 + y sinβ1 ≤ 1

and 0 ≤ x cosβ2 + y sinβ2

}
,

Geometrically, Lα(u) is the L-shaped hallway L0 translated by the vector u
and then rotated around the origin by an angle of α; and B(β1, β2), which
we nickname a “butterfly set,” is a set that contains a rotation of the vertical
strip V around the origin by an angle β for all β ∈ [β1, β2]. See Fig. 2.
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Next, let λ denote the area measure on R2 and let λ∗(X) denote the
maximal area of any connected component of X ⊂ R2. Given a vector
α = (α1, . . . , αk) of angles 0 < α1 < . . . < αk < π/2 and two additional
angles β1, β2 ∈ (αk, π/2] with β1 ≤ β2, define

gβ1,β2α (u1, . . . ,uk) = λ∗

H ∩ k⋂
j=1

Lαj (uj) ∩B(β1, β2)

 (u1, . . . ,uk ∈ R2),

(2)

Gβ1,β2α = sup
{
gβ1,β2α (u1, . . . ,uk) : u1, . . . ,uk ∈ R2

}
. (3)

An important special case is G
π/2,π/2
α , which we denote simply as Gα. Note

that B(β1, π/2)∩H = H, so in that case the inclusion of B(β1, β2) in (2) is
superfluous.

The problem of computing Gβ1,β2α is an optimization problem in R2k.
The following lemma shows that the optimization can be performed on a
compact subset of R2k instead.

Lemma 3. There exists a box Ωβ1,β2
α = [a1, b1]× . . .× [a2k, b2k] ⊂ R2k, with

the values of ai, bi being explicitly computable functions of α, β1, β2, such
that

Gβ1,β2α = max
{
gβ1,β2α (u) : u ∈ Ωβ1,β2

α

}
. (4)

Proof. We will show that any value of gβ1,β2α (u) attained for some u ∈ R2

is matched by a value attained inside a sufficiently large box. This will
establish that gβ1,β2α (u) is bounded from above; the fact that it attains its

maximum follows immediately, since gβ1,β2α (u) is easily seen to be an upper
semicontinuous function.

Start by observing that for every interval [x1, x2] and 0 < α < π/2, there
are intervals I and J such that if (u, v) ∈ R2\I×J , the set

(
[x1, x2]×[0, 1]

)
∩

Lα(u, v) is either empty or is identical to
(
[x1, x2] × [0, 1]

)
∩ Lα(u′, v′) for

some (u′, v′) ∈ I × J . Indeed, this is valid with the choices

I = [x1 cosα− 1, x2 cosα+ sinα],

J = [−x2 sinα− 1,−x1 sinα+ cosα].

We now divide the analysis into two cases. First, if β2 < π/2, then

H ∩ B(β1, β2) ⊆ [− tanβ2, secβ2] × [0, 1]. Therefore, if we define Ωβ1,β2
α =

I1 × J1 × I2 × J2 × · · · × Ik × Jk, where for each 1 ≤ i ≤ k, Ii and Ji are
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intervals I, J as described in the above observation as applied to the angle
α = αi, then gβ1,β2α (u1, . . . , u2k) is guaranteed to attain its maximum on

Ωβ1,β2
α , since any value attained outside Ωβ1,β2

α is either zero or matched by
a value attained inside Ωβ1,β2

α .
Second, if β2 = π/2, then H ∩ B(β1, β2) = H. The optimization ob-

jective function gβ1,β2α (u1, . . . ,uk) is invariant to translating all the rotated
L-shaped hallways horizontally by the same amount (which corresponds to
translating each variable uj in the direction of the vector (cosαj ,− sinαj)).

Therefore, fixing an arbitrary 1 ≤ j ≤ k, any value of gβ1,β2α (u1, . . . ,uk)
attained on R2k is also attained at some point satisfying uj = (0, uj,2). Fur-
thermore, we can constrain uj,2 as follows: first, when uj,2 < − tanαj − 1,
then Lαj (0, uj,2)∩H is empty. Second, when uj,2 > secαj , then Lαj (0, uj,2)∩
H is the union of two disconnected components, one of which is a trans-
lation of Rotαj (H) ∩ H and the other is a translation of Rotαj (V ) ∩ H.

Since the largest connected component of H ∩
⋂k
j=1 Lαj (uj) is contained

in one of these two rhombuses, and since the translation of the rhom-
bus does not affect the maximum attained area, we see that any objec-
tive value attained with uj = (0, uj,2), where uj,2 > secαj , can also be
attained with uj = (0, secαj). So, we may restrict uj ∈ Ij × Jj , where
Ij = {0} and Jj = [− tanαj − 1, secαj ]. Finally, when uj ∈ Ij ×Jj , we have
H ∩Lαj (u) ⊆ [cscαj , secαj ]× [0, 1], so we can repeat a procedure similar to
the one used in the case β = π/2 above to construct intervals Ii and Ji for
all i 6= j to ensure that (4) is satisfied.

We now wish to show that the function Gβ1,β2α relates to the problem
of finding upper bounds in the moving sofa problem. The idea is as fol-
lows. Consider a sofa shape S that moves around the corner while rotating
continuously and monotonically (in a clockwise direction, in our coordinate
system) between the angles 0 and β ∈ [0, π/2]. As we mentioned in the
Introduction, a key fact proved by Gerver [5, Th. 1] is that in the moving
sofa problem it is enough to consider shapes being moved in this fashion. By
changing our frame of reference to one in which the shape stays fixed and
the L-shaped hallway L0 is dragged around the shape while being rotated,
we see (as discussed in [5, 12]) that S must be contained in the intersection

Sx = Lhoriz ∩
⋂

0≤t≤β
Lt(x(t)) ∩

(
x(β) + Rotβ(Lvert)

)
, (5)

where x : [0, β] → R2 is a continuous path satisfying x(0) = (0, 0) that
encodes the path by which the hallway is dragged as it is being rotated,
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and where Rotβ(Lvert) denotes Lvert rotated by an angle of β around (0, 0)
(more generally, here and below we use the notation Rotβ(·) for a rotation
operator by an angle of β around the origin). We refer to such a path as
a rotation path, or a β-rotation path when we wish to emphasize the
dependence on β. Thus, the area of S is at most λ∗(Sx), the maximal area
of a connected component of Sx, and conversely, a maximal area connected
component of Sx is a valid moving sofa shape of area λ∗(Sx). Gerver’s result
therefore implies that

µMS = sup
{
λ∗(Sx) : x is a β-rotation path for some β ∈ [0, π/2]

}
. (6)

It is also convenient to define

µ∗(β) = sup
{
λ∗(Sx) : x is a β-rotation path

}
(0 ≤ β ≤ π/2).

so that we have the relation

µMS = sup
0<β≤π/2

µ∗(β). (7)

Moreover, as Gerver pointed out in his paper, µ∗(β) is bounded from above
by the area of the intersection of the horizontal strip H and the rotation of
the vertical strip V by an angle β, which is equal to sec(β). Since µMS ≥
µG, and sec(β) ≥ µG if and only if β ∈ [β0, π/2], where we define β0 =
sec−1(µG) ≈ 63.22◦, we see that in fact

µMS = sup
β0≤β≤π/2

µ∗(β), (8)

and furthermore, µMS > µ∗(β) for any 0 < β < β0, i.e., any moving sofa of
maximal area has to rotate by an angle of at least β0. (Gerver applied this
argument to claim a slightly weaker version of this result in which the value
of β0 is taken as π/3 = sec−1(2); see [5, p. 271]). Note that it has not been
proved, but seems natural to conjecture, that µMS = µ∗(π/2)—an assertion
that would follow from Gerver’s conjecture that the shape he discovered is
the moving sofa shape of largest area, but may well be true even if Gerver’s
conjecture is false.

The relationship between our family of finite-dimensional optimization
problems and the moving sofa problem is made apparent by the following
result.

Proposition 4. (i) For any α = (α1, . . . , αk) and β with 0 < α1 < . . . <
αk ≤ β ≤ π/2, we have

µ∗(β) ≤ Gα. (9)
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(ii) For any α = (α1, . . . , αk) with 0 < α1 < . . . < αk ≤ β0, we have

µMS ≤ Gα. (10)

(iii) For any α = (α1, . . . , αk) and β1, β2 with 0 < α1 < . . . < αk ≤ β1 <
β2 ≤ π/2, we have

sup
β∈[β1,β2]

µ∗(β) ≤ Gβ1,β2α . (11)

Proof. Start by noting that, under the assumption that 0 < α1 < . . . <
αk ≤ β ≤ π/2, if x is a β-rotation path then the values x(α1), . . . ,x(αk)
may potentially range over an arbitrary k-tuple of vectors in R2. It then
follows that

µ∗(β) = sup
{
λ∗(Sx) : x is a β-rotation path

}
= sup

λ∗
Lhoriz ∩

⋂
0≤t≤β

Lt(x(t)) ∩
(
x(β) + Rotβ(Lvert)

) :

x is a β-rotation path


≤ sup

λ∗
H ∩ k⋂

j=1

Lαj (x(αj))

 : x is a β-rotation path


= sup

λ∗
H ∩ k⋂

j=1

Lαj (xj)

 : x1, . . . ,xk ∈ R2

 = Gα.

This proves claim (i) of the Proposition. If one further assumes that αk ≤ β0,
(10) also follows immediately using (8), proving claim (ii).

The proof of claim (iii) follows a variant of the same argument used
above; first, note that we may assume that β2 < π/2, since the case β2 = π/2
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already follows from part (i) of the Proposition. Next, observe that

µ∗(β) = sup

λ∗
Lhoriz ∩

⋂
0≤t≤β

Lt(x(t)) ∩
(
x(β) + Rotβ(Lvert)

) :

x is a β-rotation path


≤ sup

x1,...,xk+1∈R2

λ∗
H ∩ k⋂

j=1

Lαj (xj) ∩
(
xk+1 + Rotβ(V )

) .
= sup

y1,...,yk∈R2

λ∗
H ∩ k⋂

j=1

Lαj (yj) ∩ Rotβ(V )

 ,
where the last equality follows by expressing xk+1 in the form xk+1 =
a(1, 0)+b(− sinβ, cosβ), making the substitution xj = yj +a(1, 0) (1 ≤ j ≤
k), and using the facts thatH+a(1, 0) = H and Rotβ(V )+b(− sinβ, cosβ) =
Rotβ(V ). Finally, as noted after the definition of B(β1, β2), this set has the
property that if β ∈ [β1, β2] then Rotβ(V ) ⊂ B(β1, β2). We therefore get for
such β that

µ∗(β) ≤ sup
y1,...,yk∈R2

λ∗
H ∩ k⋂

j=1

Lαj (yj) ∩B(β1, β2)

 = Gβ1,β2α ,

which finishes the proof.

Example. In the case of a vector α = (α) with a single angle 0 < α < π/2,
a simple calculation, which we omit, shows that

G(α) = secα+ cscα. (12)

Taking α = π/4 and using Proposition 4(ii), we get the result that µMS ≤
2
√

2, which is precisely Hammersley’s upper bound for µMS mentioned in
the introduction (indeed, this application of the Proposition is essentially
Hammersley’s proof rewritten in our notation).

We conclude this section with a result that makes precise the notion
that the optimization problems involved in the definition of Gβ1,β2α are finite-
dimensional approximations to the (infinite-dimensional) optimization prob-
lem that is the moving sofa problem.
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Theorem 5 (Convergence to the moving sofa problem). Let

α(n, k) = ( 1
n
π
2 ,

2
n
π
2 ,

3
n
π
2 , . . . ,

n−k−1
n

π
2 ),

γ1(n, k) = n−k
n

π
2 ,

γ2(n, k) = n−k+1
n

π
2 ,

and let
Wn = max

k=1,...,dn/3e
G
γ1(n,k),γ2(n,k)
α(n,k) . (13)

Then limn→∞Wn = µMS.

To motivate the statement and proof of the theorem, note that the shape
that achieves the area Gβ1,β2α in the corresponding optimization problem
is not generally a moving sofa shape, since it is chosen to satisfy only a
finite number of the constraints a true moving sofa shape needs to satisfy.
However, the idea is that we can take a sequence of these optimal shapes from
optimization problems with longer and longer sequences of angles that are
increasingly tightly spaced, and, through a limiting procedure (essentially a
compactness argument), construct a moving sofa shape whose area is no less
than the limit of the areas of the optimal shapes. This will establish that
µMS can be approached from above by the numbers Wn, which are defined in
terms of the finite-dimensional optimization problems. (In particular, this
implies the rather weak statement that µMS is a computable number.)

Proof of Theorem 5. Start by noting that, by Proposition 4(iii), Wn ≥ µ∗(β)
for all π/3 ≤ β ≤ π/2, so, because of (8), Wn ≥ µMS for all n, and
therefore lim infn→∞Wn ≥ µMS. Thus, it is enough to prove that µMS ≥
lim supn→∞Wn.

For each n ≥ 6, denote by k∗n the smallest value of k for which the
maximum in the definition Wn is attained, let β′n = γ1(n, k

∗
n), and let

β′′n = γ2(n, k
∗
n). There is subsequence of Wn converging to its limit superior.

Furthermore, the values of β′n in this subsequence have an accumulation
point. Therefore, let nm denote the indices of a subsequence of Wn converg-
ing to its limit superior such that β′n (and therefore also β′′n) converges to
some limiting angle β ∈ [π/3, π/2].

Let u(n) =
(
u
(n)
1 , . . . , u

(n)
2(n−k∗n−1)

)
denote a point in Ω

β′n,β
′′
n

α(n,k∗n)
where g

β′n,β
′′
n

α(n,k∗n)

attains its maximum value, which (it is immediate from the definitions) is

equal to G
β′n,β

′′
n

α(n,k∗n)
= Wn. Moreover, as more than one point may attain this

value, let u(n) be chosen to be minimal under the coordinatewise partial
order with respect to this property.
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Let Pn be a largest area connected component of

H ∩
n−k∗n−1⋂
j=1

Ljπ/2n

(
u
(n)
2j−1, u

(n)
2j

)
∩B

(
β′n, β

′′
n

)
.

Again by the definitions, λ(Pn) = Wn. Note that the diameter of Pn is
bounded from above by a universal constant; this is easy to check and is left
as an exercise.

Now, of course Pn is not a moving sofa shape, but we will show that it
approximates one along a suitable subsequence. To this end, define functions
U (n) : [0, β]→ R, V (n) : [0, β]→ R by

U (n)(t) = max
(x,y)∈Pn

(x cos t+ y sin t− 1) ,

V (n)(t) = max
(x,y)∈Pn

(−x sin t+ y cos t− 1) .

We note that U (n)(t) and V (n)(t) have the following properties: first, they are
Lipschitz-continuous with a uniform (independent of n) Lipschitz constant;
see pp. 269–270 of Gerver’s paper [5] for the proof, which uses the fact that
the diameters of Pn are bounded.

Second, the fact that Pn ⊂ H implies that V (n)(0) = max
(x,y)∈Pn

(y− 1) ≤ 0.

This in turn implies that

Pn ⊆ (−∞, U (n)(0) + 1]× [0, V (n)(0) + 1]

⊆ (−∞, U (n)(0) + 1]× [V (n)(0), V (n)(0) + 1]

= (U (n)(0), V (n)(0)) + Lhoriz. (14)

Third, we have(
U (n)(jπ/2n), V (n)(jπ/2n)

)
=
(
u
(n)
2j−1, u

(n)
2j

)
for all j = 1, . . . , n−k∗n; that is, U (n)(t) and V (n)(t) continuously interpolate
the odd and even (respectively) coordinates of the vector u(n). Indeed, the

relation Pn ⊂ Ljπ/2n
(
u
(n)
2j−1, u

(n)
2j

)
implies trivially that

U (n)(jπ/2n) ≤ u(n)2j−1 and V (n)(jπ/2n) ≤ u(n)2j .

However, if we had a strict inequality U (n)(jπ/2n) < u
(n)
2j−1 (respectively,

V (n)(jπ/2n) < u
(n)
2j ), that would imply that replacing Ljπ/2n

(
u
(n)
2j−1, u

(n)
2j

)
12



by Ljπ/2n

(
u
(n)
2j−1 − ε, u

(n)
2j

)
(respectively, Ljπ/2n

(
u
(n)
2j−1, u

(n)
2j − ε

)
) for some

small positive ε in the definition of Pn would not decrease the area, in
contradiction to the maximality property defining u(n).

We now define a smoothed version Tn of the polygon Pn by letting

Tn =Pn ∩
(
Lhoriz + (U (n)(0), V (n)(0))

)
∩
⋂

0≤t≤β
Lt(U

(n)(t), V (n)(t))

∩
(

Rotβ

(
Lvert

)
+ (U (n)(β), V (n)(β))

)
=Pn ∩

⋂
0≤t≤β

Lt(U
(n)(t), V (n)(t)) ∩

(
Rotβ

(
Lvert

)
+ (U (n)(β), V (n)(β))

)
,

where the first equality sign is a definition, and the second equality follows
from (14).

Recall that the Hausdorff distance between compact sets A and B is the
infimum of all ε > 0 such that for all a ∈ A, there is b ∈ B with ‖a−b‖ ≤ ε
and for all b ∈ B, there is a ∈ A with ‖a − b‖ ≤ ε. It is known that the
area of a compact set is upper semicontinuous with respect to the Hausdorff
distance. That is, if An → A under the Hausdorff distance for compact sets
An, then λ(A) ≥ lim supn→∞ λ(An); see [14, Theorem 12.3.6].

We claim that the Hausdorff distance between the sets Tnm and Pnm

goes to 0 as n→∞. To see this, let (x, y) ∈ Pnm \ Tnm . From the fact that
(x, y) ∈ Pnm we have that

x cos t+ y sin t ≥ U (nm)(t) or − x sin t+ y cos t ≥ V (nm)(t) (15)

for all t = jπ/2nm, where j = 1, . . . , nm − k∗nm
− 1. Moreover, we have

y > V (nm)(0) and
x cos t+ y sin t ≥ U (nm)(t) (16)

for t = β′nm
= (nm − knm∗)π/2nm. We want to show that there exists

δm → 0 such that

x cos t′ + (y + δm) sin t′ ≥ U (nm)(t′) or

−x sin t′ + (y + δm) cos t′ ≥ V (nm)(t′).
(17)

for all 0 < t′ < β and

x cosβ + (y + δm) sinβ ≥ U (nm)(β). (18)

We claim that δm = C((1/nm) + |β − β′nm
|)1/2 suffices, where C is some

constant. First, if β < π/2, then for t′ ∈ [(1/nm)1/2, β], we have (17) from
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the uniform Lipschitz continuity of U (nm)(t′), V (nm)(t′), and the other terms
as functions of t′ (recall x and y are uniformly bounded), from the fact that
we have (15) for some t with |t − t′| < ((1/nm) + |β − β′nm

|), and from

| sin t′|, | cos t′| > 1
2((1/nm) + |β−β′nm

|)1/2. For t′ < (1/nm)1/2, the fact that

y > V (nm)(0) and Lipschitz continuity suffice to give the second clause of
(17). Finally, (18) is satisfied due to Lipschitz continuity and the inequality
(16). The case of β = π/2 can be worked out similarly. Therefore, for every
(x, y) ∈ Pnm \Tnm , we can construct a point (x, y′) ∈ Tnm , with |y′−y| ≤ δm
with δm → 0.

We now use the fact that the vector-valued function (U (nm)(t), V (nm)(t))
is uniformly Lipschitz to conclude using the Arzelà-Ascoli theorem that it
has a subsequence (which we still denote by nm, to avoid clutter) such that
the “anchored” version of the function (U (nm)(t), V (nm)(t)), namely

(U (nm)(t)− U (nm)(0), V (nm)(t)− V (nm)(0))

converges in the supremum norm to some limiting function x : [0, β]→ R2,
with the same Lipschitz constant, which satisfies x(0) = (0, 0); that is, the
limiting function x is a β-rotation path. Now let

T∞ =Lhoriz ∩
⋂

0≤t≤β
Lt(x(t)) ∩ (Rotβ (Lvert) + x(β)) .

Since the Hausdorff distances of Pnm to Tnm and of Tnm − (U (n)(0), V (n)(0))
to T∞ ∩

(
Tnm − (U (n)(0), U (n)(0))

)
both approach zero as m→∞, we have

that the largest connected component of T∞ has an area at least as large
as limm→∞ λ(Pnm) = lim supn→∞Wn. On the other hand, T∞ is of the
form (5) for a β-rotation path x(t), so, by (6), its area is bounded from
above by µMS. We have shown that lim supn→∞Wn ≤ µMS, and the proof
is finished.

We remark that in view of Theorem 2, it is easy to see that Theorem 5
remains true if we replace the range 1 ≤ k ≤ dn/3e of values of k in (13)
with the smaller (and therefore computationally more efficient) range 1 ≤
k ≤ dn/9e.

3 An algorithmic proof scheme for moving sofa
area bounds

The theoretical framework we developed in the previous section reduces the
problem of deriving upper bounds for µMS to that of proving upper bounds
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for the function Gβ1,β2α . Since this function is defined in terms of solutions to
a family of optimization problems in finite-dimensional spaces, this is already
an important conceptual advance. However, from a practical standpoint it
remains to develop and implement a practical, efficient algorithm for solving
optimization problems in this class. Our goal in this section is to present
such an algorithm and establish its correctness.

Our computational strategy is a variant of the geometric branch and
bound optimization technique [13]. Recall from Lemma 3 that the max-

imum of the function gβ1,β2α is attained in a box (a Cartesian product of

intervals) Ωβ1,β2
α ⊂ R2k. Our strategy is to break up Ωβ1,β2

α into sub-boxes.

On each box E being considered, we will compute a quantity Γβ1,β2α (E),

which is an upper bound for gβ1,β2α (u) that holds uniformly for all u ∈ E. In
many cases this bound will not be an effective one, in the sense that there
is a possibility that the box contains the point maximizing gβ1,β2α ; in such a
case the box will be subdivided into two further boxes E1 and E2, which will
be inserted into a queue to be considered later. Other boxes lead to effective
bounds (that is, bounds that are smaller than a number already established

as a lower bound for Gβ1,β2α ) and need not be considered further. By orga-
nizing the computation efficiently, practical bounds can be established in a
reasonable time, at least for small values of k.

To make the idea precise, we introduce a few more definitions. Given
two intervals I = [a, b], J = [c, d] ⊆ R and α ∈ [0, π/2], define

L̂α(I, J) =
⋃

u∈I,v∈J
Lα(u, v).

Note that L̂α(I, J) can also be expressed as a Minkowski sum of Lα(0, 0)
with the rotated rectangle Rotα(I ×J); in particular, it belongs to the class
of sets known as Nef polygons, which are defined as planar sets that can
be obtained from a finite set of half-planes by applying set intersection and
complementation operations (see the Appendix for further discussion of the
relevance of this fact to our software implementation of the algorithm). Now,
for a box E = I1 × . . .× I2k ⊂ R2, define

Γβ1,β2α (E) = λ∗

H ∩ k⋂
j=1

L̂αj (I2j−1, I2j) ∩B(β1, β2)

 . (19)

Thus, by the definitions we have trivially that

sup
u∈E

gα(u) ≤ Γβ1,β2α (E). (20)
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Next, given a box E = I1 × . . .× I2k where Ij = [aj , bj ], let

Pmid(E) =

(
a1 + b1

2
, . . . ,

a2k + b2k
2

)
denote its midpoint. We also assume that some rule is given to associate
with each box E a coordinate i = ind(E) ∈ {1, . . . , 2k}, called the splitting
index of E. This index will be used by the algorithm to split E into two
sub-boxes, which we denote by spliti,1(E) and spliti,2(E), and which are
defined as

spliti,1(E) = I1 × . . .× Ii−1 ×
[
ai,

1
2(ai + bi)

]
× Ii+1 × . . . I2k,

spliti,2(E) = I1 × . . .× Ii−1 ×
[
1
2(ai + bi), bi

]
× Ii+1 × . . . I2k.

We assume that the mapping E 7→ ind(E) has the property that, if the
mapping E 7→ splitind(E),j(E) is applied iteratively, with arbitrary choices
of j ∈ {1, 2} at each step and starting from some initial value of E, the
resulting sequence of splitting indices i1, i2, . . . contains each possible co-
ordinate infinitely many times. A mapping satisfying this assumption is
referred to as a splitting rule.

The algorithm is based on the standard data structure of a priority
queue [2] used to hold boxes that are still under consideration. Recall that
in a priority queue, each element of the queue is associated with a numerical
value called its priority, and that the queue realizes operations of pushing a
new element into the queue with a given priority, and popping the highest
priority element from the queue. In our application, the priority of each box
E will be set to a value denoted Π(E), where the mapping E 7→ Π(E) is
given and is assumed to satisfy

Π(E) ≥ Γβ1,β2α (E). (21)

Aside from this requirement, the precise choice of mapping is an implemen-
tation decision. (A key point here is that setting Π(E) equal to Γβ1,β2α (E)
is conceptually the simplest choice, but from the practical point of view of
minimizing programming complexity and running time it may not be op-
timal; see the Appendix for further discussion of this point.) Note that,
since boxes are popped from the queue to be inspected by the algorithm in
decreasing order of their priority, this ensures that the algorithm pursues
successive improvements to the upper bound it obtains in a greedy fashion.

The algorithm also computes a lower bound on Gβ1,β2α by evaluating
gβ1,β2α (u) at the midpoint of every box it processes and keeping track of the
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largest value observed. This lower bound is used to discard boxes in which
it is impossible for the maximum to lie. The variable keeping track of the
lower bound is initialized to some number `0 known to be a lower bound for
Gβ1,β2α . In our software implementation we used the value

`0 =

{
0 if β2 < π/2,

11/5 if β2 = π/2,

this being a valid choice thanks to the fact that (by Proposition 4(iii))

G
β1,π/2
α ≥ µ∗(π/2) ≥ µG = 2.2195 . . . > 2.2 = 11/5. Note that simply

setting `0 = 0 in all cases would also result in a valid algorithm, but would
result in a slight waste of computation time compared to the definition
above.

With this setup, we can now describe the algorithm, given in pseudocode
in Listing 1.

The next proposition is key to proving the algorithm’s correctness.

Proposition 6. Any box Ẽ which is the highest priority box in the queue
box queue at some step satisfies

sup{gβ1,β2α (u) : u ∈ Ẽ} ≤ Gβ1,β2α ≤ Π(Ẽ). (22)

Proof. First, the lower inequality holds for all boxes in the queue, simply
because the value gβ1,β2α (u) for any u ∈ Ωβ1,β2

α is a lower bound on its

maximum over all u ∈ Ωβ1,β2
α .

Next, let Qn denote the collection of boxes in the priority queue after n
iterations of the while loop (with Q0 being the initialized queue containing

the single box Ωβ1,β2
α ), and let Dn denote the collection of boxes that were

discarded (not pushed into the priority queue during the execution of the if
clause inside the for loop) during the first n iterations of the while loop.
Then we first note that for all n, the relation

Ωβ1,β2
α =

⋃
E∈Qn∪Dn

E (23)

holds. Indeed, this is easily proved by induction on n: if we denote by X
the highest priority element in Qn, then during the (n + 1)th iteration of
the while loop, X is subdivided into two boxes X = X1 ∪ X2, and each
of X1, X2 is either pushed into the priority queue (i.e., becomes an element
of Qn+1) or discarded (i.e., becomes an element of Dn+1), so we have that

Ωβ1,β2
α =

⋃
E∈Qn+1∪Dn+1

E, completing the inductive step.
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box queue← an empty priority queue of boxes
initial box← box representing Ωβ1,β2

α , computed according to the
function of α, β1, β2 described in Lemma 3

push initial box into box queue with priority Π(initial box)

best lower bound so far← the initial lower bound `0

while true do

pop highest priority element of box queue into current box

current box lower bound← gβ1,β2α (Pmid(current box))
best upper bound so far← Π(current box)

if current box lower bound > best lower bound so far then
best lower bound so far← current box lower bound

end if

i← ind(current box)

for j = 1, 2 do
new box← spliti,j(current box)
if Π(new box) ≥ best lower bound so far then

push new box into box queue with priority Π(new box)
end if

end for

Reporting point: print the values of best upper bound so far

and best lower bound so far

end while

Listing 1: The algorithm for computing bounds for Gβ1,β2α .
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Second, note that for any box X ∈ Dn, since X was discarded during
the kth iteration of the while loop for some 1 ≤ k ≤ n, we have that
Π(X) is smaller than the value of best lower bound so far during that
iteration. But best lower bound so far is always assigned a value of the
form gβ1,β2α (u) for some u ∈ R and is therefore bounded from above by

Gβ1,β2α , so we have established that

Π(X) < Gβ1,β2α (X ∈ Dn). (24)

The relations (4), (20), (21), (23), and (24) now imply that

Gβ1,β2α = max
{
gβ1,β2α (u) : u ∈ Ωβ1,β2

α

}
= max

E∈Qn∪Dn

(
sup

{
gβ1,β2α (u) : u ∈ E

})
≤ max

E∈Qn∪Dn

Γβ1,β2α (E)

≤ max
E∈Qn∪Dn

Π(E) = max
E∈Qn

Π(E).

Finally, maxE∈Qn Π(E) = Π(Ẽ), since Ẽ was assumed to be the box with
highest priority among the elements of Qn, so we get the upper inequality
in (22), which finishes the proof.

We immediately have the correctness of the algorithm as a corollary:

Theorem 7 (Correctness of the algorithm). Any value of the variable
best upper bound so far reported by the algorithm is an upper bound for
Gβ1,β2α .

Note that the correctness of the algorithm is not dependent on the as-
sumption we made on the splitting index mapping E 7→ ind(E) being a
splitting rule. The importance of that assumption is explained by the fol-
lowing result, which also explains one sense in which assuming an equality
in (21) rather than an inequality provides a benefit (of a theoretical nature
at least).

Theorem 8 (Asymptotic sharpness of the algorithm). Assume that the
priority mapping E 7→ Π(E) is taken to be

Π(E) = Γβ1,β2α (E). (25)

Then the upper and lower bounds output by the algorithm both converge to
Gβ1,β2α .
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Proof. As one may easily check, the upper bound used in the calculation
under the assumption (25), Γβ1,β2α (E), approaches the actual supremum of

gβ1,β2α (u) over E as the diameter of E approaches zero. That is |Γβ1,β2α (E)−
sup{gβ1,β2α (u) : u ∈ E}| is bounded by a function of the diameter of E that
approaches zero when the diameter approaches zero. The same is true of
the variation in each box, | sup{gβ1,β2α (u) : u ∈ E}− inf{gβ1,β2α (u) : u ∈ E}|.

When using a valid splitting rule, the diameter of the leading box ap-
proaches zero as n approaches infinity, and Proposition 6 completes the
proof.

As with the case of the choice of priority mapping and the value of
the initial lower bound `0, the specific choice of splitting rule to use is an
implementation decision, and different choices can lead to algorithms with
different performance. A simple choice we tried was to use the index of the
coordinate with the largest variation within E (i.e., the “longest dimension”
of E). Another choice, which we found gives superior performance and is
the rule currently used in our software implementation SofaBounds, is to let
the splitting index be the value of i maximizing λ(Di ∩ S(E)), where S(E)
is the argument of λ∗ in (19), and

Di =


⋃

u∈I2j−1

L̂αj (u, I2j) \
⋂

u∈I2j−1

L̂αj (u, I2j) if i = 2j − 1,⋃
u∈I2j

L̂αj (I2j−1, u) \
⋂
u∈I2j

L̂αj (I2j−1, u) if i = 2j.

4 Explicit numerical bounds

We report the following explicit numerical bounds obtained by our algo-
rithm, which we will then use to prove Theorems 1 and 2.

Theorem 9. Define angles

α1 = sin−1 7
25 ≈ 16.26◦,

α2 = sin−1 33
65 ≈ 30.51◦,

α3 = sin−1 119
169 ≈ 44.76◦,

α4 = sin−1 56
65 = π/2− α2 ≈ 59.59◦,

α5 = sin−1 24
25 = π/2− α1 ≈ 73.74◦,

α6 = sin−1 60
61 ≈ 79.61◦,

α7 = sin−1 84
85 ≈ 81.2◦.
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Then we have the inequalities

G(α1,α2,α3,α4,α5) ≤ 2.37, (26)

Gα4,α5

(α1,α2,α3)
≤ 2.21, (27)

Gα5,α6

(α1,α2,α3)
≤ 2.21, (28)

Gα6,α7

(α1,α2,α3,α4)
≤ 2.21. (29)

Proof. Each of the inequalities (26)–(29) is certified as correct using the
SofaBounds software package by invoking the run command from the com-
mand line interface after loading the appropriate parameters. For (26), the
parameters can be loaded from the saved profile file thm9-bound1.txt in-
cluded with the package (see the Appendix below for an illustration of the
syntax for loading the file and running the computation). Similarly, the
inequalities (27), (28), (29) are obtained by running the software with the
profile files thm9-bound2.txt, thm9-bound3.txt, and thm9-bound4.txt,
respectively. Table 1 in the Appendix shows benchmarking results with
running times for each of the computations.

Proof of Theorem 1. For angles 0 ≤ β1 < β2 ≤ π/2 denote

M(β1, β2) = sup
β1≤β≤β2

µ∗(β).

By (8), we have

µMS = M(β0, π/2) = max
(
M(β0, α5),M(α5, π/2)

)
. (30)

By Proposition 4(iii), M(β0, α5) is bounded from above by Gα4,α5

(α1,α2,α3)
, and

by Proposition 4(i), M(α5, π/2) is bounded from above by G(α1,α2,α3,α4,α5).
Thus, combining (30) with the numerical bounds (26)–(27) proves (1).

Proof of Theorem 2. Using the same notation as in the proof of Theorem 1
above, we note that

M(0, α7) = max
(
M(0, α4),M(α4, α5),M(α5, α6),M(α6, α7)

)
.

Now, by Gerver’s observation mentioned after the relation (7), we have that
M(0, α4) ≤ sec(α4) < sec(π/3) = 2. By Proposition 4(iii) coupled with
the numerical bounds (27)–(29), the remaining three arguments M(α4, α5),
M(α5, α6), and M(α6, α7) in the maximum are all bounded from above by

21



2.21, so in particular we get that M(0, α7) ≤ 2.21 < µG ≈ 2.2195. On the
other hand, we have that

µMS = M(0, π/2) = max
(
M(0, α7),M(α7, π/2)

)
≥ µG.

We conclude that µMS = M(α7, π/2) and that µ∗(β) ≤ 2.21 < µMS for all
β < α7. This proves that a moving sofa of maximal area has to undergo
rotation by an angle of at least α7, as claimed.

5 Concluding remarks

The results of this paper represent the first progress since Hammersley’s
1968 paper [8] on deriving upper bounds for the area of a moving sofa
shape. Our techniques also enable us to prove an improved lower bound on
the angle of rotation a maximal area moving sofa shape must rotate through.
Our improved upper bound of 2.37 on the moving sofa constant comes much
closer than Hammersley’s bound to the best known lower bound µG ≈ 2.2195
arising from Gerver’s construction, but clearly there is still considerable
room for improvement in narrowing the gap between the lower and upper
bounds. In particular, some experimentation with the initial parameters
used as input for the SofaBounds software should make it relatively easy to
produce further (small) improvements to the value of the upper bound.

More ambitiously, our hope is that a refinement of our methods—in the
form of theoretical improvements and/or speedups in the software implemen-
tation, for example using parallel computing techniques—may eventually be
used to obtain an upper bound that comes very close to Gerver’s bound,
thereby providing supporting evidence to his conjecture that the shape he
found is the solution to the moving sofa problem. Some supporting evi-
dence of this type, albeit derived using a heuristic algorithm, was reported
in a recent paper by Gibbs [6]. Alternatively, a failure of our algorithm (or
improved versions thereof) to approach Gerver’s lower bound may provide
clues that his conjecture may in fact be false.

Our methods should also generalize in a fairly straightforward manner to
other variants of the moving sofa problem. In particular, in a recent paper
[12], one of us discovered a shape with a piecewise algebraic boundary that is
a plausible candidate to being the solution to the so-called ambidextrous
moving sofa problem, which asks for the largest shape that can be moved
around a right-angled turn either to the left or to the right in a hallway of
width 1 (Fig. 3(a)). The shape, shown in Fig. 3(b), has an area given by
the intriguing explicit constant
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(a) (b)

Figure 3: (a) The ambidextrous moving sofa problem involves maximization
of the area of moving sofa shapes that can navigate a hallway with right-
angled turns going both ways, as shown in the figure; (b) a shape discovered
by Romik [12] that was derived as a possible solution to the ambidextrous
moving sofa problem. The boundary of the shape is a piecewise algebraic
curve; the tick marks in the figure delineate the transition points between
distinct parts of the boundary.

µR =
3

√
3 + 2

√
2 +

3

√
3− 2

√
2− 1 + arctan

[
1

2

(
3

√√
2 + 1− 3

√√
2− 1

)]
= 1.64495521 . . .

As with the case of the original (non-ambidextrous) moving sofa problem,
the constant µR provides a lower bound on the maximal area of an ambidex-
trous moving sofa shape; in the opposite direction, any upper bound for the
original problem is also an upper bound for the ambidextrous variant of the
problem, which establishes 2.37 as a valid upper bound for that problem.
Once again, the gap between the lower and upper bounds seems like an ap-
pealing opportunity for further work, so it would be interesting to extend
the techniques of this paper to the setting of the ambidextrous moving sofa
problem so as to obtain better upper bounds on the “ambidextrous moving
sofa constant.”

Appendix: The SofaBounds software

We implemented the algorithm described in Section 3 in the software package
SofaBounds we developed, which serves as a companion package to this
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paper and whose source code is available to download online [9]. The package
is a Unix command line tool written in C++ and makes use of the open source
computational geometry library CGAL [1]. All computations are done in the
exact rational arithmetic mode supported by CGAL to ensure that the bounds
output by the algorithm are mathematically rigorous. For this reason, the
software only works with angles γ for which the vector (cos γ, sin γ) has
rational coordinates, i.e., is a rational point (a/c, b/c) on the unit circle;
clearly such angles are parametrized by Pythagorean triples (a, b, c) such
that a2 + b2 = c2, and it is using such triples that the angles are entered
into the program as input from the user. For example, to approximate an
angle of 45 degrees, we used the Pythagorean triple (119, 120, 169), which
corresponds to an angle of sin−1(119/169) ≈ 44.76◦.

SofaBounds uses the Nef polygon geometric primitive implemented in
CGAL. In Section 3 we mentioned that the set L̂α(I, J) is a Nef polygon;
consequently it is easy to see that all the planar sets manipulated by the al-
gorithm belong to this family and can be readily calculated using elementary
geometry and the features of CGAL’s Nef polygon sub-library [15].

Our implementation uses the priority rule

Π(E) = λ

H ∩ k⋂
j=1

L̂αj (I2j−1, J2j) ∩B(β1, β2)

 ,

i.e., we use the total area of the intersection as the priority instead of the area
of the largest connected component as in (19); this is slightly less ideal from
a theoretical point of view, since Theorem 8 does not apply, but simplified
the programming and in practice probably results in better computational
performance.

The software runs our algorithm on a single Unix thread, since the parts
of the CGAL library we used are not thread-safe; note however that the
nature of our algorithm lends itself fairly well to parallelization, so a mul-
tithreading or other parallelized implementation could yield a considerable
speedup in performance, making it more practical to continue to improve
the bounds in Theorems 1 and 2.

To illustrate the use of the software, Listing 2 shows a sample working
session in which the upper bound 2.5 is derived for Gα with

α =

(
sin−1

33

65
, sin−1

119

169
, sin−1

56

65

)
≈ (30.51◦, 44.76◦, 59.49◦). (31)

The numerical bounds (26)–(29) used in the proofs of Theorems 1 and 2
were proved using SofaBounds, and required several weeks of computing
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Bound Saved profile file Num. of iterations Computation time

(26) thm9-bound1.txt 7,724,162 480 hours
(27) thm9-bound2.txt 917 2 minutes
(28) thm9-bound3.txt 26,576 1:05 hours
(29) thm9-bound4.txt 140,467 6:23 hours

Table 1: Benchmarking results for the computations used in the proof of
the bounds (26)–(29). The computations for (26) were performed on a 2.3
GHz Intel Xeon E5-2630 processor, and the computations for (27)–(29) were
performed were performed on a 3.4 GHz Intel Core i7 processor.

time on a desktop computer. Table 1 shows some benchmarking information,
which may be useful to anyone wishing to reproduce the computations or to
improve upon our results.

Additional details on SofaBounds can be found in the documentation
included with the package.
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Users/user/SofaBounds$ SofaBounds

SofaBounds version 1.0

Type "help" for instructions.

> load example-30-45-60.txt

File ’example-30-45-60.txt’ loaded successfully.

> settings

Number of corridors: 3

Slope 1: 33 56 65 (angle: 30.5102 deg)

Slope 2: 119 120 169 (angle: 44.7603 deg)

Slope 3: 56 33 65 (angle: 59.4898 deg)

Minimum final slope: 1 0 1 (angle: 90 deg)

Maximum final slope: 1 0 1 (angle: 90 deg)

Reporting progress every: 0.01 decrease in upper bound

> run

<iterations=0>

<iterations=1 | upper bound=3.754 | time=0:00:00>

<iterations=7 | upper bound=3.488 | time=0:00:01>

<iterations=9 | upper bound=3.438 | time=0:00:01>

[... 54 output lines deleted ...]

<iterations=1776 | upper bound=2.560 | time=0:08:43>

<iterations=2188 | upper bound=2.550 | time=0:10:48>

<iterations=2711 | upper bound=2.540 | time=0:13:23>

<iterations=3510 | upper bound=2.530 | time=0:18:18>

<iterations=4620 | upper bound=2.520 | time=0:24:54>

<iterations=6250 | upper bound=2.510 | time=0:34:52>

<iterations=8901 | upper bound=2.500 | time=0:50:45>

Listing 2: A sample working session of the SofaBounds software package
proving an upper bound for Gα with α given by (31) . User commands
are colored in blue. The session loads parameters from a saved profile file
example-30-45-60.txt (included with the source code download package)
and rigorously certifies the number 2.5 as an upper bound for Gα (and there-
fore also for µMS, by Proposition 4(ii)) in about 50 minutes of computation
time on a laptop with a 1.3 GHz Intel Core M processor.
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