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Abstract. Our main result is a limit shape theorem for the two-dimensional surface

defined by a uniform random n×n square Young tableau. The analysis leads to a calculus

of variations minimization problem that resembles the minimization problems studied by

Logan-Shepp, Vershik-Kerov, and Cohn-Larsen-Propp. We solve this problem by devel-

oping a general technique for solving variational problems of this kind. An extension to

rectangular Young tableaux is also given.

We also apply the main result to show that the location of a particular entry in

the tableau is in the limit governed by a semicircle distribution, and to the study of

extremal Erdös-Szekeres permutations, namely permutations of the numbers 1, 2, . . . , n2

whose longest monotone subsequence is of length n.
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1 Introduction

1.1 Random square Young tableaux

In this paper, we study the large-scale asymptotic behavior of uniform random Young

tableaux chosen from the set of tableaux of square shape. Recall that a Young diagram

is a graphical representation of a partition λ : λ(1) ≥ λ(2) ≥ . . . ≥ λ(k) of n =
∑

λi as

an array of cells, where row i has λi cells. For a Young diagram λ (we will often identify

a partition with its Young diagram), a Young tableau of shape λ is a filling of the cells

of λ with the numbers 1, 2, . . . , n such that the numbers along every row and column are

increasing.

A square Young tableau is a Young tableau whose shape is an n × n square Young

diagram. The number of such tableaux is known by the hook formula of Frame-Thrall-

Robinson (see (6) below) to be

(n2)!

[1 · (2n− 1)][2 · (2n− 2)]2[3 · (2n− 3)]3 . . . [(n− 1)(n+ 1)]n−1 nn
.

A square tableau T = (ti,j)
n
i,j=1 can be depicted geometrically as a three-dimensional

stack of cubes over the two-dimensional square [0, n] × [0, n], where ti,j cubes are stacked

over the square [i − 1, i] × [j − 1, j] × {0}. Alternatively, the function (i, j) → ti,j can

be thought of as the graph of the (non-continuous) surface of the upper envelope of this

stack. By rescaling the n× n square to a square of unit sides, and rescaling the heights of

the columns of cubes so that they are all between 0 and 1, one may consider the family

of square tableaux as n → ∞. This raises the natural question, whether the shape of the

stack for a random n × n square tableau exhibits some asymptotic behavior as n → ∞.

The answer is given by the following theorem, and is illustrated in Figure 1.

Theorem 1. Let Tn be the set of n × n square Young tableaux, and let Pn be the

uniform probability measure on Tn. Then for the function L : [0, 1]× [0, 1] → [0, 1] defined

below, we have:

(i) Uniform convergence to the limit shape: for all ε > 0,

Pn

(

T ∈ Tn : max
1≤i,j≤n

∣

∣

∣

∣

1

n2
ti,j − L

(

i

n
,
j

n

)∣

∣

∣

∣

> ε

)

−−−−→
n→∞

0.

(ii) Rate of convergence in the interior of the square: for all ε > 0,

Pn

(

T ∈ Tn : max
1 ≤ i, j ≤ n

min(ij, (n − i)(n − j)) > n3/2+ε

∣

∣

∣

∣

1

n2
ti,j − L

(

i

n
,
j

n

)∣

∣

∣

∣

>
1

n(1−ε)/2

)

−−−−→
n→∞

0.
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(a) 3D plot of simulated tableau
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(b) The limit surface L(x, y)

10 20 30 40 50

10

20

30

40

50

(c) Contour plot of simulated tableau
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(d) Contour plot of L

Figure 1: A simulated 50 × 50 random tableau and the limit surface
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Definition of L. We call the function L the limit surface of square Young tableaux.

It is defined by the implicit equation

x+ y =
2

π
(x− y) tan−1

(

(1 − 2L(x, y))(x− y)
√

4L(x, y)(1 − L(x, y)) − (x− y)2

)

+
2

π
tan−1

(

√

4L(x, y)(1 − L(x, y)) − (x− y)2

1 − 2L(x, y)

)

for 0 ≤ y ≤ 1 − x ≤ 1, together with the reflection property

L(x, y) = 1 − L(1 − x, 1 − y)

(where tan−1 is the arctangent function). It is more natural to describe L in terms of its

level curves {L(x, y) = α}. First, introduce the rotated coordinate system

u =
x− y√

2
, v =

x+ y√
2
. (1)

In the u− v plane, the square [0, 1] × [0, 1] transforms into the rotated square

3 = {(u, v) ∈ R
2 : |u| ≤

√
2/2, |u| ≤ v ≤

√
2 − |u|}.

Now define the one-parameter family of functions (gα)0≤α≤1 given by

gα : [−
√

2α(1 − α),
√

2α(1 − α)] → R,

gα(u) =















2
π

u tan−1

(

(1−2α)u√
2α(1−α)−u2

)

+

√
2

π
tan−1

(√
2(2α(1−α)−u2)

1−2α

)

0 ≤ α < 1
2
,

− 2
π

u tan−1

(

(2α−1)u√
2α(1−α)−u2

)

−
√

2
π

tan−1

(√
2(2α(1−α)−u2)

2α−1

)

+
√

2
1
2

< α ≤ 1,
√

2
2

α =
1
2
.

(2)

Then in the rotated coordinate system, the surface L̄(u, v) = L(x(u, v), y(u, v)) can be

described as the surface whose level curves {L̄(u, v) = α} are exactly the curves {v =

gα(u)}. That is,

{(u, v) ∈ 3 : L̄(u, v) = α} = {(u, v) ∈ 3 : |u| ≤
√

2α(1 − α), v = gα(u)}.

This is illustrated in Figure 2. It is straightforward to check that the curves v = gα(u) do

not intersect, and so define a surface 2.

2See equation (65) in section 3.4.
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Figure 2: The curves v = gα(u) for α = 0.05, 0.1, 0.15, 0.2, . . . , 0.5

Note some special values of L(x, y) which can be computed explicitly:

L(t, 0) = L(0, t) =
1 −

√
1 − t2

2
,

L(t, 1) = L(1, t) =
1 +

√
2t− t2

2
,

L(t, t) =
1 − cos(πt)

2
.

The approach in proving Theorem 1 is the variational approach. Namely, we identify

the large-deviation rate functional of the level curves of the random surface defined by

the tableau, then analyze the functional and find its minimizers. This will give Theorem

1(ii), with the rate of convergence following from classical norm estimates for some integral

operators. The treatment of the boundary of the square, required for Theorem 1(i), turns

out to be more delicate, and will require special arguments.

The variational problem which we solve resembles the variational problems studied by

Logan-Shepp [14], Vershik-Kerov [19, 20] and Cohn-Larsen-Propp [6]. In these previous

studies, it was fairly straightforward to verify that the proposed solution to the variational

problem was indeed the solution, but finding that solution was very difficult and required

deep insights and some guesswork. One notable feature of our solution, which we believe

to be of broader interest beyond its application to the problem of square Young tableaux,

is that we develop a general technique for systematically solving variational problems of

this kind without having to guess the solution. This may prove useful in dealing with

similar problems.
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1.2 Location of particular entries

Theorem 1 identifies the approximate value of the entry of a typical square tableau in a

given location in the square. A dual outlook is to ask where a given value k will appear

in the square tableau, since all the values between 1 and n2 appear exactly once. These

questions are almost equivalent. Indeed, if k is approximately α · n2, then Theorem 1

predicts that with high probability the entry k will appear in the vicinity of the level curve

{L(x, y) = α} (the fact that this actually follows from Theorem 1 is a simple consequence

of the monotonicity property of the tableau along rows and columns). However, one may

ask a more detailed question about the limiting distribution of the location of the entry

k on the level curve. It turns out that its u-coordinate has approximately the semicircle

distribution. This is made precise in the following theorem.

Theorem 2. For a tableau T ∈ Tn and 1 ≤ k ≤ n2, denote by (i(T, k), j(T, k))

the location of the entry k in T , and denote X(T, k) = i(T, k)/n, Y (T, k) = j(T, k)/n.

Let 0 < α < 1, let kn be a sequence of integers such that kn/n
2 −−−−→

n→∞
α, and for

each n let Tn be a uniform random tableau in Tn. Then as n → ∞, the random vector

(X(Tn, kn), Y (Tn, kn)) converges in distribution to the random vector

(Xα, Yα) :=

(

Vα + Uα√
2

,
Vα − Uα√

2

)

,

where Uα is a random variable with density function

fUα
(u) =

√

2α(1 − α) − u2

πα(1 − α)
1

[−
√

2α(1−α),
√

2α(1−α)]
(u) (3)

and Vα = gα(Uα).

1.3 Extremal Erdös-Szekeres permutations

The famous Erdös-Szekeres theorem states that a permutation of 1, 2, . . . , n2 must have

either an increasing subsequence of length n or a decreasing subsequence of length n. This

can be proved using the pigeon-hole principle, but also follows from the RSK correspon-

dence using the observation that a Young diagram of area n2 must have either width or

height at least n.

For the width and height of a Young diagram of area n2 to be exactly n, the diagram

must be a square. From the RSK correspondence it thus follows that to each permutation

of 1, 2, . . . , n2 whose longest increasing subsequence and longest decreasing subsequence

have length exactly n, there correspond a pair of square n × n Young tableaux. Such a

permutation has the minimal possible length of a longest monotone subsequence, and it
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seems appropriate to term such permutations extremal Erdös-Szekeres permutations (we

are not aware of any previous references to these permutations, aside from a brief mention

in [13], exercise 5.1.4.9).

As an application of our limit shape result, we will prove the following result on the

length of the longest increasing subsequence when just an initial segment of a random

extremal Erdös-Szekeres permutation is read.

Theorem 3. For each n, let πn be a uniform random extremal Erdös-Szekeres per-

mutation of 1, 2, . . . , n2. For 1 ≤ k ≤ n2, Let ln,k be the length of the longest increasing

subsequence in the sequence πn(1), πn(2), . . . , πn(k). Denote α = k/n2, and α0 = n−2/3+ε.

Then for any ε > 0, and ω(n) → ∞ however slowly,

max
α0≤k/n2≤1/2

P(|ln,k − 2
√

α(1 − α)n| > α
1/2
0 ω(n)n) −−−−→

n→∞
0.

Thus the random fluctuations of ln,k around 2
√

α(1 − α)n are not likely to be of order

substantially larger than n2/3.

1.4 Random rectangular Young tableaux

The methods which we will use to prove Theorems 1, 2, and 4 work equally well for

rectangular Young tableaux, in the limit when the size of the rectangle grows and its

relative proportions tend to a limiting value θ > 0. For each possible value θ of the ratio

between the sides of the rectangle, there is a limiting surface Lθ for random rectangular

Young tableaux. Analogously to the square tableaux, the rectangular n1×n2 tableaux can

be viewed as the result of applying the RSK algorithm to a permutation of {1, . . . , n1n2}
with the property that the lengths of the longest increasing and the longest decreasing

subsequences are exactly equal n1 and n2 (by the Erdös-Szekeres theorem, the two lengths

cannot be simultaneously below n1 and n2, respectively).

Let θ > 0. We may assume that θ ≤ 1, otherwise exchange the two sides of the

rectangle. Define Lθ : [0, 1] × [0, θ] → [0, 1], the limit surface of rectangular tableaux with

side ratio θ, as follows. For each 0 < α < 1, the α-level curve {(x, y) : Lθ(x, y) = α} is

given in rotated u− v coordinates by

{(u, hθ,α(u)) : −β1 ≤ u ≤ β2},
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where

β =
√

2θα(1 − α),

β1 = β − α(1 − θ)
√

2/2, β2 = β + α(1 − θ)
√

2/2,

hθ,α(u) = θ
√

2/2 ± (β1 − θ
√

2/2) +
2β

π

[

± (−ξ − γ1) tan−1

√

(1 − ξ)(γ1 − 1)

(1 + ξ)(γ1 + 1)

+(ξ − γ2) tan−1

√

(1 + ξ)(γ2 − 1)

(1 − ξ)(γ2 + 1)

+
1

2

(

sin−1 ξ +
π

2

) 1 − θ√
2β

± π

2
(γ1 − 1)

]

, 0 < α ≤ 1

2
,

± =

{

+ 0 < α ≤ θ/(1 + θ),

− θ/(1 + θ) < α ≤ 1/2,

ξ =
u− α(1 − θ)

√
2/2

β
, u ∈ [−β1, β2],

γ1 =
α+ θ(1 − α)√

2β
, γ2 =

θα+ 1 − α√
2β

,

hθ,α(u) = (1 + θ)
√

2/2 − hθ,1−α((1 − θ)
√

2/2 − u),
1

2
< α < 1,

see Figure 3.

Theorem 4. For integers n,m > 0, let Tn,m be the set of tableaux whose shape

is an n × m rectangular diagram, and let Pn,m be the uniform probability measure on

Pn,m. If T = (ti,j)i,j ∈ Tn,m, define the rescaled tableau surface of T as the function

S̃T : [0, 1) × [0,m/n) → [0, 1] given by

S̃T (x, y) =
1

nm
tbnxc+1,bnyc+1.

Let 0 < θ ≤ 1. If mn is a sequence of integers such that mn/n → θ as n → ∞, then for

all ε > 0, x ∈ [0, 1), y ∈ [0, θ),

Pn,mn
(T ∈ Tn,mn

: |S̃T (x, y) − Lθ(x, y)| > ε) −−−−→
n→∞

0.

In the main the argument parallels the proof of Theorem 1. We encourage the moti-

vated reader to go through the necessary computations.
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Figure 3: The curves hθ,α for θ = 0.5, α = k/9, k = 1, 2, . . . , 8.

1.5 Random square Young tableaux and Plancherel

measure

As a final introductory note, we remark that perhaps the true importance of the uniform

random square Young tableaux model studied in this paper is best seen in connection

with the well-studied model of Plancherel measure. The formula (7), which is the starting

point of our analysis, is a natural analogue of, and indeed a deformation of, the formula

d(λ0)
2/|λ0|! for Plancherel measure, in the sense that fixing k and letting n → ∞ yields

Plancherel measure in the limit. Therefore the ideas in this paper may be applicable

beyond the immediate interest of the main results themselves, and one might hope that

using the connection between random square Young tableaux and Plancherel measure,

new insights to both models may be gained. For more information on Plancherel measure,

see the papers [1, 3, 4, 5, 11, 12, 14, 19, 20].

1.6 Organization of the paper

The remainder of the paper is organized as follows: In the next section, we present the

variational approach to the limit surface of random square Young tableaux, based on the
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hook formula of Frame-Thrall-Robinson. The level curves of L appear as minimizers of a

certain functional. This leads to a proof of Theorem 1 in the interior of the square, except

for the explicit identification of L. Section 3 is dedicated to the derivation of the explicit

formula for the minimizer.

In section 4, we complete the proof of Theorem 1, treating the more delicate case of

the boundary of the square, and prove Theorem 3. In section 5, we discuss the hook walk of

Greene-Nijenhuis-Wilf and the concept of the co-transition measure of a Young diagram.

Using the explicit formulas for the co-transition measure derived in [16], we compute the

co-transition measure of the level curves gα, proving Theorem 2. In section 6 we mention

some open problems.

2 A variational problem for random square

tableaux

2.1 A large-deviation principle

One may consider a tableau T ∈ Tn as a path in the Young graph of all Young diagrams,

starting with the empty diagram, and leading up to the n × n square diagram, where

each step is of adding one box to the diagram. Identify T with this sequence λ0
T = φ ⊂

λ1
T ⊂ λ2

T ⊂ . . . ⊂ λn2

T = �n of diagrams. (λk
T is simply the sub-diagram of the square

comprised of those boxes where the value of the entry of T is ≤ k.) Theorem 1 is then

roughly equivalent, in a sense that will be made precise later, to the statement that for

each 1 ≤ k ≤ n2 − 1, the rescaled shape of λk
T for a random T ∈ Tn resembles the sub-level

set

{(x, y) ∈ [0, 1]2 : L(x, y) ≤ k/n2}

of L, with probability 1 − o(1) as n → ∞. It is this approach that leads to the large-

deviation principle. Namely, we can estimate the probability that the sub-diagram λk
T has

a given shape:

Lemma 1. For T ∈ Tn, denote as before λ0
T ⊂ . . . ⊂ λn2

T the path in the Young

graph defined by T , and for each 0 ≤ k ≤ n2, let λk
T : λk

T (1) ≥ λk
T (2) ≥ . . . ≥ λk

T (n)

be the lengths of the columns of λk
T (some of them may be 0). For any Young diagram

λ : λ(1) ≥ λ(2) ≥ . . . ≥ λ(n) whose graph lies within the n× n square, define the function

fλ : [0, 1] → [0, 1] by

fλ(x) =
1

n
λ(dnxe). (4)
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(Note that this depends implicitly on n.) Let 0 ≤ k ≤ n2, and let α = k/n2. Then for any

given diagram λ0 ⊆ �n with area k, we have

Pn

(

T ∈ Tn : λk
T = λ0

)

= exp

(

− (1 + o(1))n2(I(fλ0
) +H(α) + C)

)

(5)

as n→ ∞, where

C =
3

2
− 2 log 2,

H(α) = −α log(α) − (1 − α) log(1 − α),

I(g) =

∫ 1

0

∫ 1

0

log |g(x) − y + g−1(y) − x|dy dx,

g−1(y) = inf{x ∈ [0, 1] : g(x) ≤ y}.

The o(1) is uniform over all λ0 and all 0 ≤ k ≤ n2.

Proof. For a Young diagram λ : λ(1) ≥ λ(2) ≥ . . . ≥ λ(l) of area m, denote by d(λ) the

number of Young tableaux of shape λ (also known as the dimension of λ, as it is known

to be equal to the dimension of a certain irreducible representation corresponding to λ of

the symmetric group of order m). Recall the hook formula of Frame-Thrall-Robinson [8],

which says that d(λ) is given by

d(λ) =
m!

∏

(i,j)∈λ hi,j
, (6)

where the product is over all boxes (i, j) in the diagram, and hi,j is the hook number of a

box, given by

hi,j = λ(i) − j + λ′(j) − i+ 1

= 1 + number of boxes either to the right of, or below (i, j)

(and where λ′ is the conjugate partition to λ.) Then we have 3

Pn

(

T ∈ Tn : λk
T = λ0

)

=
d(λ0)d(�n \ λ0)

d(�n)
, (7)

where d(�n\λ0) means the number of fillings of the numbers 1, . . . , n2−k in the cells of the

skew-Young diagram �n \ λ0 that are monotonically decreasing along rows and columns.

This is because �n \ λ0 can be thought of as an ordinary diagram, when viewed from the

opposite corner of the square. The number of square tableaux whose k-th subtableau has

shape λ0 is simply the number of tableaux of shape λ0, times the number of fillings of the

3Note to the reader: this is probably the most important formula in the paper!
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numbers k+1, k+2, . . . , n2 in the cells of �n \λ0 that are monotonically increasing along

rows and columns – and these are of course isomorphic to tableaux of shape �n \ λ0, by

replacing each entry i with n2 + 1 − i.

Take minus the logarithm of (7) and divide by n2, using (6). The right-hand side

becomes

a+ b+ c− d :=
1

n2
log

(

(n2)!

k!(n2 − k)!

)

+
1

n2

n
∑

i=1

λ(i)
∑

j=1

log(λ(i) − j + λ′(j) − i+ 1)

+
1

n2

n
∑

i=1

n
∑

j=λ(i)+1

log(j − λ(i) + i− λ′(j) + 1) − 1

n2

n
∑

i=1

n
∑

j=1

log(2n− i− j + 1).

By Stirling’s formula, we have a = n−2 log
(

n2

k

)

= H(α)+o(1), with the required uniformity

in k. The other summands look like Riemann sums of double integrals. Indeed, we claim

that

b =

∫ 1

0

∫ fλ0
(x)

0

log

(

fλ0
(x) − y + f−1

λ0
(y) − x

)

dy dx+
k

n2
log n+ o(1),

c =

∫ 1

0

∫ 1

fλ0
(x)

log

(

y − fλ0
(x) + x− f−1

λ0
(y)

)

dy dx+
n2 − k

n2
log n+ o(1),

d =

∫ 1

0

∫ 1

0

log(2 − x− y)dy dx+ log n+ o(1) = C + log n+ o(1),

which on summing and exponentiating would give the lemma. Let us prove, for example,

the first of these equations. Write

b =
1

n2

n
∑

i=1

λ(i)
∑

j=1

log(λ(i) − j + λ′(j) − i+ 1)

=
1

n2

n
∑

i=1

λ(i)
∑

j=1

log

(

λ(i) − j + λ′(j) − i+ 1

n

)

+
k

n2
log n.

Fix 1 ≤ i ≤ n and 1 ≤ j ≤ λ(i). Denote h = (λ(i) − j + λ′(j) − i + 1)/n. Approximate

n−2 log h in the above sum by the double integral

Q :=

∫ i/n

(i−1)/n

∫ j/n

(j−1)/n

log
(

fλ0
(x) − y + f−1

λ0
(y) − x

)

dy dx.

A change of variables transforms this (check the definition of fλ0
) into

Q =

∫ 1/2n

−1/2n

∫ 1/2n

−1/2n

log(x+ y + h)dx dy.
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Note that h may take the values 1/n, 2/n, . . . , (2n− 1)/n. If h = 1/n, then integrating we

get

Q = − log n

n2
+ n−2

∫ 1

0

∫ 1

0

log(u+ v)du dv =
log h

n2
+O(n−2).

If h ≥ 2/n, by the integral mean value theorem, we have for some η ∈ [−1, 1],

Q =
log(h+ ηn−1)

n2
=

log h

n2
+O((n3h)−1).

Clearly then the last estimate holds for h = 1/n as well. The sum of the remainders over

all 1 ≤ i ≤ n, 1 ≤ j ≤ λ(i) is of order

n−2
∑

(i,j)∈λ0

1

hi,j
≤ n−2

2n−1
∑

m=1

a(m)

m
,

where

a(m) := #{(i, j) ∈ λ0 : hi,j = m}.

Clearly a(m) ≤ n, since each row i of λ0 contains at most one cell (i, j) with hi,j = m.

This gives that the sum of the remainders is of order

n−2
2n−1
∑

m=1

n

m
= O

(

log n

n

)

,

which is indeed o(1).

2.2 Two formulations of the variational problem

Lemma 1 says, roughly, that the exponential order of the probability that a random square

tableau T has a given k-subtableau shape, where k is approximately α ·n2, is given by the

value of the functional I on the boundary g of the shape, plus some terms depending only

on α. Following the well-known methodology of large deviation theory, the natural next

step is to identify the global minimum of I over the appropriate class of functions, or in

other words to find the most likely shape for the α-level set. If we can prove that there is

a unique minimum, and identify it, that will be a major step towards proving Theorem 1.

So we have arrived at the following variational problem.

Variational problem 1. For each 0 < α < 1, any weakly decreasing function

f : [0, 1] → [0, 1] such that
∫ 1

0
f(x)dx = α is called α-admissible. Find the unique α-

admissible function that minimizes the functional

I(f) =

∫ 1

0

∫ 1

0

log |f(x) − y + f−1(y) − x|dy dx.

13



We now simplify the form of the functional I, by first rotating the coordinate axes by

45 degrees, and then reparametrizing the square by the “hook coordinates” – an idea used

in [19], [20], [14]. Let u, v be the rotated coordinates as in (1). Given an α-admissible

function f : [0, 1] → [0, 1], there corresponds to it a function g : [−
√

2/2,
√

2/2] → [0,
√

2],

such that

y = f(x) ⇐⇒ v = g(u)

(see Figure 4). The class of α-admissible functions translates to those functions g :

[−
√

2/2,
√

2/2] → [0,
√

2] that are 1-Lipschitz, and satisfy g(−
√

2/2) = g(
√

2/2) =
√

2/2

and
∫

√
2/2

−
√

2/2

(g(u) − |u|)du = α. (8)

We continue to call such functions α-admissible. We call a function admissible if it is

α-admissible for some 0 ≤ α ≤ 1.
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Figure 4: The rotated graph and the hook coordinates s, t

To derive the new form of the functional, write

I(f) = I1(f) + I2(f) :=

∫ 1

0

∫ f(x)

0

log(hf (x, y))dy dx+

∫ 1

0

∫ 1

f(x)

log(hf (x, y))dy dx,

where hf (x, y) is the hook function of f ,

hf (x, y) = |f(x) − y + f−1(y) − x|.

Now, set

J(g) = J1(g) + J2(g) := I1(f) + I2(f),

14



where f and g are rotated versions of the same graph as in Figure 4. Then

J2(g) =

∫

√
2/2

−
√

2/2

∫

√
2−|u|

g(u)

log hf (x, y)dv du.

Reparametrize this double integral by the hook coordinates s and t,

s =
f−1(y) − y√

2
, t =

x− f(x)√
2

(see Figure 4). The Lipschitz property ensures that this transformation is one-to-one from

the region

{(u, v) : −
√

2/2 ≤ u ≤
√

2/2, g(u) ≤ v ≤
√

2 − |u|}
onto the region

∆ = {(s, t) : −
√

2/2 ≤ s ≤ t ≤
√

2/2}.
Therefore the integral transforms as

J2(f) =

∫ ∫

∆

log
(√

2(t− s)
)

∣

∣

∣

∣

∂(u, v)

∂(s, t)

∣

∣

∣

∣

ds dt.

It remains to compute the Jacobian ∂(u, v)/∂(s, t). An easy computation gives (see [19],

[20], [14])
∂(u, v)

∂(s, t)
=

1

2
(1 − g′(s))(1 + g′(t)).

(This can be viewed geometrically as follows: draw on the u-axis in Figure 4 the two

intervals [s, s+ds], [t, t+dt]. The set of points in the square for which the hook coordinates

fall inside the two intervals is approximately a rectangle with sides (1 − g′(s))/
√

2 and

(1 + g′(t))/
√

2.) So

J2(g) =
1

2

∫ ∫

∆

log
(√

2(t− s)
)

(1 − g′(s))(1 + g′(t))ds dt.

A similar computation for J1, using “lower” instead of “upper” hook coordinates, shows

that

J1(g) =
1

2

∫ ∫

∆

log
(√

2(t− s)
)

(1 + g′(s))(1 − g′(t))ds dt.

This gives

J(g) =
1

2

∫ ∫

∆

log
(√

2(t− s)
)

[

(1 − g′(s))(1 + g′(t)) + (1 + g′(s))(1 − g′(t))
]

ds dt

=
1

2

∫ ∫

∆

log
(√

2(t− s)
)

(

2 − 2g′(s)g′(t)
)

ds dt

= −1

2

∫

√
2/2

−
√

2/2

∫

√
2/2

−
√

2/2

log |t− s| · g′(s)g′(t)ds dt+ log 2 − 3

2
.

We can now state a reformulation of the original variational problem.
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Variational problem 2. For each 0 < α < 1, a function g : [−
√

2/2,
√

2/2] →
[0,

√
2] is called α-admissible if: g(−

√
2/2) = g(

√
2/2) =

√
2/2; g is 1-Lipschitz; and

∫

√
2/2

−
√

2/2
(g(u) − |u|)du = α. Find the unique α-admissible function that minimizes the

functional

K(g) = −1

2

∫

√
2/2

√
2/2

∫

√
2/2

−
√

2/2

g′(s)g′(t) log |s− t|dsdt. (9)

2.3 Deduction of Theorem 1(ii)

In the next section, we prove the following theorem.

Theorem 5. For each 0 < α < 1, let g̃α be the unique extension of gα (defined in (2))

to an α-admissible function, namely

g̃α(u) =

{

gα(u) |u| ≤
√

2α(1 − α)

|u|
√

2α(1 − α) ≤ |u| ≤
√

2/2

for 0 < α ≤ 1/2, and

g̃α(u) =

{

gα(u) |u| ≤
√

2α(1 − α)√
2 − |u|

√

2α(1 − α) ≤ |u| ≤
√

2/2

for 1/2 < α < 1. Then:

(i) g̃α is the unique solution to Variational problem 2;

(ii) K(g̃α) = −H(α) + log 2;

(iii) For any α-admissible function g we have

K(g) ≥ K(g̃α) +K(g − g̃α).

Assuming this as proven, our goal is now to prove Theorem 1. At the beginning of this

section, we claimed that Theorem 1 was equivalent to the statement that the subtableau

λk
T has shape approximately described by the region bounded under the graph of the level

curve {L = k/n2} (which in rotated coordinates is given by the curve v = g̃α(u), where

α = k/n2). We shall now make precise the sense in which this is true, and see how this

follows from the fact that g̃α is the minimizer.

For a continuous function p : [−
√

2/2,
√

2/2] → R, define its supremum norm

||p||∞ = max
u∈[−

√
2/2,

√
2/2]

|p(u)|.

Lemma 2. K is continuous in the supremum norm on the space of admissible func-

tions.
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Proof. Consider the symmetric bilinear form

〈g, h〉 = −1

2

∫

√
2/2

−
√

2/2

∫

√
2/2

−
√

2/2

g′(s)h′(t) log |s− t|ds dt (10)

defined whenever g and h are almost everywhere differentiable functions on [−
√

2/2,
√

2/2]

with bounded derivative. We show that 〈·, ·〉 is continuous in the supremum norm with

respect to any of its arguments, when restricted to the set of 1-Lipschitz functions; this

will imply the lemma, since K(g) = 〈g, g〉. Write (10) more carefully as

〈g, h〉 = −1

2

∫

√
2/2

−
√

2/2

g′(s) · lim
ε↘0

[

∫ s−ε

−
√

2/2

h′(t) log(s− t)dt+

∫

√
2/2

s+ε

h′(t) log(t− s)dt

]

ds.

For s ∈ (−
√

2/2,
√

2/2) which is a point of differentiability of h, integration by parts gives

∫ s−ε

−
√

2/2

h′(t) log(s− t)dt+

∫

√
2/2

s+ε

h′(t) log(t− s)dt =

= h(t) log(s− t)

∣

∣

∣

∣

t=s−ε

t=−
√

2/2

−
∫ s−ε

−
√

2/2

h(t)

t− s
dt+ h(t) log(t− s)

∣

∣

∣

∣

t=
√

2/2

t=s+ε

−
∫

√
2/2

s+ε

h(t)

t− s
dt

= h

(√
2

2

)

log

(√
2

2
− s

)

− h

(

−
√

2

2

)

log

(√
2

2
+ s

)

+ (h(s− ε) − h(s+ ε)) log ε−
∫

[−
√

2/2,s−ε]∪[s+ε,
√

2/2]

h(t)

t− s
dt

−−−−−−→
ε↘0

h

(√
2

2

)

log

(√
2

2
− s

)

− h

(

−
√

2

2

)

log

(√
2

2
+ s

)

− πh̃(s),

where h̃ is the Hilbert transform of h, defined by the principal value integral

h̃(s) =
1

π

∫

R

h(t)

t− s
dt

(think of h as a function on R which is 0 outside [−
√

2/2,
√

2/2].) Going back to (10), this

gives

〈g, h〉 = −1

2
h

(√
2

2

)

∫

√
2/2

−
√

2/2

g′(s) log

(√
2

2
− s

)

ds

+
1

2
h

(

−
√

2

2

)

∫

√
2/2

−
√

2/2

g′(s) log

(√
2

2
+ s

)

ds

+
π

2

∫

√
2/2

−
√

2/2

g′(s)h̃(s)ds. (11)
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Now recalling that the Hilbert transform is an isometry on L2(R) (see [18], Theorem 90),

and using the fact that

∣

∣

∣

∣

∫

√
2/2

−
√

2/2

log

(√
2

2
± s

)

ds

∣

∣

∣

∣

=
2 − log 2√

2
< 1,

this implies that for 1-Lipschitz functions g, h1, h2,

|〈g, h1 − h2〉| ≤ ||h1 − h2||∞ +
π

2

∫

√
2/2

−
√

2/2

|h̃1(s) − h̃2(s)|ds

≤ ||h1 − h2||∞ + 21/4 π

2

(

∫

√
2/2

−
√

2/2

(

h̃1(s) − h̃2(s)
)2

ds

)1/2

≤ ||h1 − h2||∞ + 21/4 π

2

(∫

R

(

h̃1(s) − h̃2(s)
)2

ds

)1/2

= ||h1 − h2||∞ + 21/4 π

2

(

∫

√
2/2

−
√

2/2

(h1(s) − h2(s))
2ds

)1/2

≤
(

1 + 21/2 π

2

)

||h1 − h2||∞.

We have another use for (11). Let f be a Lipschitz function on [−
√

2/2,
√

2/2] that

satisfies f(±
√

2/2) = 0. Denote by

F [f ](x) =

∫

R

f(t)e−ixtdt

the Fourier transform of a function f . Recall the well-known formulas

F [f̃ ](x) = i · sgnx · F [f ](x),

F [f ′](x) = i · x · F [f ](x),
∫

R

f1(t)f2(t)dt =
1

2π

∫

R

F [f1](x)F [f2](x)dx.

Then, by (11)

K(f) = 〈f, f〉 =
π

2

∫

√
2/2

−
√

2/2

f ′(s)f̃(s)ds

=
1

4

∫

R

F [f ′](x)F [f̃ ](x)dx =
1

4

∫

R

|x| · |F [f ](x)|2dx. (12)

We note as a lemma an important consequence of this identity which we shall need later

on.
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Lemma 3. If f is a Lipschitz function with f(±
√

2/2) = 0 as above, then K(f) ≥ 0,

and K(f) = 0 only if f ≡ 0.

Lemma 3 will be used in the next section to easily deduce uniqueness of the minimizer.

In fact, Theorem 5 gives all the necessary information to prove a non-quantitative version

of Theorem 1, i.e. without the rate-of-convergence estimates. However, we can do better,

by noting that Theorem 5(iii), together with the representation (12), can be used to give

quantitative estimates for the rate of convergence in Theorem 1. We prove the following

strengthening of Lemma 3:

Lemma 4. For every r ∈ (2, 3), there exists a constant c = c(r) > 0 such that for all

2-Lipschitz functions f : [−
√

2/2,
√

2/2] → R that satisfy f(±
√

2/2) = 0, we have

K(f) ≥ c||f ||r∞.

Proof. Had the power of |x| in (12) been 2, K(f) would have been equal to 1/4 times

the squared L2-norm of xF [f ](x) = F [f ′](x). Having |x| in (12) invites the conclusion that

instead we are dealing with the squared L2-norm of f (1/2)(x), the fractional derivative of

f of order 1/2.

To see that this is indeed the case, and to use the full power of such an interpretation

of K(f), let us recall the corresponding definitions. For α ∈ (0, 1), the fractional derivative

f (α)(x) of order α is defined by

f (α)(x) =
α

Γ(1 − α)

∫ ∞

0

f(x) − f(x− t)

t1+α
dt. (13)

The integral exists as f(x) is Lipschitz and bounded. Clearly f (α)(x) ≡ 0 for x ≤ −
√

2/2.

Then

F [f (α)](x) =

∫

R

e−ixtf (α)(t)dt

=
α

Γ(1 − α)

∫ ∞

0

1 − e−ixτ

τ1+α
dτ · F [f ](x) = (ix)αF [f ](x), (14)

where

(ix)α :=

{

|x|α exp(iαπ/2), x > 0,

|x|α exp(−iαπ/2), x < 0.

Indeed, setting

z1+α = |z| exp(i(1 + α)θ)), if z = |z|eiθ, θ ∈ (−π, π),
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we have

∫ ∞

0

1 − e−ixτ

τ1+α
dτ = (ix)α

∫ i∞

0

1 − e−z

z1+α
dz = (ix)α

∫ ∞

0

1 − e−τ

τ1+α
dτ

= (ix)α 1

α

∫ ∞

0

τ−αe−τdτ = (ix)α Γ(1 − α)

α
.

In particular, for α = 1/2, we get from (14) that

∣

∣F [f (1/2)](x)
∣

∣

2
= |x| · |F [f ](x)|2,

whence, by (14) and isometry of the Fourier transform,

K(f) =
1

4

∫

R

|x| · |F [f ](x)|2dx =
π

2
|f (1/2)(x)|2. (15)

The fractional integration operator, inverse to that in (13), is known to be given by

f(x) = (Iαf
(α))(x), (Iαh)(x) :=

1

Γ(α)

∫ x

−∞
(x− t)α−1h(t)dt. (16)

As a check, the Fourier transform of the RHS is

1

Γ(α)
F [f (α)](x)

∫ ∞

0

τα−1e−ixτdτ = (ix)−αF [f (α)](x) = F [f ](x).

By Theorem 383 in [10], for p > 1 and

0 < α <
1

p
, q =

p

1 − αp
,

Iα maps Lp into Lq, and is bounded. That is, there exists a constant c(p) > 0 such that

||Iαh||q ≤ c(p)||h||p. (17)

Introduce ψ(x) = f (α)(x)1(−∞,
√

2/2](x), so that ψ is supported by [−
√

2/2,
√

2/2]. Ac-

cording to (16),

(Iαψ)(x) = f(x), x ≤
√

2/2.

So, using (17) and monotonicity of the Ls-averages, we have

||f ||q ≤ ||Iαψ||q ≤ c(p)||ψ||p ≤ c1(p)||ψ||2 ≤ c2(p)||f (α)||2, c1(p) := (
√

2)1/p−1/2c(p).

In light of (15), for α = 1/2 we obtain then

||f ||2q ≤ c2(p)K(f), c2(p) :=
2

π
c1(p)

2,

(

p ∈ (1, 2), q =
p

1 − p/2

)

. (18)
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Let x0 ∈ (−
√

2/2,
√

2/2) be such that |f(x0)| = ||f ||∞. Since f is 2-Lipschitz,

|f(x)| ≥ ||f ||∞ − 2|x− x0|, |x− x0| ≤
||f ||∞

2
.

Then

||f ||2q ≥
(

2

∫ ||f ||∞/2

0

(||f ||∞ − 2y)qdy

)2/q

=
||f ||2(q+1)/q

∞
(q + 1)2/q

,

so, using (18), we conclude that, for an absolute constant c∗(p, q) > 0,

K(f) ≥ c∗(p)||f ||2(q+1)/q
∞ .

It remains to observe that
2(q + 1)

q
= 1 +

2

p

can be made arbitrarily close to 2 from above by selecting p sufficiently close to 2 from

below. This completes the proof.

Theorem 6. For a Young diagram λ whose graph lies within the n×n square, let gλ(u)

be the rotated coordinate version of the function fλ(x) defined in (4). Denote α = k/n2.

Then for all 2 < r < 3, there are constants c = c(r) > 0, C = C(r) > 0 such that for any

ε > 0 and for any n,

Pn

(

T ∈ Tn : max
1≤k≤n2−1

||gλk
T
− g̃α||∞ > ε

)

≤ C exp(3n− c εrn2). (19)

Consequently, with probability subexponentially close to 1, for all k the supnorm distance

between gλk
T

and g̃α, (α = k/n2), does not exceed n−1/2+δ, (δ > 0).

Proof. Let p(m) be the number of partitions of an integer m. It is known that for all

m, p(m) ≤ exp(π
√

2m/3) (see [2], Theorem 14.5). Fix n, 1 ≤ k ≤ n2 − 1, ε > 0. Using

Lemma 1,

Pn

(

T ∈ Tn : ||gλk
T
− g̃α||∞ > ε

)

=
∑

λ0 ⊆ �n of area k

||gλ0
− g̃α||∞ > ε

Pn

(

T ∈ Tn : λk
T = λ0

)

≤ p(k) sup

λ0 ⊆ �n of area k

||gλ0
− g̃α||∞ > ε

exp

(

− (1 + o(1))n2(K(gλ0
) +H(α) − log 2)

)

. (20)
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Let λ0 be a diagram contained in �n of area k, such that ||gλ0
− g̃α||∞ > ε. Since gλ0

is

α-admissible, using Theorem 5 and Lemma 4 we have

K(gλ0
) +H(α) − log 2 ≥ K(gλ0

− g̃α) > c(r)||gλ0
− g̃α||r∞ ≥ c(r)εr.

Combining this with (20) and with the above remark on the number of partitions of an

integer gives that for n larger than some absolute initial bound,

Pn

(

T ∈ Tn : ||gλk
T
− g̃α||∞ > ε

)

≤ exp(2.8
√
αn− cn2εr).

Taking the union bound over all 1 ≤ k ≤ n2 − 1 gives (19).

Lemma 5. For each (x, y) ∈ (0, 1)× (0, 1), let (u, v) be their rotated coordinates as in

(1). Let α0 = L(x, y), so that |u| <
√

2α0(1 − α0) and v = g̃α0
(u). There exist absolute

constants c1, c2 > 0 such that if we set

σ(x, y) = min(xy, (1 − x)(1 − y)),

d(x, y) = c1
√

σ(x, y), ∆(x, y) = c2σ
2(x, y),

we will have that for all 0 < α < 1 and δ < ∆(x, y), if |g̃α(u) − g̃α0
(u)| < δ · d(x, y) then

|α− α0| < δ.

Proof. Since g̃α(u) increases with α, it suffices to prove existence of two absolute con-

stants γ1, γ2 > 0 such that

|g̃α(u) − g̃α0
(u)| ≥ γ1σ

1/2(x, y)|α− α0|, if |α− α0| ≤ γ2σ(x, y).

Because of the symmetry property g̃1−α(u) =
√

2− g̃α(u), we may assume that x+ y ≤ 1,

or equivalently that α0 ≤ 1/2.

To prove the above claim, we note the following inequalities. Notice first that

√

2α0(1 − α0) ≥ v =⇒ α0 ≥ 1 −
√

1 − 2v2

2
.

Likewise, α(−) that corresponds to the lowest point (u, u) is given by

α(−) =
1 −

√
1 − 2u2

2
.

and we see that

α0 − α(−) ≥
√

1 − 2u2 −
√

1 − 2v2

2
=

v2 − u2

√
1 − 2u2 +

√
1 − 2v2

≥ v2 − u2

2
= xy. (21)
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(21) says that decreasing α0 by x0y0 gives us a feasible α, for which (u, g̃α(u)) lies between

(u, v) and the lowest point (u, u), such that u ≤
√

2α(1 − α).

Let us estimate from above g̃α(u) for α ∈ [α(−), α0]. From (65) it follows that

∂g̃α(u)/∂α
√

g̃α(u)2 − u2
≥ c

for some absolute constant c > 0. (Indeed, 2α(1−α) = β2(α) ≥ g̃α(u)2.) Integrating from

α ∈ [α(−), α0] and exponentiating, we obtain

g̃α0
(u) +

√

g̃α0
(u)2 − u2

g̃α(u) +
√

g̃α(u)2 − u2
≥ exp(c(α0 − α)),

or equivalently
g̃α(u) −

√

g̃α(u)2 − u2

g̃α0
(u) −

√

g̃α0
(u)2 − u2

≥ exp(c(α0 − α)).

Consequently

√

g̃α(u)2 − g̃α0
(u)2 ≤ cosh(c(α0 − α))

√

g̃α0
(u)2 − u2 − sinh(c(α0 − α))g̃α0

(u),

or

g̃α(u)2 ≤
[

cosh(c(α0 − α))g̃α0
(u) − sinh(c(α− α0))

√

g̃α0
(u)2 − u2

]2

,

so that

g̃α(u) ≤ cosh(c(α0 − α))g̃α0
(u) − sinh(c(α− α0))

√

g̃α0
(u)2 − u2.

Consequently, for some constants ci > 0,

g̃α(u) − g̃α0
(u) ≤ −c3(α0 − α)[(v2 − u2)1/2 − c4(α0 − α)v]

= −c5(α0 − α)[(xy)1/2 − c6(α0 − α)(x+ y)]

≤ −c7(α0 − α)(xy)1/2,

provided that

α0 − α ≤ c8
(xy)1/2

x+ y
.

¿From (21) we know that we can go below α0 by xy at least. Pick ρ = min(1, c8/3); then

the last inequality holds for α0 − α ≤ ρxy, and we have

g̃α(u) − g̃α0
(u) ≤ −c7(α0 − α)(xy)1/2, α ∈ [α0 − ρxy, α0]. (22)

Now for α0 ≤ α ≤ 1/2 we know that

∂g̃α(u)

∂α
≥ c9

√

v2 − u2 = c10(xy)
1/2,
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so that

g̃α(u) − g̃α0
(u) ≥ c10(xy)

1/2(α− α0). (23)

By symmetry, for 1/2 ≤ α ≤ 1 − α0,

g̃α(u) − g̃1−α0
≤ −c10((1 − α0) − α)((1 − x)(1 − y))1/2, (24)

and, for 1 − α0 ≤ α ≤ 1 − α0 + ρ(1 − x)(1 − y),

g̃α(u) − g̃α0
(u) ≥ c7(α− (1 − α0))((1 − x)(1 − y))1/2. (25)

The inequalities (22), (23), (24), (25) prove the claim with γ1 = min{c7, c10} and γ2 = ρ.

Proof of Theorem 1(ii). We now prove Theorem 1(ii), the part of Theorem 1

that deals with the interior of the square. The treatment of the boundary of the square is

more delicate and is deferred to section 4, being essentially equivalent to Theorem 3.

Fix 1 ≤ i, j ≤ n such that

min(ij, (n− i)(n− j)) > n3/2+ε. (26)

Let (u, v) be the rotated coordinates corresponding to (x, y) = (i/n, j/n). Let α0 =

L(i/n, j/n), so that v = g̃α0
(u) and |u| <

√

2α0(1 − α0). For each tableau T = (ti,j)1≤i,j≤n ∈
Tn let kT = ti,j , and let βT = kT /n

2. Note that kT is an integer representing the smallest

s such that λs
T contains the box (i, j). This implies that v = g

λ
kT
T

(u). Apply Lemma 5

with (x, y) = (i/n, j/n) and δ = n−(1−ε)/2. Note that because of (26), for n large we have

δ < ∆(x, y) as required. Then, making use of Theorem 6 we get

Pn

(

T ∈ Tn :

∣

∣

∣

∣

1

n2
ti,j − L

(

i

n
,
j

n

)∣

∣

∣

∣

>
1

n(1−ε)/2

)

= Pn

(

T ∈ Tn : |βT − α0| >
1

n(1−ε)/2

)

(by Lemma 5) ≤ Pn

(

T ∈ Tn : |g̃βT
(u) − g̃α0

(u)| > d(i/n, j/n)

n(1−ε)/2

)

= Pn

(

T ∈ Tn :
∣

∣

∣g
λ

kT
T

(u) − g̃βT
(u)
∣

∣

∣ >
d(i/n, j/n)

n(1−ε)/2

)

(by Theorem 6 with r = 2 + ε) ≤ C exp

(

3n− cn2

(

d(i/n, j/n)

2n(1−ε)/2

)2+ε
)

(for n large, by (26)) ≤ C ′ exp(−c′n3/2).

Taking the union bound over all 1 ≤ i, j ≤ n satisfying (26) gives the result.
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3 Solution of the variational problem

3.1 Preliminaries

In this section, we prove Theorem 5. We actually derive the explicit formula for the

minimizer using methods of the calculus of variations and the theory of singular (Cauchy-

type) integral equations. Our derivation makes only one a priori assumption (obtained

by educated guesswork and later verified by computer simulations) on the graphical form

that the minimizer would take, and so is in a sense more systematic than the analogous

treatments in the fundamental papers [14], [19], [20], where the solutions are brilliantly

guessed using the properties of the Hilbert transform. We believe that our technique may

prove useful in the treatment of similar problems in the future.

First, observe that because of symmetry, we need only treat the case α ≤ 1/2; the

mapping g →
√

2 − g takes the set of α-admissible functions bijectively onto the set of

(1 − α)-admissible functions, and has the property that K(
√

2 − g) = K(g).

Next, observe that for α = 1/2 the assertion is immediate, because of Lemma 3.

We prove another fact that follows from general considerations, before turning to the

derivation of the minimizer.

Lemma 6. For any 0 < α < 1, the functional K has a unique α-admissible minimizer.

Proof. The functional K is continuous on the space of α-admissible functions, and is

bounded below by Lemma 3. By the Arzela-Ascoli theorem, the space of α-admissible

functions is compact in the topology induced by the supremum norm (since the admissible

functions are uniformly bounded and equicontinuous). Therefore K has a minimizer. To

prove that the minimizer is unique, let h1 and h2 be two distinct α-admissible minimizers.

Then h̃ = (h1+h2)/2 is also an α-admissible function, and g = (h1−h2)/2 ≡/ 0, g(±
√

2/2) =

0. So, using the parallelogram identity and Lemma 3,

K(h̃) =
1

2
K(h1) +

1

2
K(h2) −K(g) < min

h is α-admissible
K(h),

a contradiction.

3.2 The derivation

We now proceed with the derivation of the minimizer, which we shall denote h = hα.

The dependence on α will be suppressed except where it is required. For the rest of this

section, α will be a fixed value in (0, 1/2), unless stated otherwise.
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First, note that, under the condition h(±
√

2/2) =
√

2/2, the α-condition
∫

√
2/2

−
√

2/2
(h(u)−

|u|)du = α is equivalent to

−
∫

√
2/2

−
√

2/2

uh′(u)du = α− 1

2
. (27)

We now formulate a sufficient condition for h to be a minimizer. It is based on a stan-

dard recipe of the calculus of variations, the Lagrange formalism. We form the Lagrange

function

L(h, λ) = K(h) − λ

∫

√
2/2

−
√

2/2

uh′(u)du

and require that, for some λ, hα be a local minimum point of L(h, λ) in the convex set

of functions h subject to all the restrictions except the α-condition (27). To be sure, we

ought to include into the function a term λ′ times the integral of h′, since h must meet

another constraint
∫

√
2/2

−
√

2/2

h′(u)du = 0. (28)

We chose not to, since – in the square case – even without this constraint h′(u) will turn

out to be odd anyway. Since L(h, λ) depends explicitly on h′ alone, we get the equations

for the sufficient condition in a simple-minded manner, by taking partial derivatives of L
with respect to h′(s), s ∈ (−

√
2/2,

√
2/2), and paying attention only to the constraint

−1 ≤ h′(s) ≤ 1. The resulting “complementary slackness” conditions are

w(s) := −
∫

√
2/2

−
√

2/2

h′(t) log |s− t|dt− λs is











= 0, if − 1 < h′(s) < 1,

≥ 0, if h′(s) = −1,

≤ 0, if h′(s) = 1.

(29)

Lemma 7. If h is an α-admissible function that, for some λ ∈ R, satisfies (29) for all

s ∈ (−
√

2/2,
√

2/2) for which h′(s) is defined, then h is a minimizer.

Proof. If g is a 1-Lipschitz function on [−
√

2/2,
√

2/2], then (29) implies that (g′(s)−
h′(s))w(s) ≥ 0 for all s for which this is defined, so

∫

√
2/2

−
√

2/2

g′(s)w(s)ds ≥
∫

√
2/2

−
√

2/2

h′(s)w(s)ds.

If g is α-admissible, by (27) this can be written as

2〈h, g〉 + α− 1

2
= 2〈h, g〉 − λ

∫

√
2/2

−
√

2/2

sg′(s)ds

≥ 2〈h, h〉 − λ

∫

√
2/2

−
√

2/2

sh′(s)ds = 2〈h, h〉 + α− 1

2
,
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which shows that

〈h, g〉 ≥ 〈h, h〉.

Therefore, by Lemma 3 applied to the function g − h,

〈g, g〉 = 〈h, h〉 + 2〈h, g − h〉 + 〈g − h, g − h〉 ≥ 〈h, h〉,

so h is a minimizer.

We are about to prove part (i) of Theorem 5, namely that h = g̃α is the minimizer.

Assuming this, note that in the above proof we actually showed that

〈g, g〉 ≥ 〈g̃α, g̃α〉 + 〈g − g̃α, g − g̃α〉,

which is precisely the claim of part (iii) of Theorem 5. So it remains to prove parts (i)

and (ii).

Our challenge now is to determine an admissible h that meets the conditions (29).

Now look at Figure 1(c) with your head tilted 45 degrees to the right. Based on the shape

of the level curves, we make the following assumption: For some β = β(α) ∈ (0,
√

2/2),

h′(s) is











= −1, if −
√

2/2 < s < −β,
∈ (−1, 1), if − β < s < β,

= +1, if β < s <
√

2/2.

(30)

Substituting this into (29) gives that for −β < s < β,

−
∫ β

−β

h′(t) log |s− t|dt = λs−
∫ β

−
√

2/2

log(s− t)dt+

∫

√
2/2

β

log(t− s)dt

= λs+ (
√

2/2 − s) log(
√

2/2 − s) − (
√

2/2 + s) log(
√

2/2 + s)

+ (β + s) log(β + s) − (β − s) log(β − s) (31)

Assume that h′(s) is continuously differentiable on (−β, β). Differentiate (31), to obtain

−
∫ β

−β

h′(t)

s− t
dt = λ+ log

β2 − s2

1
2 − s2

, (32)

where the left-hand side is a principal value integral.

In the theory of integral equations this is known as an airfoil equation. Solving it is

tantamount to inverting a Hilbert transform on a finite interval. Fortunately for us, it can

be solved! The following theorem appears in [7], Section 3.2, p. 74. (See also [15], Section

9.5.2.)
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Theorem 7. The general solution of the airfoil equation

1

π

∫ 1

−1

g(y)

y − x
dx = f(x), |x| < 1,

with the integral understood in the principal value sense, and f(x) satisfying a Hölder

condition, is given by

g(x) =
1

π
√

1 − x2

∫ 1

−1

√

1 − y2f(y)

x− y
dy +

c√
1 − x2

. (33)

Applying Theorem 7 to (32), we get the equation

h′(s) =
1

π2(β2 − s2)1/2

∫ β

−β

(β2 − t2)1/2

(

λ+ log
β2 − t2

1
2 − t2

)

dt

s− t
+

c

(β2 − s2)1/2
. (34)

Here the integral is again in the sense of principal value, and the equation must hold for

some value of c.

We evaluate the integral in (34). Consider the contribution of the λ-term first. Sub-

stituting t = β sinx and later u = tanx/2, we get

∫ β

−β

(β2 − t2)1/2

s− t
dt = β

∫ π/2

−π/2

cos2 x

s/β − sin x
dx

= β

∫ π/2

−π/2

(s/β + sin x)dx+ β
(

1 − (s/β)2
)

∫ π/2

−π/2

dx

s/β − sin x

= πs+
2β
(

1 − (s/β)2
)

s/β

∫ 1

−1

du

u2 − 2(β/s)u+ 1
.

For |s| < β, the denominator in the last integral has two real roots, u1 ∈ (−1, 1) and

u2 /∈ (−1, 1). A simple computation shows that the principal value of this integral at

u = u1 is zero. So
∫ β

−β

(β2 − t2)1/2

s− t
dt = πs, s ∈ (−β, β). (35)

Turn to the log-part of the integral in (34). Substituting t = τβ, s = v1β, (2β2)−1 = v2
2 ,

we see that

∫ β

−β

(β2 − t2)1/2

s− t
log

β2 − t2

1
2 − t2

dt = β[I(s/β,
√

2/(2β)) − I(−s/β,
√

2/(2β))], (36)

where

I(ξ, γ) =

∫ 1

−1

(1 − η2)1/2

ξ − η
log

1 + η

γ + η
dη, ξ ∈ [−1, 1], γ ≥ 1,

is evaluated in the following lemma.
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Lemma 8.

I(ξ, γ) = π

[

1 − γ +
√

γ2 − 1 − ξ log
(

γ +
√

γ2 − 1
)

− 2
√

1 − ξ2 tan−1

√

(γ − 1)(1 − ξ)

(γ + 1)(1 + ξ)

]

. (37)

Proof. Notice that I(ξ, 1) = 0, and, for x > 1,

∂I(ξ, x)

∂x
= −

∫ 1

−1

(1 − η2)1/2

(ξ − η)(x+ η)
dη

= − 1

x+ ξ

[
∫ 1

−1

(1 − η2)1/2

ξ − η
dη +

∫ 1

−1

(1 − η2)1/2

x+ η
dη

]

= − πξ

x+ ξ
− 1

x+ ξ

∫ 1

−1

(1 − η2)1/2

x+ η
dη, (38)

see (35). Substituting η = sin t, (t ∈ [−π/2, π/2]), and then t = 2 tan−1 u, (u ∈ [−1, 1]),

we evaluate

∫ 1

−1

(1 − η2)1/2

x+ η
dη = (xt+ cos t)|π/2

π/2 + (1 − x2)

∫ π/2

−π/2

dt

x+ sin t

= πx+ 2(1 − x2)

∫ 1

−1

du

x(1 + u2) + 2u
=

= πx− 2(x2 − 1)1/2

[

tan−1

√

x+ 1

x− 1
+ tan−1

√

x− 1

x+ 1

]

= π(x− (x2 − 1)1/2). (39)

Combining this with (38), we obtain

∂I(ξ, x)

∂x
= −π +

π(x2 − 1)1/2

x+ ξ
.

We integrate this equation from x = 1 to x = γ > 1, and use the substitutions x = cosh t,

t ∈ [0, t0], with

t0 = arccosh γ = log
(

γ + (γ2 − 1)1/2
)

,

and then u = et, u ∈ [1, u0], with

u0 = et0 = γ + (γ2 − 1)1/2.
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We have

I(ξ, γ) = −π(γ − 1) + π

∫ t0

0

sinh2 t

cosh t+ ξ
dt

= −π(γ − 1) + π

[

(sinh t− ξt)|t00 + 2(ξ2 − 1)

∫ u0

0

du

u2 + 2ξu+ 1

]

. (40)

Here

(sinh t− ξt)|t00 = (γ2 − 1)1/2 − ξ log
(

γ + (γ2 − 1)1/2
)

, (41)

and the last integral equals

1
√

1 − ξ2
tan−1 u+ ξ

(1 − ξ2)1/2

∣

∣

∣

∣

u0

1

=
1

√

1 − ξ2
tan−1 (u0 − 1)(1 − ξ2)1/2

1 − ξ2 + (u0 + ξ)(1 + ξ)

=
1

√

1 − ξ2
tan−1 u0 − 1

u0 + 1

√

1 + ξ

1 − ξ
=

1
√

1 − ξ2
tan−1

√

(γ − 1)(1 − ξ)

(γ + 1)(1 + ξ)
. (42)

Combining (40), (41), (42) gives (37).

Now from (35), (36) and (37) we get

h′(s) =
c

(β2 − s2)1/2
+

s

π(β2 − s2)1/2

(

λ− 2 log
1 +

√

1 − 2β2

√
2β

)

+
2

π

(

tan−1

√

(γ − 1)(1 + ξ)

(γ + 1)(1 − ξ)
− tan−1

√

(γ − 1)(1 − ξ)

(γ + 1)(1 + ξ)

)

, (43)

with ξ = s/β, γ =
√

2/(2β), or, after some simplification,

h′(s) =
c

(β2 − s2)1/2
+

s

π(β2 − s2)1/2

(

λ− 2 log
1 +

√

1 − 2β2

√
2β

)

+
2

π
tan−1 (1 − 2β2)1/2s

(β2 − s2)1/2
.

We now observe that the only values of c and λ for which the right-hand side is bounded

as s ↗ β, s ↘ −β, and therefore has a chance of being the derivative of an α-admissible

function, are

c = 0, λ = 2 log
1 +

√

1 − 2β2

√
2β

. (44)

Therefore we get

h′(s) =
2

π
tan−1 (1 − 2β2)1/2s

(β2 − s2)1/2
. (45)
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Note that h′(s) ∈ (−1, 1). We have determined h′(s), except the value of β = β(α) such

that h is α-admissible, i.e., satisfies (27). Rewrite (27) as

∫ β

−β

sh′(s)ds = α− β2. (46)

Besides evaluating this last integral, to compute h(s) explicitly we will need
∫ s

−β
h′(u)du.

To this end, integrating the first arctangent-of-radical function in (43) on the interval

[−1, ξ], (ξ ∈ (−1, 1]), we get

∫ ξ

−1

tan−1

√

(γ − 1)(1 + η)

(γ + 1)(1 − η)
dη

= ξ tan−1

√

(γ − 1)(1 + η)

(γ + 1)(1 − η)
−
√

γ2 − 1

2

∫ ξ

−1

η dη

(γ − η)
√

1 − η2
. (47)

Substituting in the last integral η = sin t, and then u = tan t, we transform it into

− t0 −
π

2
+ γ

∫ t0

−π/2

dt

γ − sin t
[t0 = sin−1 ξ]

= −t0 −
π

2
+ 2

∫ u0

−1

du

1 + u2 − 2u/γ
[u0 = tan t0/2]

= −t0 −
π

2
+

2γ
√

γ2 − 1

(

tan−1 u0 − γ−1

√

1 − γ−2
+ tan−1 1 + γ−1

√

1 − γ−2

)

= −t0 −
π

2
+

2γ
√

γ2 − 1
tan−1

(

1 + u0

1 − u0

√

γ − 1

γ + 1

)

; (48)

here

1 + u0

1 − u0
=

1 + tan t0/2

1 − tan t0/2
=

1 + sin t0
cos t0

=
1 + ξ
√

1 − ξ2
=

√

1 + ξ

1 − ξ
. (49)

From (47), (48), (49) we obtain

∫ ξ

−1

tan−1

√

(γ − 1)(1 + η)

(γ + 1)(1 − η)
dη

= (ξ − γ) tan−1

√

(γ − 1)(1 + ξ)

(γ + 1)(1 − ξ)
+

√

γ2 − 1

2

(

sin−1 ξ +
π

2

)

. (50)

In a similar fashion

∫ 1

−1

η tan−1

√

(1 + η)(γ − 1)

(1 − η)(γ + 1)
dη =

π

4
(1 − γ2 + γ

√

γ2 − 1), (51)
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and the integral in the negative arctangent in (43) is obviously given by (51) as well. Using

(43) and (51), we see that the α-condition (46) is equivalent to

β2(γ2 − γ
√

γ2 − 1) = α ⇐⇒ 1 − 2α =
√

1 − 2β2,

the latter being possible only if α < 1/2. In that case

β =
√

2α(1 − α). (52)

Consequently, see (44),

λ = log
1 − α

α
, (53)

and, see (45),

h′(s) =
2

π
tan−1

(

(1 − 2α)s
√

2α(1 − α) − s2

)

, s ∈ (−
√

2α(1 − α),
√

2α(1 − α)). (54)

Furthermore, denoting the integral in (50) by J(ξ, γ), we easily get

h(s) = β +

∫ s

−β

h′(t)dt = β(1 + J(ξ, γ) + J(−ξ, γ) − J(1, γ))

=
2

π
s tan−1

(

(1 − 2α)s
√

2α(1 − α) − s2

)

+

√
2

π
tan−1

(

√

2(2α(1 − α) − s2)

1 − 2α

)

. (55)

We have derived a formula for a candidate minimizer, which we now recognize as the

function g̃α that we defined in section 2. To be sure, this function was determined so as

to meet the ramifications of some of the constraints. However, looking at (54), we see

that −1 < h′(s) < 1 for s ∈ (−β, β), so h is indeed 1-Lipschitz, even though so far we

haven’t paid attention to this constraint! Furthermore, since h′(s) is odd, the constraint

(28) is met automatically, and it is the reason why we were able to satisfy the boundary

constraints h(−
√

2/2) = h(
√

2/2) =
√

2/2. Also, we determined β from the requirement

that h should satisfy (46), which under these boundary conditions is equivalent to the

α-condition. We conclude that, at the very least, g̃α meets all the constraints, thus is

α-admissible.

By Lemma 7, to prove that g̃α is the minimizer, it only remains to prove that g̃α

satisfies the conditions (29). By (32), w′(s) ≡ 0 for |s| < β. And w(0) = 0 as h′(t) is odd.

So w(s) ≡ 0 for |s| < β, hence the first condition in (29) is met. As for the remaining

conditions, by (anti)symmetry, it suffices to check, say, the third condition, namely that

F (s, α) := −
∫

√
2/2

−
√

2/2

g̃′α(t) log |s− t|dt− λ(α)s ≤ 0, β(α) ≤ s ≤
√

2/2.
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Fix 0 < s ≤
√

2/2, and let α̂ = (1 −
√

1 − 2s2)/2, so that β(α̂) = s. Clearly, because

of the first condition in (29), F (s, α̂) = 0. To finish the proof, we will now show that

∂F (s, α)/∂α > 0 for 0 < α < α̂. By (31),

∂F (s, α)

∂β
= −

∫ β

−β

∂g̃′α(t, α)

∂β
log |s− t|dt− s

∂λ

∂β
. (56)

Using (45) and simplifying gives

∂g̃′α(t)

∂β
= − 2

πβ(1 − 2β2)1/2
· t

(β2 − t2)1/2
.

Since β′(α) = (1 − 2β2)1/2/β, (56) becomes

∂F (s, α)

∂α
=

2

πβ2

∫ β

−β

t log |s− t|
(β2 − t2)1/2

dt+
s

(1 − α)α
.

Here the integral equals

−(β2 − t2)1/2 − log |s− t|
∣

∣

∣

∣

β

−β

−
∫ β

−β

(β2 − t2)1/2

s− t
dt = −π(s− (s2 − β2)1/2),

see (37). Therefore

∂F (s, α)

∂α
= − 2

β2

(

s− (s2 − β2)1/2
)

+
s

(1 − α)α

= s

(

1

(1 − α)α
− 2

β2

)

+
2

β2
(s2 − β2)1/2

=
2

β2
(s2 − β2)1/2 > 0.

3.3 Direct computation of K(g̃α)

Our next goal in this section is to show that K(g̃α) = −H(α) + log 2. There are two

ways to do this. First, looking at the proof of Theorem 6, we see that we may repeat the

arguments of that proof (without assuming the value of K(g̃α) as in that proof) to deduce

that the value Mα of K(g̃α)+H(α)− log 2 must be 0. For, if it were greater than 0, then,

denoting k = bαn2c, we would have

1 = Pn (T ∈ Tn) =
∑

λ0 of area k

Pn

(

T ∈ Tn : λk
T = λ0

)

≤ p(n2) exp
(

−(1 + o(1))n2Mk/n2

)

−−−−→
n→∞

0

(since Mα is obviously continuous in α.) On the other hand, if Mα < 0, then for some

sufficiently large n, we would have for some diagram λ0 of area bαn2c contained in �n,
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that K(gλ0
) +H(α) − log 2 < 0 (take a diagram for which gλ0

approximates g̃α, and use

Lemma 2). But this again implies a contradiction:

1 ≥ Pn

(

T ∈ Tn : λ
bαn2c
T = λ0

)

= exp
(

−(1 + o(1))n2(K(gλ0
) +H(α) − log 2)

)

> 1.

These last remarks notwithstanding, we find it worthwhile to compute K(g̃α) directly,

if only to thoroughly test our derivation of g̃α, and to show that all the integrals involved

can be evaluated explicitly.

For h = g̃α, rewrite (27) as

−
∫

√
2/2

−
√

2/2

u(h′(u) − sgn u)du = α.

Using this, multiply both sides of (29) by (h′(s) − sgn s) and integrate, obtaining

K(h) = −λα
2

− 1

2

∫

√
2/2

−
√

2/2

h′(t)

[

2t log |t| − (t+
√

2/2) log |t+
√

2/2|

− (t−
√

2/2) log |t−
√

2/2|
]

dt, (57)

where we found before that λ = log((1 − α)/α). Denote

S(t) = 2t log |t| − (t+
√

2/2) log |t+
√

2/2| − (t−
√

2/2) log |t−
√

2/2|,

and set

K1(h) =

∫

√
2/2

−
√

2/2

h′(t)S(t)dt,

so that K(h) = −λα/2 −K1(h)/2. Just like (56),

∂K1(hα)

∂β
=

∫

√
2/2

−
√

2/2

∂h′α(t)

∂β
S(t)dt =

2

πβ(1 − 2β2)1/2

∫ β

−β

−t
(β2 − t2)1/2

S(t)dt

= − 2

πβ(1 − 2β2)1/2

∫ β

−β

(β2 − t2)1/2

[

2 log |t| − log |t+
√

2/2| − log |t−
√

2/2|
]

dt. (58)

Denote

E(s, β) =

∫ β

−β

(β2 − t2)1/2 log |t− s|dt,

so that
∂K1(hα)

∂β
= 2E(0, β)− E(−

√
2/2, β) − E(

√
2/2, β). (59)
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By (35) and (37),

∂E(s, β)

∂s
=

∫ β

−β

(β2 − t2)1/2

s− t
dt

=

{

πs |s| < β,

π(sgn s)
(

|s| − (s2 − β2)1/2
)

, β < |s| <
√

2/2.
(60)

Therefore

2E(0, β) = E(β, β)+E(−β, β)+π

∫ 0

β

sds+π

∫ 0

−β

sds = E(β, β)+E(−β, β)−πβ2. (61)

Likewise

E(−
√

2/2, β)+E(
√

2/2, β) = E(−β, β)+E(β, β)+2π

∫

√
2/2

β

(

s− (s2 − β2)1/2
)

ds, (62)

where

∫

√
2/2

β

(s2 − β2)1/2ds =
1

2

[

s(s2 − β2)1/2 − β2 log
(

s+ (s2 − β2)1/2
)]

∣

∣

∣

∣

√
2/2

β

=
1

2

(

1 − 2α

2
− α(1 − α) log

1 − α

α

)

. (63)

So, using β = (2α(1 − α))1/2,

E(−
√

2/2, β) + E(
√

2/2, β) = E(−β, β) + E(β, β) + π

(

−β2 + α+ α(1 − α) log
1 − α

α

)

,

and, combining this relation with (61), we simpify (59) to

∂K1(hα)

∂β
= −π

(

α+ α(1 − α) log
1 − α

α

)

.

So, by (58)
∂K1(hα)

∂α
=
∂K1(hα)

∂β
· (1 − 2β2)1/2

β
=

1

1 − α
+ log

1 − α

α
.

Since h′α ≡ 0 at α = 1/2, we have K1(h) = 0 at α = 1/2. Hence

K1(hα) =

∫ α

1/2

(

1

1 − x
+ log

1 − x

x

)

dx = − log(1 − α) − 2 log 2

− (1 − α) log(1 − α) − α logα, (64)

which gives finally for K(hα)

K(h) = α logα+ (1 − α) log(1 − α) + log 2 = −H(α) + log 2.

The proof of Theorem 5 is complete.
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3.4 The parametric family g̃α

The minimality proof in section 3.2 relied on the possibility to consider simultaneously

the whole family of variational problems, and thus to differentiate the minimizer g̃α with

respect to α. Moreover, to reveal a little secret, we anticipated the formula (53) for

the Lagrange multiplier λ. According to a general (semiformal) recipe of the calculus of

variations (more specifically, mathematical programming), we knew that this λ, dual to

the α-condition, should be equal to dK(g̃α)/dα, which we have proved to be correct. The

advantages of this approach of varying the parameter α go even deeper than that. It will

turn out that the partial derivative of the minimizer gα(·) with respect to α is the key to

the distributional properties of the random tableau. Using the formula for the minimizer,

we compute easily that

∂g̃α(u)

∂α
=

{

0
√

2α(1 − α) < |u| ≤
√

2/2√
2α(1−α)−u2

πα(1−α) |u| ≤
√

2α(1 − α)
(65)

For each α, direct integration reveals that ∂g̃α(u)/∂α is a probability density function, i.e.

∫

√
2/2

−
√

2/2

∂g̃α(u)

∂α
du = 1.

(In fact, it is the density of the semicircle distribution, and it will play a prominent role

later – see section 5.) This observation is in perfect harmony with the fact that g̃α satisfies

the α-condition, thus providing a partial check of our computations. Indeed

∫

√
2/2

−
√

2/2

(g̃α(u) − |u|) du =

∫

√
2/2

−
√

2/2

(g̃α(u) − g̃0(u)) du

=

∫

√
2/2

−
√

2/2

(∫ α

0

∂g̃s(u)

∂s
ds

)

du =

∫ α

0

(

∫

√
2/2

−
√

2/2

∂g̃s(u)

∂s
du

)

ds

=

∫ α

0

1 ds = α.

Had we been presented with the minimizer g̃α “out of the blue”, this would have been the

least computational way to prove its α-admissibility.

4 The boundary of the square

4.1 Proof of Theorem 3

In this section, we prove Theorem 3. As was remarked in section 1.3, the RSK corre-

spondence induces a correspondence between extremal Erdös-Szekeres permutations π of
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1, 2, . . . , n2 and pairs T1, T2 ∈ Tn of square tableaux. By the well known result of Schen-

sted [17], in this correspondence the length ln,k of the longest increasing subsequence in

π(1), π(2), . . . , π(k) is equal to the length λk
T1

(1) of the first row of λk
T1

. So the distribution

of ln,k under a uniform random choice of extremal Erdös-Szekeres permutation π is equal

to the distribution of the length of the first row of λk
T in a uniform random square tableau

T ∈ Tn. Denoting for the remainder of this section α = α(k) = k/n2, we can therefore

reformulate Theorem 3 as stating that

max
α0≤k/n2≤1/2

Pn

(

T ∈ Tn :
∣

∣

∣λk
T (1) − 2

√

α(1 − α)n
∣

∣

∣ > α
1/2
0 ω(n)n

)

−−−−→
n→∞

0. (66)

Theorem 6 looks as if it might imply (66). In fact, it only implies a lower bound on λk
T (1).

The reason is that gλk
T

can be very close in the supremum norm to g̃α (as is known to

happen with high probability by Theorem 6), while n−1λk
T (1) might still be much larger

than 2
√

α(1 − α) (see (68) below).

Lemma 9. Let α0 = n−2/3+ε, δ = n−1/3(1−ε), ε ∈ (0, 2/3). Then

Pn

(

T ∈ Tn : min
α0≤α≤1/2

(λk
T (1) − 2

√

α(1 − α)n) ≤ −δn
)

= O(n−b) (67)

for every b > 0.

Proof. We use the notation of Theorem 6. The length of the first row λk
T (1) can be

extracted from the rotated coordinate graph gλk
T

using the following relation:

1

n
λk

T (1) =
√

2 inf
{

u ∈ [0,
√

2/2] : gλk
T
(u) = u

}

. (68)

It follows from (54) that, uniformly for α ∈ [α0, 1/2] and |u| <
√

2α(1 − α),

|∂g̃α(u)/∂u− 1| =
2

π
tan−1

√

2α(1 − α) − u2

(1 − 2α)|u| ≥ c(
√

2α(1 − α) − |u|)1/2,

c > 0 being an absolute constant. Consequently, for α ∈ [α0, 1/2],

g̃α(
√

2α(1 − α) − δ) − (
√

2α(1 − α) − δ) ≥ cδ3/2.

So if T ∈ Tn has the property that, for some k in question,

λk
T (1) − 2

√

α(1 − α)n < −δn,

then by (68),

||gλk
T
− g̃α||∞ ≥ sup{|gλk

T
(u) − g̃α(u)| :

√

2α(1 − α) − δ < u <
√

2α(1 − α)}
= sup{g̃α(u) − u :

√

2α(1 − α) − δ < u <
√

2α(1 − α)} ≥ cδ3/2.
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So, by Theorem 6 with ε := cδ3/2,

Pn

(

T ∈ Tn : min
α0≤α≤1/2

(λk
T (1) − 2

√

α(1 − α)n) ≤ −δn
)

≤ Pn

(

T ∈ Tn : max
α0≤α≤1/2

||gλk
T
− g̃α||∞ ≥ cδ3/2

)

≤ exp(3n− ĉn2δ3r/2) ≤ exp(3n− ĉn2−r(1−ε)/2) −−−−→
n→∞

0,

provided that we choose a feasible r, i. e. r ∈ (2, 3), such that r < 2(1 − ε)−1.

To prove the upper bound and thus conclude the proof of Theorem 3, it suffices to

prove an upper bound for the expected value of λk
T , namely that, for α0 ≤ α ≤ 1/2,

En

[

λk
T (1)

]

≤ 2
√

α(1 − α)n+O(α
1/2
0 n), (69)

where En denotes expectation with respect to the probability measure Pn. Indeed, choosing

ω(n) → ∞ however slowly, we bound

Pn

(

T ∈ Tn : λk
T (1) ≥ 2

√

α(1 − α)n+ α
1/2
0 ω(n)n

)

(by Markov’s inequality) ≤ (α
1/2
0 ω(n)n)−1

En

[

max(0, λk
T (1) − 2

√

α(1 − α)n)
]

(by Lemma 9, for any b > 0) ≤ (α
1/2
0 ω(n)n)−1

(

En

[

λk
T (1) − 2

√

α(1 − α) + δn
]

+O(n1−b)
)

= O((α
1/2
0 n+ δn)/(α

1/2
0 ω(n)n)) = O(ω(n)−1).

Write

λk
T (1) =

k
∑

j=1

In,j ,

where In,j = λj
T (1) − λj−1

T (1) = indicator of the event that λj
T is obtained from λj−1

T by

adding a box to the first row. Let pn,j = En(In,j).

Lemma 10. In the notation of Lemma 9, as n→ ∞,

pn,j ≤ n2 − 2j

n
√

j(n2 − j)
+O(δn(n2 − 2j + 1)−1),

uniformly for α0 ≤ j/n2 ≤ 1/2.
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Proof. Let Yn,j be the set of Young diagrams of area j contained in the n× n square.

For a diagram λ ∈ Yn,j , denote by next(λ) the diagram obtained from λ by adding a box

to the first row. Then, conditioning In,j on the shape λj−1
T , we write

pn,j = Pn

(

λj
T = next(λj−1

T )
)

=
∑

λ∈Yn,j−1

d(λ)d(�n \ next(λ))

d(�n)

=
∑

λ∈Yn,j−1

d(next(λ))d(�n \ next(λ))

d(�n)
· d(λ)

d(next(λ))

This is nearly an average over Yn,j with respect to the measure (7); in fact, slightly less,

since not any λ′ ∈ Yn,j is of the form next(λ) for some λ ∈ Yn,j−1. It follows from the

convexity of the function x→ x2 that

p2
n,j ≤

∑

λ∈Yn,j−1

d(next(λ))d(�n \ next(λ))

d(�n)
·
(

d(λ)

d(next(λ))

)2

=
∑

λ∈Yn,j−1

d(λ)d(�n \ λ)

d(�n)
· d(λ)d(�n \ next(λ))

d(next(λ))d(�n \ λ)
. (70)

We now note the amusing identity

d(λ)d(�n \ next(λ))

d(next(λ))d(�n \ λ)
=

n2 − λ(1)2

j(n2 − j + 1)
, (λ ∈ Yn,j−1) (71)

which follows from writing out the hook products for d(·) in (6) and observing cancellation

of almost all the factors - see Figure 5. Here is a proof of (71). Clearly the only hook

lengths influenced by this operation are of the cells in the first row and the (λ(1) + 1)-th

column. In particular,

d(λ)

d(next(λ))
=

1

j

λ(1)
∏

i=1

λ(1) − i+ 1 + λ′(i)

λ(1) − i+ λ′(i)
;

here λ′(i) is the number of cells in the i-th column of λ. Clearly the fraction factors

“telescope” on each subinterval of [1, λ(1)] where λ′(i) is constant. Let [i1, i2] be such

a (maximal) subinterval. Maximality implies that (i2, λ
′(i2)) is a corner of λ, and that

(λ′(i1) + 1, i1) is a corner of �n \ next(λ). Then

λ(1)
∏

i=1

λ(1) − i+ 1 + λ′(i)

λ(1) − i+ λ′(i)
=
λ(1) − i1 + 1 + λ′(i1)

λ(1) − i2 + λ′(i2)
=
h�n\next(λ)(λ

′(i1) + 1, λ(1) + 1)

hλ(1, u2)

where, say, hλ(u, v) denotes the hook length for a cell (u, v) ∈ λ. Multiplying these

fractions for all such subintervals [i1, i2], we get

d(λ)

d(next(λ))
=

1

j





∏

(u,v)∈corners(λ)

f(u, v)





−1

·





∏

(u,v)∈corners(�n\λ)

g(u, v)



 . (72)
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Here corners(µ) is the corner set of a diagram µ; f(u, v) is the hook length of a cell in

the first row of λ whose vertical leg ends at the corner (u, v) ∈ corners(λ); g(u, v) is the

hook length of a cell in �n \ next(λ) from the (λ(1) + 1)-th column whose horizontal arm

ends at the corner (u, v) ∈ corners(�n \λ). Next, considering separately the first row cells

(1, v), v > λ(1), the top λ′(1) cells in the (λ(1) + 1)-th column, and finally the bottom

n− λ′(1) cells in that column, we obtain

d(�n \ next(λ))

d(�n \ λ)
=

n− λ(1)

n2 − j + 1
·

λ′(1)
∏

k=2

λ(1) − λ(k) + k

λ(1) − λ(k) + k − 1
· λ(1) + n

λ(1) + λ′(1)
. (73)

Here, analogously to the d(λ)/d(next(λ)) case,

1

λ(1) + λ′(1)

λ′(1)
∏

k=2

λ(1) − λ(k) + k

λ(1) − λ(k) + k − 1

=





∏

(u,v)∈corners(λ)

f(u, v)



 ·





∏

(u,v)∈corners(�n\λ)

g(u, v)





−1

. (74)

Putting (72), (73), (74) together gives (71).
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Figure 5: Illustration of (71) for λ = (6, 6, 6, 6, 5, 5, 5, 3, 3, 2): The numbers

in the cells are the hook lengths before and after the new cell is added.
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Combining (70) and (71) gives that

p2
n,j ≤ En

[

n2 − λj−1
T (1)2

j(n2 − j + 1)

]

(75)

By Lemma 9, we may write

En(λj−1
T (1)) ≥ 2

√

j(n2 − j)

n
− δn,

(δ = n−(1−ε)/3), for all j/n2 ∈ [α0, 1/2]. So, using E
2
n[λj−1

T (1)] ≤ E[(λj−1
T (1))2],

p2
n,j ≤ (n2 − 2j)2

n2 · j(n2 − j)
+

4δ
√

j(n2 − j)
,

or, using (1 + z)1/2 ≤ 1 + z/2 for j < n2/2,

pn,j ≤ n2 − 2j

n
√

j(n2 − j)
+O(δn(n2 − 2j + 1)−1).

The estimate holds for j = n2/2 as well, since δ1/2n2 → ∞.

Note that (75) implies in particular the rough bound

pn,j ≤ n
√

j(n2 − j + 1)
,

valid for all j ≤ n2. Now, to complete the proof of Theorem 3, we use this bound for

j ≤ α0n
2 and Lemma 10 for j > α0n

2. First

En

[

λk
T (1)

]

=
∑

j≤α0n2

pn,j +
∑

α0n2<j≤k

pn,j = Σ1 + Σ2.

Here

Σ1 ≤ 2
∑

j≤α0n2

j−1/2 = O(nα
1/2
0 ),

and

Σ2 ≤
∑

α0n2<j≤k

n2 − 2j

n
√

j(n2 − j)
+O(δn logn).

The last sum is bounded above by

n

∫ α

α0−n−2

1 − 2t
√

t(1 − t)
dt = 2n

√

α(1 − α) +O(nα
1/2
0 ).

Therefore, since α
1/2
0 � δ log n,

En[λk
T ] ≤ 2n

√

α(1 − α) +O(nα
1/2
0 ).

So (69) follows. Theorem 3 is proved.
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4.2 Proof of Theorem 1(i)

With our enhanced understanding of the distribution of λk
T (1), we may now prove Theorem

1(i). First we show that for individual boundary points, the tableau approaches the limit

surface. Fix (x, y) on the boundary of the square. By symmetry, we may assume that

y = 0, 0 < x < 1. Let ε > 0. Denote

α = L(x, 0) =
1 −

√
1 − x2

2
,

so that x = 2
√

α(1 − α). For any tableau T ∈ Tn, denote kT = tbnxc+1,1, and let

βT = kT /n
2. We want to show that with high probability, |βT −α| is small. Note that kT is

an integer representing the smallest j for which λj
T > nx. Therefore nx ≤ λkT

T (1) < nx+1,

or
∣

∣

∣λkT

T (1) − x
∣

∣

∣ ≤ 1

n
(76)

The function f(t) := L(t, 0) = (1 −
√

1 − t2)/2 is monotonically increasing and uniformly

continuous on [0, 1]. Choose a δ > 0 such that |t − t′| < δ implies |f(t) − f(t′)| < ε/3.

Choose numbers 0 = a0 < a1 < a2 < . . . < aN = 1/2 such that ai+1 − ai < ε/3,

i = 0, 1, 2, . . . , N − 1. Denote xi = f−1(ai) = 2
√

ai(1 − ai).

Let T ∈ Tn be a tableau that satisfies
∣

∣

∣

∣

1

n
λ
bain

2c
T (1) − xi

∣

∣

∣

∣

<
δ

2
, (i = 1, 2, . . . , N) (77)

(this happens with high probability, by (66)). Let 0 ≤ i < N be such that ai ≤ βT < ai+1.

Then clearly

xi −
δ

2
<

1

n
λ
bain

2c
T (1) ≤ 1

n
λkT

T (1) ≤ 1

n
λ
bai+1n2c
T (1) < xi+1 +

δ

2
(78)

Combining this with (76) we get, for n > 2/δ,

xi − δ < x < xi+1 + δ.

Therefore

ai −
ε

3
< α = f(x) < ai+1 +

ε

3
,

and, since also ai ≤ βT < ai+1 and ai+1 − ai < ε/3, we get

|βT − α| < ε.

Summarizing, we have shown that

Pn (T ∈ Tn : |βT − α| < ε)

≥ Pn

(

T ∈ Tn : ∀ i = 1, 2, . . . , N,

∣

∣

∣

∣

1

n
λ
bain

2c
T (1) − xi

∣

∣

∣

∣

<
δ

2

)

−−−−→
n→∞

1. (79)
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Theorem 1(i) now follows easily. It is enough to say that, because of the monotonicity

of the tableau ti,j as a function of i and j, and the monotonicity of the limit surface

function L, given ε > 0 we can find finitely many points (x1, y1), (x2, y2), . . . , (xN , yN ) ∈
[0, 1] × [0, 1] \ {(0, 0), (1, 0), (0, 1), (1, 1)} such that the event inclusion

{

T ∈ Tn : max
1≤i,j≤n

∣

∣

∣

∣

1

n2
ti,j − L

(

i

n
,
j

n

)∣

∣

∣

∣

> ε

}

⊆

N
⋃

i=1

{

T ∈ Tn :

∣

∣

∣

∣

1

n2
tbnxic+1,bnyic+1 − L(xi, yi)

∣

∣

∣

∣

>
ε

10

}

(80)

holds. But now, the Pn-probability of each of the individual events in this union tends

to 0 as n → ∞ – because of Theorem 1(ii) for the points (xi, yi) in the interior of the

square (using the continuity of the function L), and because of (79) for the points on the

boundary.

5 The hook walk and the cotransition mea-

sure of a diagram

In this section, we study the location of the k-th entry in the random tableau T ∈ Tn,

when k ≈ α · n2. The idea is to condition the distribution of the location of the k-th

entry on the shape λk
T of the k-th subtableau of T . Given the shape λk

T , the distribution

of the location of the k-th entry is exactly the so-called cotransition measure of λk
T (see

below). We know from Theorem 6 that with high probability, the rescaled shape of λk
T is

approximately described in rotated coordinates by the level curve v = g̃α(u). Romik [16]

showed that the cotransition measure is a continuous functional on the space of continual

Young diagrams, and derived an explicit formula for the probability density of its u-

coordinate. By substituting the level curve g̃α in the formula from [16], we will get exactly

the semicircle density (3), proving Theorem 2.

Let λ : λ(1) ≥ λ(2) ≥ . . . ≥ λ(m) > 0 be a Young diagram with k = |λ| =
∑

i λ(i)

cells. A cell c = (i, j) ∈ λ (1 ≤ i ≤ m, 1 ≤ j ≤ λ(i)) is called a corner cell if removing it

leaves a Young diagram λ \ c, or in other words if j = λ(i) and (i = m or λ(i) > λ(i+ 1)).

If T is a Young tableau of shape λ, let cmax(T ) be the cell containing the maximal entry

k in T . Obviously cmax(T ) is a corner cell of λ.

The cotransition measure of λ is the probability measure µλ on corner cells of λ, which

assigns to a corner cell c measure

µλ(c) =
d(λ \ c)
d(λ)

(81)
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(with d(λ) as in (6).) This is a probability measure, since one may divide up the d(λ)

tableaux of shape λ according to the value of cmax(T ); for any corner cell c, there are pre-

cisely d(λ\c) tableaux for which cmax(T ) = c. In other words µλ describes the distribution

of cmax(T ), for a uniform random choice of a tableau T of shape λ.

It is fascinating that there exists a simple algorithm to sample from µλ. This is known

as the hook walk algorithm of Greene-Nijenhuis-Wilf, and it can be described as follows:

Choose a cell c = (i, j) ∈ λ uniformly among all k cells. Now execute a random walk,

replacing at each step the cell c with a new cell c′, where c′ is chosen uniformly among all

cells which lie either to the right of, or (exclusive or) below c. The walk terminates when

a corner cell is reached, and it can be shown [9] that the probability of reaching c is given

by (81). Figure 6 shows a Young diagram, its corner cells and a sample hook walk path.

b b

b b b

p p p p p p p p p
p
p
p
p
p
p p p p p p p

Figure 6: A Young diagram, its corners and a hook walk path

Now consider a sequence λn : λn(1) ≥ λn(2) ≥ λn(3) ≥ . . . of Young diagrams for

which, under suitable scaling, the shape converges to some limiting shape described by

a continuous function. More precisely, let fλn
(x) be as in (4), and let gλn

be its rotated

coordinate version. Let f∞ : [0,∞) → [0,∞) be a weakly decreasing function, and let

g∞ be its rotated coordinate version, a 1-Lipschitz function. In this more general setting,

think of gλn
and g∞ as functions defined on all R. Assume that: there exists an M > 0

such that f∞(x) = 0 for x ≥ M , and on [0,M ] f is twice continuously differentiable,

and its derivative is bounded away from 0 and ∞ (equivalently, for some K < 0 < K ′,

g∞(u) = |u| for u /∈ (K,K ′), and g is twice continuously differentiable in [K,K ′] with

derivative bounded awaw from -1 and 1). Finally, assume that

||gλn
− g∞||∞ −−−−→

n→∞
0.

For any n, let (In, Jn) be a µλn
-distributed random vector. Let Xn = In/n, Yn = Jn/n.

We paraphrase results from [16].
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Theorem 8. (Romik [16], Theorems 1(b), 6) As n → ∞, (Xn, Yn) converges in dis-

tribution to the random vector

(X,Y ) :=

(

V + U

2
,
V − U

2

)

,

where V = g∞(U) and U is a random variable on [K,K ′] with density function

φU (x) =
2

πA
cos

(

πg′∞(x)

2

)

√

(x−K)(K ′ − x) exp

(

1

2

∫ K′

K

g′∞(u)

x− u
du

)

, (82)

with

A =

∫ M

0

f∞(x)dx =

∫ K′

K

(g∞(u) − |u|)du

and the integral in the exponential being a principal value integral.

Proof of Theorem 2. We may assume that 0 < α < 1/2. The proof of Theorem 2

now consists of an observation, a remark, and a computation.

The observation is that the distribution of the location of the kn-th entry in a random

tableau T ∈ Tn is the distribution of the maximal entry in the shape λkn

T of the kn-

th subtableau of T . Because by Theorem 6, this shape (suitably rescaled and rotated)

converges in probability to g̃α (Theorem 2 assumes kn/n
2 → α), we may apply Theorem

8 and conclude that Theorem 2 is true with a density for Uα given by taking g∞ = g̃α,

A = α, −K = K ′ =
√

2α(1 − α) in (82).

The remark is that the above is not quite true, since g̃α does not satisfy the assumptions

of Theorem 8! The problem is that

− lim
ε↘0

g̃′α(−
√

2α(1 − α) + ε) = lim
ε↘0

g̃′α(
√

2α(1 − α) − ε) = 1,

so the derivative is not bounded away from -1 and 1. However, since this only happens

near the two boundary points, going over the computations in [16] shows that this is not

a problem, and the formula (82) is still valid in this case 4.

The computation is the verification that (82) gives the semicircle distribution (3)

under the above substitutions. We compute, using (32) and the identity cos(tan−1 v) =

4Alternatively, one may use the less explicit formula (8) from [16], which is valid even

without the assumption that g′∞ is bounded away from ±1, to verify directly that (3) is

the cotransition measure of g̃α.
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(1 + v2)−1/2:

2

πA
=

2

πα
√

(x−K)(K ′ − x) =
√

2α(1 − α) − x2

exp

(

1

2

∫ K′

K

g̃α(u)

x− u
du

)

=

√

α

1 − α
·
√

1
2 − x2

2α(1 − α) − x2
,

cos

(

πg̃′α(x)

2

)

= cos

(

tan−1 (1 − 2α)x
√

2α(1 − α) − x2

)

=

(

1 +
(1 − 4α(1 − α))x2

2α(1 − α) − x2

)−1/2

=

√

2α(1 − α) − x2

2
√

α(1 − α)
√

1
2 − x2

Multiplying the above expressions gives

φU (x) =
1

πα(1 − α)

√

2α(1 − α) − x2, |x| ≤
√

2α(1 − α),

as claimed.

6 Open problems

We conclude with some open problems.

• Gaussian fluctuations. Prove a central limit theorem for the fluctuations of

g
λ
bαn2c
T

around g̃α, and for the fluctuations of the cotransition measure of λ
bαn2c
T

around the semicircle distribution, in the spirit of [11].

• Limiting distribution of ln,k(π). Find a scaling sequence an and a distribution

function F such that, in the notation of Theorem 3,

ln,bαn2c − 2
√

α(1 − α)n

an

in distribution−−−−−−−−−−→
n→∞

F.

• Limit surface for random Young tableaux of given shape. Prove a limit

surface theorem for random Young tableaux of other shapes. In general, one can

consider any decreasing function f : [0,∞) → [0,∞) such that
∫∞
0
f(x)dx = 1 as

a continual Young diagram, i.e. as a limit of the rescaled graphs of a sequence of

Young diagrams of increasing sizes. We conjecture that for each such continual

diagram f , there should exist a limit surface Lf , defined on the domain

Df := {(x, y) : x ≥ 0, 0 ≤ y ≤ f(x)}
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bounded between the x-axis and the graph of f , that describes the asymptotic

behavior of almost all random Young tableaux of shape approximated by f .
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