Stirling's Approximation for n!: the Ultimate Short Proof? Dan Romik

For two real sequences x_n and y_n , we write $x_n \sim y_n$ if $\lim_{n\to\infty} x_n/y_n = 1$. Stirling's approximation is $n! \sim \sqrt{2\pi n} (n/e)^n$. We first prove that $n! \sim C\sqrt{n} (n/e)^n$ for some nonzero constant C, then give a short proof that $C = \sqrt{2\pi}$.

Lemma 1. The limit $C = \lim_{n \to \infty} e^n n! / n^{n+1/2}$ exists.

Proof. Denote as usual $\lfloor x \rfloor = \max\{n \in \mathbf{Z} : n \leq x\}$ and $\{x\} = x - \lfloor x \rfloor$. Then

$$\begin{split} \log n! &= \sum_{k=1}^{n} \log k = \sum_{k=1}^{n} \int_{1}^{k} \frac{dx}{x} = \int_{1}^{n} \frac{n - \lfloor x \rfloor}{x} dx \\ &= \int_{1}^{n} \frac{n + \frac{1}{2} + (\{x\} - \frac{1}{2}) - x}{x} dx = (n + \frac{1}{2}) \log n - n + 1 + \int_{1}^{n} \frac{\{x\} - \frac{1}{2}}{x} dx \\ &= (n + \frac{1}{2}) \log n - n + 1 + \int_{1}^{\infty} \frac{\{x\} - \frac{1}{2}}{x} dx + o(1), \end{split}$$

since $\int_1^t (\{x\} - \frac{1}{2}) dx$ is bounded and 1/x goes to 0 as $x \to \infty$. Thus

$$C = \exp\left(1 + \int_1^\infty \frac{\{x\} - \frac{1}{2}}{x} dx\right) > 0$$

This is one of the standard proofs; it is a simple example of Euler-Maclaurin summation. Also note that it follows that $\binom{2n}{n} \sim \sqrt{2} \cdot 2^{2n} / C \sqrt{n}$.

Lemma 2. Let f be an (n + 1)-times continuously-differentiable function on **R**. Then for all $x \in \mathbf{R}$, $f(x) = f(0) + f'(0)x + f''(0)x^2/2! + \cdots + f^{(n)}(0)x^n/n! + R_n(x)$, where

$$R_n(x) = rac{1}{n!} \int_0^x f^{(n+1)}(t) (x-t)^n dt$$

Proof. Induction on n, using integration by parts.

We now apply Lemma 2 with $f(x) = (1+x)^{2n+1}$ to calculate $R_n(1)/2^{2n+1}$:

$$\begin{aligned} \frac{1}{2^{2n+1}} R_n(1) &= \frac{1}{2^{2n+1}} \cdot \frac{1}{n!} \int_0^1 (2n+1)(2n) \cdots (n+1)(1+t)^n (1-t)^n dt \\ &= \frac{2\binom{2n}{n}}{2^{2n+1}} (n+\frac{1}{2}) \int_0^1 (1-t^2)^n dt = \frac{\binom{2n}{n}\sqrt{n}}{2^{2n}} (1+\frac{1}{2n}) \int_0^{\sqrt{n}} (1-\frac{u^2}{n})^n du \\ &\xrightarrow[n\to\infty]{} \frac{\sqrt{2}}{C} \int_0^\infty e^{-u^2} du = \frac{\sqrt{2}}{C} \cdot \frac{\sqrt{\pi}}{2} \end{aligned}$$

The convergence of the integrals is justified by the fact that $0 \leq (1 - u^2/n)^n \leq e^{-u^2}$ in the domain of integration, and $(1 - u^2/n)^n \rightarrow e^{-u^2}$ uniformly on compacts. On the other hand, $R_n(1)/2^{2n+1} = \sum_{n < k \leq 2n+1} {\binom{2n+1}{k}}/2^{2n+1} = \frac{1}{2}$. Therefore $C = \sqrt{2\pi}$, as claimed.

Tel-Aviv University, Tel-Aviv 69978, Israel romik@math.tau.ac.il