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1. Introduction

1.1. Asymptotic enumeration of representations. Let p(n) denote
the number of n-dimensional representations of the group SU(2), counted up
to equivalence. Since SU(2) has (up to equivalence) one irreducible represen-
tation Vk of each dimension k = 1, 2, . . . , each n-dimensional representation⊕∞

k=1 rkVk is encoded by a unique integer partition n = λ1 + · · ·+λm, such
that rk is the number of parts in the partition that are equal to k. Thus
p(n) is the number of integer partitions of n. For large n, p(n) is given ap-
proximately by the well-known Hardy–Ramanujan asymptotic formula [20]
(see also [34, Chapter 2])

(1) p(n) = (1 + o(1))
1

4
√

3n
eπ
√

2n/3 as n→∞.

This work began with the idea of answering a similar question for the
group SU(3). Let r(n) denote the number of n-dimensional representations of
the group SU(3), counted up to equivalence, or equivalently the number of n-
dimensional complex-linear representations of the Lie algebra A2 = sl(3,C).
The irreducible representations of SU(3) are a family of representations Wj,k

indexed by pairs of integers j, k ≥ 1, where it is well-known (see, e.g., [19,
Chapter 5]) that dimWj,k = 1

2jk(j + k). A general n-dimensional represen-
tation decomposes as a sum of these Wj,k’s, each with some multiplicity.
Thus, it is easy to see that the numbers r(n) satisfy the generating function
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identity

(2)
∞∑
n=0

r(n)xn =
∞∏

j,k=1

1

1− xjk(j+k)/2

(with the natural convention that r(0) = 1), analogous to Euler’s prod-
uct formula

∑∞
n=0 p(n)xn =

∏∞
k=1(1 − xk)−1 for the generating function

of partitions. Using (2) one may easily compute the first few terms of the
sequence r(n), which are (starting at n = 0) 1, 1, 1, 3, 3, 3, 8, 8, 9, 17, 19, 21,
35, 39, . . . .

One of our main results is the following analogue for the group SU(3) of
the Hardy–Ramanujan asymptotic formula (1).

Theorem 1.1. As n→∞, we have

(3) r(n) = (1 + o(1))
K

n3/5
exp(A1n

2/5 −A2n
3/10 −A3n

1/5 −A4n
1/10)

for constants K,A1, A2, A3, A4 which are defined as follows. Let Γ (s) and
ζ(s) denote the Euler gamma function and the Riemann zeta function, re-
spectively. Denote

X =
(
1
9Γ
(
1
3)2ζ

(
5
3

))3/10
,(4)

Y = −
√
π ζ
(
1
2

)
ζ
(
3
2

)
.(5)

Then A1, A2, A3, A4 are given by

A1 = 5X2 = 6.858260476163126 . . . ,(6)

A2 = X−1Y = 5.773601745105114 . . . ,(7)

A3 = 3
80X

−4Y 2 = 0.911341072572436 . . . ,(8)

A4 = 11
3200X

−7Y 3 = 0.351637541558209 . . . ,(9)

and the multiplicative constant K is given by

(10) K =
2
√

3π√
5
X1/3 exp

(
− 1

2560
X−10Y 4

)
= 2.4462903348641789 . . . .

The formula (10) for K is a simplified version of a more complicated for-
mula that appeared in the preprint version of this paper. The simplification
depends on a result from a recent paper by Borwein and Dilcher [12]—see
Theorems 1.4 and 1.5 and the remarks following Theorem 1.5 below.

1.2. The zeta function of SU(3). Our efforts to derive and prove
the asymptotic formula (3) led us to make several additional discoveries
that are of independent interest. Understanding the asymptotic behavior of
the sequence r(n) turns out to require a close study of a natural Dirichlet
series (or zeta function) associated with the representation theory of SU(3),
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namely

(11) ω(s) =
∞∑

j,k=1

(2 dimWj,k)
−s =

∞∑
j,k=1

1

(jk(j + k))s
.

This function has an interesting history dating back to the 1950’s papers of
Mordell [33] and Tornheim [45]. It is (up to the trivial factor 2−s) a special
case of a so-called Witten zeta function, which is more generally a Dirichlet
series ζg(s) associated with a semisimple Lie algebra g and defined by

ζg(s) =
∑
ρ

(dim ρ)−s,

where the sum extends over the irreducible representations of g. (The same
function in the context of groups has been referred to by some authors as
the representation zeta function; see, e.g., [8], [27].)

Much of the work to date on ω(s) has concerned its evaluation at positive
integers. This was motivated to a large part by Mordell’s discovery [33] that
the even integer values ω(2n) are rational multiples of π6n, being given
explicitly by the formula

(12) ω(2n) =
(−1)n+1(2π)6n

6((2n)!)3

1�

0

B2n(x)3 dx (n ≥ 1),

where Bm(x) denotes the mth Bernoulli polynomial. Later authors have
since extended Mordell’s results in several ways. Witten [48] related the val-
ues ζg(2n) (n ≥ 1) at even integers of the zeta function of a general semisim-
ple Lie algebra g to the volumes of certain moduli spaces of vector bundles of
curves. His formulas imply that ζg(2n) is a rational multiple of π2rn, where
r is the rank of the Lie algebra g. Subbarao and Sitaramachandrarao [44]
proved another explicit formula for ω(2n), namely

(13) ω(2n) =
4

3

n∑
k=0

(
4n− 2k − 1

2n− 1

)
ζ(2k)ζ(6n− 2k) (n ≥ 1).

According to Zagier’s paper [50], the same formula was apparently redis-
covered by Garoufalidis and Zagier and independently by Weinstein. In the
same paper, Zagier also gives without proof an analogous formula for the
odd integer values ω(2n+ 1), namely

ω(2n+ 1) = −4
n∑
k=0

(
4n− 2k + 1

2n

)
ζ(2k)ζ(6n− 2k + 3) (n ≥ 0).

The same formula as well as its proof were published a short time later by
Huard, Williams and Zhang [22], who seemed unaware of Zagier’s paper.
The formula (13) is also given in the paper of Gunnells and Sczech [18]
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along with an analogous formula for the values of the zeta function of SU(4)
at even positive integers.

As an illustration of the above formulas, here are the values ω(m) for
1 ≤ m ≤ 5:

ω(1) = 2ζ(3), ω(2) = 1
2835π

6, ω(3) = −2π2ζ(7) + 20ζ(9),

ω(4) = 19
273648375π

12, ω(5) = −2
9π

4ζ(11)− 70
3 π

2ζ(13) + 252ζ(15).

Several of the papers mentioned above also contain formulas of a similar
flavor for the values of more general “multiple zeta values” defined in terms
of several integer-valued parameters; see also [17], [23], [35], [51] for related
results.

The results described above may not make evident why it is natural to
consider ω(s) as a true Dirichlet series (that is, as a function of a complex
variable s), but plenty of precedents from the history of analytic number
theory suggest that this is worth doing. Perhaps guided by such consider-
ations, Matsumoto [28] initiated the study of the analytic continuation of
the three-variable Dirichlet series

(14) ζMT(s1, s2, s3) =

∞∑
j,k=1

j−s1k−s2(j + k)−s3 ,

which contains ω(s) as the specialization s1 = s2 = s3 = s, and several
other multiple Dirichlet series of a somewhat similar nature. He referred to
ζMT(s1, s2, s3) as the Mordell–Tornheim zeta function. He and his collabora-
tors later extended such results to more general (multivariate) Witten zeta
functions [30], [24], [25], [26].

Following in the footsteps of Matsumoto’s pioneering work, and guided
by a specific need to understand the complex-analytic properties of ω(s) in
connection with our asymptotic analysis of the sequence r(n), we proved
several results about ω(s). The first one is as follows.

Theorem 1.2.

(i) The series (11) converges precisely for complex s ∈ C satisfying Re(s) >
2/3, and defines a holomorphic function in that region.

(ii) ω(s) can be analytically continued to a meromorphic function on C.

(iii) ω(s) has a simple pole at s = 2/3 with residue 1
2π
√
3
Γ
(
1
3

)3
, and for

each k = 0, 1, 2, . . . it has a simple pole at s = 1/2 − k with residue
(−1)k2−4k

(
2k
k

)
ζ
(
1−6k
2

)
. It has no other singularity points.

(iv) |ω(s)| grows at most at a polynomial rate for fixed Re(s) as Im(s) →
±∞. More precisely, for any closed interval I = [a, b] ⊂ R, there exist
constants C,M > 0 such that (with i =

√
−1)

(15) |ω(σ + it)| ≤ C|t|M for all σ ∈ I and |t| ≥ 1.
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We note that Matsumoto already proved part (ii) of Theorem 1.2 (see
[28, Theorem 1]), but he was studying the more general function (14) of
several complex variables and did not examine more closely the properties
of ω(s).

At the end of his discussion of the Mordell–Tornheim zeta function,
Matsumoto writes: It is now an interesting problem to study the properties
of the values of ζMT(s1, s2, s3) at nonpositive integers. We solve this problem
for the case of our function ω(s) = ζMT(s, s, s). The result is as follows.

Theorem 1.3. ω(s) has the values

ω(0) = 1/3,(16)

ω(−n) = 0 (n = 1, 2, . . .).(17)

Note that the equations (16)–(17) imply that Mordell’s property that
ω(2n) is a rational multiple of π6n holds true for all integer n. Furthermore,
somewhat surprisingly, the formula (13) of Subbarao and Sitaramachan-
drarao still holds true for n = 0 if one accepts the convention that

(−1
−1
)

= 1,
even though their proof clearly does not apply in that case. (Perhaps less
strikingly, the formula also holds true for negative values of n, simply be-
cause the range of summation becomes empty.) By comparison, Mordell’s
formula (12) gives the incorrect value of −1/6 in the case n = 0.

Our final result on ω(s) is a formula expressing its derivative at s = 0 in
terms of familiar special constants and a curious definite integral.

Theorem 1.4. Let γ denote the Euler–Mascheroni constant. The value
ω′(0) is given by

ω′(0) = 1
12(1 + γ) + 3

4 log(2π)− 2ζ ′(−1)(18)

+
1

2

∞�

−∞

ζ(3/2 + it)ζ(−3/2− it)
(3/2 + it) cosh(πt)

dt

= 1.83787706640934548356 . . . .

Note that the integral in (18) converges very rapidly due to the expo-
nential decay of the factor 1/cosh(πt), and is easy to evaluate numerically
to high precision. Curiously, the numerical value of the integral (including
the multiplicative factor 1/2) is −0.002807659 . . . , so its relative influence
on ω′(0) is very small—less than a fifth of a percent.

Update added in revision. Following publication of the preprint ver-
sion of this paper, the following much simpler formula for ω′(0) was proved
by Borwein and Dilcher [12].

Theorem 1.5. ω′(0) = log(2π).

See also [9] for related recent developments.
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Theorems 1.2–1.5 will all play a role in our asymptotic analysis leading
up to the proof of Theorem 1.1. In particular, the poles at s = 2/3 and
s = 1/2 and their residues, and the evaluation ω(0) = 1/3, have a large
influence on the form of the asymptotic formula (3). The evaluation of ω′(0)
enters into the definition of the multiplicative constant K, which ends up
emerging from our calculations in the form

(19) K =

√
3√

5π
X1/3 exp

(
− 1

2560X
−10Y 4 + ω′(0)

)
(clearly equivalent to (10) in view of Theorem 1.5). The poles with negative
real part and the location of the zeros (17) do not enter into our present
analysis of the asymptotic behavior of r(n), but those results, aside from
being interesting in their own right, will also start having an effect on the
asymptotics of r(n) if one should attempt to derive more detailed expansions
for r(n) which include additional lower order terms currently encapsulated
in the 1+o(1) term in (3); see the discussion of open problems in Section 12.

1.3. The Bernoulli numbers and Eisenstein series. One of our
surprising discoveries was that Theorem 1.3 has an intriguing connection
with the Bernoulli numbers, and ultimately with the theory of modular
forms. Recall that the Bernoulli numbers Bn are defined by the power series
expansion

x

ex − 1
=

∞∑
n=0

Bn
n!
xn,

and that they are related to special values of the Riemann zeta function by

the well-known equations ζ(1−n) = (−1)n+1Bn
n , ζ(2n) = (−1)n+1 (2π)

2n

2(2n)!B2n,

(n ≥ 1).

It is well-known that the Bernoulli numbers satisfy a host of remarkable
summation identities (see [6], [52], and [11, pp. 81–85] for many examples).
Our analysis of the properties of ω(s) led us to discover one such identity,
namely the statement that for n ≥ 1 we have

(20)
B6n+2

6n+ 2
= −(4n+ 1)!

(2n)!2

n∑
k=1

(
2n

2k − 1

)
B2n+2k

2n+ 2k
· B4n−2k+2

4n− 2k + 2
.

Equivalently, in terms of the values at integer arguments of the zeta function,
(20) can be rewritten in either of the forms

(21) ζ(6n+ 2) =
2

6n+ 1
· (4n+ 1)!

(2n)!2

n∑
k=1

(
2n

2k−1
)(

6n
2n+2k−1

)ζ(2n+ 2k)ζ(4n− 2k+ 2)
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or

(22) ζ(−6n−1) =
(4n+ 1)!

(2n)!2

n∑
k=1

(
2n

2k − 1

)
ζ(−2n−2k+1)ζ(−2n+2k−1).

The identity (20) turns out to have been discovered and proved earlier, being
due to Agoh and Dilcher in their 2008 paper [2]. It belongs to a class of
several summation identities referred to there as lacunary recurrences, since
they have the appealing property of expressing a given Bernoulli number in
terms of a relatively small number of Bernoulli numbers of lower index; in
the case of (20), B6n+2 is expressed in terms of B2n+2, B2n+4, . . . , B4n. See
also [1] for further discussion of lacunary Bernoulli number recurrences.

Note that (20) does not hold for n = 0, when the left-hand side is equal
to 1/12 and the right-hand side is equal to 0.

Being at first unaware of Agoh and Dilcher’s result, we independently
proved (20). This was fortunate, since our method of proof actually implies
a stronger result that does not follow from the methods of [1], and gives
hints of a deeper theory at play. To formulate our new result, recall that the
Eisenstein series of index 2k is an analytic function G2k(z) defined for z in
the upper half-plane H = {x+ iy : y > 0} by

G2k(z) =
∑

(m,n)∈Z2\{(0,0)}

1

(mz + n)2k
(k ≥ 2).

The function G2k(z) is related to the zeta value ζ(2k) (hence also to the
Bernoulli number B2k) by the well-known relation

lim
Im(z)→∞

G2k(z) = 2ζ(2k),

usually formulated as the statement that 2ζ(2k) is the constant term in the
Fourier series G2k(z) = 2ζ(2k) +

∑∞
n=1 c2k(n)e2πinz (see [5] for these facts

and additional background on modular forms mentioned below). We are now
ready to state our result.

Theorem 1.6. The identity (21) is the “shadow” of a similar summa-
tion identity for the Eisenstein series. That is, for n ≥ 1 we have

(23) G6n+2(z) =
1

6n+ 1
· (4n+ 1)!

(2n)!2

n∑
k=1

(
2n

2k−1
)(

6n
2n+2k−1

)G2n+2k(z)G4n−2k+2(z).

Let us now explain the connection between our results on ω(s) and the
identity (20). Remarkably, we will show that the relation (17) identifying the
“trivial zeros” s = −1,−2, . . . of ω(s) is equivalent to that identity. It was
precisely our study of the values ω(−n) which prompted the discovery of
(20) as a numerical observation for small values of n. We were then able to
prove the identity (and the stronger Theorem 1.6) using separate algebraic



8 D. Romik

methods and deduce (17), and also learned about the earlier work of Agoh
and Dilcher. The same reasoning could work in reverse to deduce (20) in yet
another way if a more direct proof of (17) could be found (e.g., based on a
functional equation satisfied by ω(s)), but we do not currently know of such
a proof.

To conclude this discussion, let us comment on the connection with the
theory of modular forms. For k ≥ 0, let M2k denote the vector space of mod-
ular forms of weight 2k for the modular group SL(2,Z). The space M2k is
known to be of dimension bk/6c if k ≡ 1 (mod 6), or bk/6c+1 otherwise. The
Eisenstein series G6n+2, and the products G2n+2k(z)G4n−2k+2(z) appearing
on the right-hand side of (23), are all elements of M6n+2, and curiously
the number of distinct terms on the right-hand side of (23) (after group-
ing together the equal pairs G2n+2k(z)G4n−2k+2(z), G4n−2k+2(z)G2n+2k(z)
obtained from symmetric indices k and n + 1 − k) is precisely equal to
dimM6n+2; one check this separately for even and odd values of n. Thus,
the theory of modular forms seems like the proper context in which to con-
sider (23) and similar summation identities. It is natural to wonder whether
there is a deeper connection between (23) and the function ω(s); whether
other connections of this type between modular forms and zeta functions can
be found; and whether summation identities such as (23) can be classified
and better understood. See also the list of open problems in Section 12.

1.4. Methods, organization, and the companion Mathematica

package. The remainder of the paper is organized in roughly three parts.
The first part consists of Sections 2 and 3, in which we give a new proof
of the summation identity (20), and then show how a modification of our
argument yields a proof of Theorem 1.6. Our method is an extension of an
algebraic technique introduced by Zagier [50], that enables us to reduce the
identities to a family of more conventional binomial summation identities.
The latter identities are proved using Zeilberger’s algorithm and the method
of Wilf–Zeilberger pairs.

In the second part of the paper, comprising Sections 4 and 5, we study the
properties of the function ω(s), and prove Theorems 1.2–1.4. The analysis re-
lies heavily on an integral representation for ω(s) derived by Matsumoto [28].

In the final part, which consists of Sections 6–11, we apply the re-
sults concerning ω(s) to the study of the asymptotic behavior of the se-
quence r(n). We combine Mellin transform methods with a saddle point
analysis (framed in probabilistic language as a local central limit theorem),
culminating in the proof of Theorem 1.1. A key number-theoretic difficulty
we encounter is that of proving effective bounds for the decay of a certain
generating function away from the saddle point; we derive the necessary
bounds by using the modular transformation properties of the Jacobi theta
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functions. We conclude with some final comments and open problems in
Section 12.

A few of the proofs in the paper involve tedious computations of a purely
algebraic nature, which can be checked by hand without much difficulty but
are most easily verified using a computer algebra package. We prepared a
companion Mathematica package that is available to download online [43]
and demonstrates the correctness of these computations.

2. Bernoulli numbers. In this section we give a new proof of the
summation identity (20) using a completely different method than that used
by Agoh and Dilcher [2]. In the next section we show how a modification
of our argument actually proves the stronger identity (23) involving the
Eisenstein series, which contains (20) as a specialization at z = i∞.

Note that we gave three equivalent formulations (20)–(22) of the sum-
mation identity. While (20) seems like the most natural number-theoretic
formulation (and was the version proved by Agoh and Dilcher), the other
two formulations will also play important roles, in that our proof technique
will actually imply the version (21), whereas we will later make use of its
“dual” version (22) (the two being related via the functional equation for
the Riemann zeta function) in our analysis of the function ω(s).

Our proof is based on adapting a technique introduced by Zagier [50] as
a way of proving the more elementary recurrence relation

ζ(2n) =
2

2n+ 1

n−1∑
k=1

ζ(2k)ζ(2n− 2k) (n ≥ 2),

a well-known relation due to Euler. (If one assumes the connection between
the even integer zeta values and the Bernoulli numbers, this is the recurrence
B2n = − 1

2n+1

∑n−1
k=1

(
2n
2k

)
B2kB2n−2k, which has a simple proof using gener-

ating functions; see [6, Proposition 1.15].) Before we proceed with the proof
in the most general case, let us first illustrate the use of Zagier’s technique
to prove the case n = 1 of (21), which then becomes

ζ(8) = 6
7ζ(4)2.

Define

f(p, q) =
2

7p3q5
+

3

7p4q4
+

2

7p5q3
.

One may easily verify that f(p, q) satisfies the algebraic identity

f(p, q)− f(p+ q, q)− f(p, p+ q) =
6

7p4q4
.

Now sum both sides of this equation over all p, q ∈ N. The summation of
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the right-hand side gives 6ζ(4)2/7, and for the left-hand side we get

∞∑
p,q=1

f(p, q)−
∞∑

p,q=1

f(p+ q, q)−
∞∑

p,q=1

f(p, p+ q)

=
( ∞∑
r,s=1

−
∑
r>s≥1

−
∑
s>r≥1

)
f(r, s) =

∞∑
r=1

f(r, r) =

(
2

7
+

3

7
+

2

7

) ∞∑
r=1

1

r8
= ζ(8).

For general n, we now try to generalize the idea by looking for a pair of
functions fn(p, q), gn(p, q) = fn(p, q)− fn(p+ q, q)− fn(p, p+ q) such that

(24) fn(p, q) =

2n+1∑
j=1

αn,j
p2n+jq4n−j+2

for some as-yet-undetermined coefficients (αn,j)
2n+1
j=1 , and such that gn(p, q)

miraculously simplifies to

(25) gn(p, q) =
n∑
k=1

βn,k
p2n+2kq4n−2k+2

for some coefficients (βn,k)
n
k=1. Assuming that this somewhat daring ansatz

turns out to be successful, summing gn(p, q) over all p, q ∈ N then yields on
the one hand

(26)
n∑
k=1

βn,k

( ∞∑
p,q=1

p−2n−2kq−4n+2k−2
)

=
n∑
k=1

βn,kζ(2n+2k)ζ(4n−2k+2),

and on the other hand

(27)

∞∑
p,q=1

fn(p, q)−
∞∑

p,q=1

fn(p+ q, q)−
∞∑

p,q=1

fn(p, p+ q)

=
( ∞∑
r,s=1

−
∑
r>s≥1

−
∑
r>s≥1

)
fn(r, s) =

∞∑
r=1

fn(r, r) =
(2n+1∑
j=1

αn,j

)
ζ(6n+ 2),

whereupon we obtain, after also adding a normalization condition
∑

j αn,j
= 1, the identity

(28) ζ(6n+ 2) =

n∑
k=1

βn,kζ(2n+ 2k)ζ(4n− 2k + 2).

The difference from Zagier’s original application of the technique is that
in his case the undetermined coefficients were trivial (see [50, bottom of
p. 498]), whereas here they are not. As the next lemma shows, finding them
reduces to the solution of a somewhat tricky system of linear equations.
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Lemma 2.1. If fn(p, q) is defined by (24), then the function gn(p, q) =
fn(p, q)− fn(p+ q, q)− fn(p, p+ q) can be expressed in the form (25) if and
only if the coefficients (αn,j)

2n+1
j=1 , (βn,k)

n
k=1 satisfy the equations

(29)
2n+1∑
j=1

αn,j

((
6n

m− 4n+ j

)
−
(

2n+ j − 2

m− 4n+ j

)
−
(

4n− j
m− 6n

))

=

n∑
k=1

βn,k

(
6n

m− 4n+ 2k

)
for m = 2n, 2n+ 1, . . . , 10n− 2.

Proof. In (25), substitute the definition of gn(p, q) and multiply both
sides by p6nq6n(p+ q)6n. The identity becomes

2n+1∑
j=1

αn,j(p
4n−jq2n+j−2(p+ q)6n − p4n−jq6n(p+ q)2n+j−2

− p6nq2n+j−2(p+ q)4n−j) =
n∑
k=1

βn,kp
4n−2kq2n+2k−2(p+ q)6n,

an equation in which both sides are homogeneous polynomials in p, q of
degree 12n−2. Extracting a common factor of q12n−2 and denoting x = p/q,
we clearly see that the identity is equivalent to the single-variable polynomial
identity

2n+1∑
j=1

αn,j(x
4n−j(1 + x)6n − x4n−j(1 + x)2n+j−2 − x6n(1 + x)4n−j)

=

n∑
k=1

βn,kx
4n−2k(1 + x)6n.

Expanding both sides of this relation in powers of x and equating coefficients
of each monomial xm gives precisely the equations (29). The power m on
the right-hand side ranges from 2n to 10n−2; on the left-hand side it ranges
from 2n− 1 to 10n− 1, but it is easy to verify that the coefficients of x2n−1

and x10n−1 vanish.

Having derived the system of equations (29), we used a computer to solve
them for small values of n. Numerical evidence led us to guess that

αn,j =
1

6n+ 1
· (4n+ 1)!

(2n!)2

(
2n
j−1
)(

6n
2n+j−1

) ,(30)

βn,k =
2

6n+ 1
· (4n+ 1)!

(2n!)2

(
2n

2k−1
)(

6n
2n+2k−1

) = 2αn,2k.(31)
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In our situation we happened to already know what the coefficients βn,k
should be, since we knew in advance the form of the identity (28) to be
proved—see Section 4 for the reasoning that led to its discovery. However,
it is worth noting that the equations can be solved even with undetermined
values for these coefficients, which can be useful for discovering additional
identities; see Section 12 where we give two additional examples of identities
discovered using this approach.

To verify that the guesses (30)–(31) are correct, we start by checking the
normalization condition.

Lemma 2.2. If the numbers αn,j are defined by (30), then
∑2n+1

j=1 αn,j =1
for all n ≥ 1.

Proof. Start by observing that the definition (30) of the αn,j ’s as an
interesting triangle of integers also makes sense when n is a half-integer. It
turns out that the identity

∑
j αn,j = 1 is still correct in that case, and this

is both easier and more natural to prove. That is, we now wish to show that

(32) S(n) :=

n∑
k=0

F (n, k) = 1

for all integer n ≥ 0, where we define

F (n, k) = αn/2,k+1 =
1

3n+ 1

(2n+ 1)!

(n!)2

(
n
k

)(
3n
n+k

) .
This can be proved using the method of Wilf–Zeilberger pairs [47]. Define
the “proof certificate” function

R(n, k) = −k(2n− k + 1)(11n2 + 2k2 − 5nk + 27n− 6k + 16)

3(n+ 1)(3n+ 2)(3n+ 4)(n− k + 1)
,

which was found with the help of the Mathematica package fastZeil [37],
[38], a software implementation of Zeilberger’s algorithm [53] (see also [39]).
Let G(n, k) = F (n, k)R(n, k). Then one may verify by direct computation
that

(33) F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k)

(divide both sides by F (n, k) to turn the relation into an equation between
two rational functions, or refer to the companion package [43] for an au-
tomated verification). Summing both sides of (33) over all integer k shows
that S(n+ 1) = S(n). Since S(0) = 1, (32) follows by induction.

Lemma 2.3. The coefficients αn,j and βn,k as defined by (30)–(31) satisfy
the system of equations (29).
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Proof. Since βn,k = 2αn,2k, it makes sense to rearrange the terms be-
tween the two sides of (29), arriving at the equivalent relation

(34)
2n+1∑
j=1

(−1)j−1
(

6n

m− 4n+ j

)
αn,j

=

2n+1∑
j=1

((
2n+ j − 2

m− 4n+ j

)
+

(
4n− j
m− 6n

))
αn,j .

It is now worth noting for aesthetic reasons, although not strictly necessary
for our purposes, that, as occurred in the proof of Lemma 2.2 above, a ver-
sion of this identity also holds when n is a half-integer, although to get the
correct identity it is necessary to insert in two places a small sign correction
of (−1)2n. Making this correction, and substituting αn,k into the equation,

with the irrelevant scaling factor (4n+1)!
(6n+1)(2n)!2

(which does not depend on j)

removed from both sides, the identity we need to prove becomes

(35)
2n+1∑
j=1

(−1)2n+j

(
2n
j−1
)(

6n
2n+j−1

)( 6n

m− 4n+ j

)

=

2n+1∑
j=1

(
2n
j−1
)(

6n
2n+j−1

)(( 2n+ j − 2

m− 4n+ j

)
+ (−1)2n

(
4n− j
m− 6n

))
.

Now replace n by n/2, and perform two additional simplifications of a purely
cosmetic nature, namely shifting the summation index j by 1 and replacing
the parameter m by m+ n− 1. This brings (35) to the form

(36)
n∑
j=0

(−1)n+j

(
n
j

)(
3n
n+j

)( 3n

m+ j − n

)

=

n∑
j=0

(
n
j

)(
3n
n+j

)(( n+ j − 1

m+ j − n

)
+ (−1)n

(
2n− j − 1

m− 2n− 1

))
,

where n is assumed to be a positive integer and m ranges over the values
0, 1, . . . , 4n.

Our next step is to exploit a subtle symmetry of the family of identities
(36) in order to obtain one final simplification. The key observation is that
the binomial coefficient

(
3n

m+j−n
)

on the left-hand side is invariant under
the substitution j → n− j, m→ 4n−m. On the right-hand side, the same
substitution transforms the two binomial coefficients

(
n+j−1
m+j−n

)
and

(
2n−j−1
m−2n−1

)
into each other. Note further that when 0 ≤ m ≤ 2n − 1, only the first of
those two coefficients can be nonzero (under the constraint 0 ≤ j ≤ n),
and when 2n + 1 ≤ m ≤ 4n, only the second one can be nonzero. When
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m = 2n, both of them are zero, and in this case it is easy to verify that the
left-hand side is a sum with alternating signs of the binomial coefficients

(
n
j

)
,

and therefore also zero. Thus, by symmetry it is enough to verify (36) for
0 ≤ m ≤ 2n− 1, and for that range of values it becomes

(37)
n∑
j=0

(−1)n+j

(
n
j

)(
3n

m+j−n
)(

3n
n+j

) =
n∑
j=0

(
n
j

)(
n+j−1
m+j−n

)(
3n
n+j

) .

Following this preparation, the well-known algorithmic methods for proving
hypergeometric summation identities—specifically, Zeilberger’s algorithm—
once again come to our aid. Denote

F1(n,m, j) = (−1)n+j

(
n
j

)(
3n

m+j−n
)(

3n
n+j

) , S1(n,m) =

n∑
j=0

F1(n,m, j),

F2(n,m, j) =

(
n
j

)(
n+j−1
m+j−n

)(
3n
n+j

) , S2(n,m) =
n∑
j=0

F2(n,m, j),

and define the additional auxiliary functions

U(n,m) = (m+ 2)(2n−m− 1),

V (n,m) = −2m2 − 5n2 + 8mn+ 9n− 4m− 2,

W (n,m) = (m− 4n)(2n−m− 1),

R1(n,m, j) =
j(3n+ 1)(2n− j + 1)

n−m− j − 1
,

R2(n,m, j) =
j(m− 2n+ 1)(2n− j + 1)

n−m− j − 1
,

G1(n,m, j) = R1(n,m, j)F1(n,m, j),

G2(n,m, j) = R2(n,m, j)F2(n,m, j).

The functions U(n,m), V (n,m), W (n,m), R1(n,m, j), and R2(n,m, j) were
found using Zeilberger’s algorithm, and one may verify by a routine calcu-
lation (see [43]) that they satisfy the pair of algebraic identities

(38)

U(n,m)Fα(n,m+ 2, j) + V (n,m)Fα(n,m+ 1, j) +W (n,m)Fα(n,m, j)

= Gα(n,m, j + 1)−Gα(n,m, j) (α = 1, 2),

where, importantly, the polynomials U(n,m), V (n,m),W (n,m) do not de-
pend on j or α. Summing both sides of (38) over all integer j results in
a telescoping sum on the right-hand side, which (since Gα(n,m, j) = 0 if
j < 0 or j > n) is equal to 0. Thus, we get the relations

(39) U(n,m)Sα(n,m+ 2) + V (n,m)Sα(n,m+ 1) +W (n,m)Sα(n,m) = 0
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for α = 1, 2. That is, we have shown that the sums S1(n,m), S2(n,m) sat-
isfy the same second-order linear recurrence relation with respect to the
variable m.

Finally, note that U(n,m) 6= 0 for 0 ≤ m ≤ 2n− 2, so for those values of
m we can solve the recurrence (39) for Sα(n,m+ 2), expressing it in terms
of Sα(n,m+1) and Sα(n,m). We therefore see that it is enough to verify that
S1(n, 0) = S2(n, 0) and S1(n, 1) = S2(n, 1), after which the general equality
S1(n,m) = S2(n,m) (which is precisely the relation (37) we are trying to
prove) follows for all 0 ≤ m ≤ 2n by induction on m. The verification of the
base cases m = 0, 1 is trivial and is left as an exercise.

Combining Lemmas 2.1–2.3 establishes the summation identity (28) with
the coefficients βn,k as defined in (31), and therefore finishes the proof
of (20).

3. Eisenstein series. The key idea in our proof of the Bernoulli number
summation identity (20) in the last section was to find a pair of functions
fn(p, q), gn(p, q) = fn(p, q) − fn(p + q, q) − fn(p, p + q) which are both ho-
mogeneous polynomials in p−1, q−1 of degree 6n+ 2, and such that fn(p, q)
contains only a specific set of even powers of p−1 and q−1. Zagier [50], who
introduced this method to prove a more standard identity, already made
the more general observation (see [50, Section 8]) that any summation iden-
tity proved using the same technique automatically “lifts” to a summation
identity for the Eisenstein series, by a modification of the argument.

To see how this works in our setting, instead of summing gn(p, q) over
all pairs of positive integers p, q as we did in (26), (27), now sum over all
pairs of complex numbers p, q ranging in the “half-lattice”

Λ+(z) = {p = mz + n : m > 0 or [m = 0 and n > 0]}

(where z is a fixed complex number in the upper half-plane H, which will
shortly become the argument of the Eisenstein series). This summation
yields, on the one hand (analogously to (26)), the expression

n∑
k=1

βn,k

( ∞∑
p,q∈Λ+(z)

p−2n−2kq−4n+2k−2
)

=

n∑
k=1

βn,k
G2n+2k(z)

2

G4n−2k+2(z)

2
.

On the other hand, for two elements r = mz + n and s = m′z + n′ of the
half-lattice Λ+(z), denote the order relation r � s to mean that m > m′

or [m = m′ and n > n′], and note that r � s if and only if r = s + q for
some q ∈ Λ+(z). Then the summation above can also be written, in analogy
with (27), as
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∞∑
p,q∈Λ+(z)

fn(p, q)−
∞∑

p,q∈Λ+(z)

fn(p+ q, q)−
∞∑

p,q∈Λ+(z)

fn(p, p+ q)

=
( ∞∑
r,s∈Λ+(z)

−
∑

r,s∈Λ+(z)
r�s

−
∑

r,s∈Λ+(z)
s�r

)
fn(r, s) =

∞∑
r∈Λ+(z)

fn(r, r)

=
(2n+1∑
j=1

αn,j

)G6n+2(z)

2
=
G6n+2(z)

2
.

Thus we obtain precisely the identity (23), proving Theorem 1.6.

In connection with the proof above, we remark that Zagier’s observation
about the lifting of summation relations to Eisenstein series was made in
the context of considering general summation relations of the form

(40) G2k =
∑

2≤j<k
cjG2jG2k−2j

expressing a given Eisenstein series in terms of the Eisenstein series with
lower index. It is apparent from the formula for dimM2k mentioned in Sub-
section 1.3 that for any fixed k there must be a certain number of linearly
independent relations of this kind (the number of such relations increases
linearly with k), and one can use standard algorithms from linear algebra
and the theory of modular forms to find all such relations. From this point
of view, the existence of summation relations of the form (40)—again, for
specific values of k—is not especially surprising.

What is not necessarily apparent, and it is not clear to us from the dis-
cussion in [50] whether it was envisioned by Zagier, was that his technique
can also be used to prove interesting families of summation relations (other
than the single relatively trivial example discussed in Section 1 of his pa-
per) that hold for many values of k and have the kind of elegant structure
that our identity (23) possesses. The discovery that this is in fact the case
makes Zagier’s technique appear a lot more exciting, and opens the way
to discovering and proving—possibly in an algorithmic fashion—additional
families of identities; see Section 12 for a further brief discussion of these
possibilities.

4. The function ω(s) and its analytic continuation. The goal of
this section is to prove Theorems 1.2 and 1.3. Our approach is based to
a large extent on an integral representation derived by Matsumoto for the
more general Dirichlet series ζMT(s1, s2, s3) defined in (14) (see [28, equation
(5.3)]).
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The region of convergence: proof of Theorem 1.2(i). We start by
giving a simple argument to prove the claim of Theorem 1.2(i) about the
precise region of convergence of the Dirichlet series defining ω(s). Observe
that

ω(s) =

∞∑
j,k=1

1

(jk(j + k))s
=
( ∞∑
j>k≥1

+

∞∑
k>j≥1

+

∞∑
k=j≥1

) 1

(jk(j + k))s

= 2
∞∑

j>k≥1

1

j2sks(1 + k/j)s
+ 2−sζ(3s).

Here, the series for 2−sζ(3s) converges if and only if Re(s) > 1/3, and the
summation over j > k ≥ 1 converges absolutely if and only if the simpler
series

(41)

∞∑
j>k≥1

1

|j2sks|
=

∞∑
j>k≥1

1

j2σkσ

(where σ = Re(s)) converges absolutely, since on the range of summation
the multiplicative factor (1+k/j)−s is bounded between 2−s and 1. It is now
trivial to check that the series in (41) converges absolutely and uniformly
on compacts (which ensures that the sum is a holomorphic function) if and
only if Re(s) > 2/3, for example by comparison with the integral

∞�

1

∞�

x

1

x2σyσ
dy dx =

1

σ − 1

∞�

1

x1−3σ dx.

Analytic continuation: proof of Theorem 1.2(ii). Next, we pro-
ceed with the analytic continuation of ω(s) to a meromorphic function on C.
We recall Matsumoto’s ingenious method to achieve this (which he applied
in a more general context), but add a few more details and motivation that
are missing from his analysis and that we feel add some important insight
in view of our newer discoveries about the significance of ω(s).

Start with a standard contour integral formula from the class of Mellin–
Barnes integrals [36, eq. (3.3.9), p. 91], namely

(42) Γ (s)(1 + λ)−s =
1

2πi

�

(α)

Γ (s+ z)Γ (−z)λz dz,

where (α) denotes the vertical contour from α−i∞ to α+i∞ (with i =
√
−1,

here and throughout), and where we assume that λ ∈ C \ (−∞, 0] and
−Re(s) < α < 0. Setting λ = k/j, multiplying by j−2sk−s and summing
over j, k ∈ N gives
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Γ (s)ω(s) = Γ (s)

∞∑
j,k=1

j−2sk−s(1 + k/j)−s(43)

=
1

2πi

∞∑
j,k=1

j−2sk−s
�

(α)

Γ (s+ z)Γ (−z)j−zkz dz

=
1

2πi

�

(α)

Γ (s+ z)Γ (−z)
∞∑

j,k=1

j−2s−zk−s+z dz

=
1

2πi

�

(α)

Γ (s+ z)Γ (−z)ζ(2s+ z)ζ(s− z) dz,

provided the infinite summations converge and the interchange of the sum-
mation and integration operations can be justified. Note that the two zeta
series within the integrand can be summed precisely when Re(2s + z) > 1
and Re(s − z) > 1, that is, when 1 − 2σ < α < σ − 1 (where σ = Re(s) as
before). Together with the constraints −σ < α < 0, we see that α and σ
must satisfy

(44) max(−σ, 1− 2σ) < α < min(0, σ − 1).

As illustrated in Figure 1(a), a feasible value of α satisfying these con-
straints exists if and only if σ > 2/3, which is consistent with our earlier
observations on the region of convergence of the Dirichlet series defining
ω(s). If σ > 2/3, and a valid value of α is chosen (for example, α = −1/3
works), the interchange of the summation and integration operations is easy
to justify using standard facts about the exponential decay of the gamma
function, and the (at most) polynomial growth of the zeta function, along
vertical lines, namely that for z = x+ iy, |y| ≥ 1, we have

|Γ (x+ iy)| = O(|y|Ae−π|y|/2),(45)

|ζ(x+ iy)| = O(|y|A),(46)

where A is a constant that depends only on x, and where both A and the
constant implicit in the big-O notation are uniform as x ranges in compact
subsets of R; see [36, Section 2.1.3] and [14, Section 6.4] for the proofs of
these relations.

Summarizing the above discussion, we conclude that the integral in (43)
is indeed a valid representation for Γ (s)ω(s). We also remark that the
bounds (45) and (46) together with standard facts from complex analy-
sis will also provide easy justifications for all subsequent manipulations of
contour integrals in this paper (e.g., shifting the contour and differentia-
tion under the integral). We assume the reader is familiar with such tech-
niques and will mention these justifications only in passing without going
into detail.
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Fig. 1. (a) The shaded area in the diagram represents the feasible region of pairs (σ, α)
for which the constraints (44) are satisfied and therefore the representation (43) is valid.
(b) The lines in this diagram represent pairs (σ, α) where the integrand in (43) will run
into a singularity. To analytically continue ω(s), we start at (σ,−1/3) where σ is initially
allowed to vary in the interval (2/3, 1) (the triangular shaded region) and move up along
the α axis (which corresponds to shifting the contour of integration to the right) to a
region of the diagram (the trapezoidal shaded area) where σ can be varied across a much
wider interval without running into singularities.

The next step is to analytically continue the integral to a larger region.
This is done by shifting the contour of integration and taking into account
the residues. Note that the integrand has poles (as a function of z with s
fixed) at:

• z = s− 1 because of the factor ζ(s− z);
• z = 1− 2s because of the factor ζ(2s+ z);
• z = 0, 1, 2, . . . because of the factor Γ (−z);
• z = −s,−s− 1,−s− 2, . . . because of the factor Γ (s+ z).

This means that we should look for a value of α for the new integration
contour (α) for which σ = Re(s) is allowed to range over a wide range of
positive and negative values without intersecting the lines in the σ-α plane
defined by the equations

α = σ − 1,(47)

α = 1− 2σ,(48)

α = n (n = 1, 2, . . .),(49)

α = −σ − n (n = 0, 1, . . .).(50)
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The situation can be visualized graphically in terms of the “singularity dia-
gram” presented in Figure 1(b), which shows the pairs (σ, α) that cause the
integral to pass through a singularity point.

We are ready to shift the integration contour in the representation (43).
Simplifying Matsumoto’s argument slightly, we assume for convenience that
initially 2/3 < σ < 1, so that we can avoid having to consider the double
poles that result when two of the singularity lines intersect. The diagram
in Figure 1(b) shows that it is a good idea to shift the contour (α) to the
right (moving up in the coordinate system of the diagram) to (α′) where
α′ = M − 1/2 and M is some large integer. As the diagram shows, this
involves skipping over the pole at z = s − 1, which is a pole with residue
−Γ (2s− 1)Γ (1− s)ζ(3s− 1); and the pole at k for each k = 0, 1, . . . ,M − 1,

which has residue (−1)k+1

k! Γ (s + k)ζ(2s + k)ζ(s − k). Thus, by the residue
theorem (still assuming 2/3 < σ < 1) we have

Γ (s)ω(s) = Γ (2s− 1)Γ (1− s)ζ(3s− 1)(51)

+

M−1∑
k=0

(−1)k

k!
Γ (s+ k)ζ(2s+ k)ζ(s− k)

+
1

2πi

�

(M−1/2)

Γ (s+ z)Γ (−z)ζ(2s+ z)ζ(s− z) dz.

Furthermore, Figure 1(b) shows graphically, and the equations (47)–(50) can
easily be used to show algebraically, that the integrand in (51) encounters
no singularities as s ranges in the strip

(52) 3/4−M/2 < σ < M + 1/2.

It follows (using (45)–(46)) that the integral defines a function which is holo-
morphic in the same strip. Since M was arbitrarily large, we have therefore
succeeded in extending ω(s) to a meromorphic function on the entire com-
plex plane, proving Theorem 1.2(ii).

Analysis of the poles and values at nonnegative integers: proof
of Theorems 1.2(iii) and 1.3. We now extend Matsumoto’s analysis fur-
ther by examining the singularities of ω(s) and its values at nonnegative
integers. First, consider Γ (s)ω(s), whose analytic continuation is given by
the right-hand side of (51). Here is a list of the poles of Γ (s)ω(s) contributed
from each multiplicative factor in each of the additive terms, along with their
residues.

1. The poles of the term Γ (2s− 1)Γ (1− s)ζ(3s− 1) are:

• A simple pole at s = 2/3 because of the factor ζ(3s− 1). The residue

is 1
3Γ
(
1
3

)2
.
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• Potential simple poles at s = 1/2, 0,−1/2,−1,−3/2,−2, . . . because of
the factor Γ (2s− 1). The residue at s = 1−k

2 for each integer k ≥ 0 is
(−1)k
2·k! Γ

(
1+k
2

)
ζ
(
1−3k
2

)
. Note that for k = 3, 7, 11, 15, . . . the residue is 0

because of the trivial zeros of ζ(s) at the negative even integers, so the
poles of the term Γ (2s− 1)Γ (1− s)ζ(3s− 1) at these values are in fact
removable singularities.
• Simple poles at s = 1, 2, . . . because of the factor Γ (1− s). The residue

at s = k+1 is equal to (−1)k+1

k! Γ (2k+1)ζ(3k+2) = (−1)k+1(2k)!
k! ζ(3k+2)

for each integer k ≥ 0.

2. The poles of (−1)k
k! Γ (s+ k)ζ(2s+ k)ζ(s− k) for k = 0, 1, . . . ,M − 1 are:

• A simple pole at s = k + 1 because of the factor ζ(s− k). The residue

is (−1)k
k! Γ (2k + 1)ζ(3k + 2) = (−1)k(2k)!

k! ζ(3k + 2).

• A simple pole at s = 1−k
2 because of the factor ζ(2s+ k). The residue

is (−1)k
2·k! Γ

(
1+k
2

)
ζ
(
1−3k
2

)
.

• Potential simple poles at s = −k,−k − 1,−k − 2, . . . because of the
factor Γ (s + k). The residue at s = −k − j for each integer j ≥ 0

is (−1)k
k! ·

(−1)j
j! ζ(−k − 2j)ζ(−2k − j). As above, some of them end up

being removable singularities because of cancellation with a trivial zero
of ζ(s).

Adding up the contributions from the different terms (assuming that
M is arbitrarily large so we can ignore the edge effects), we see that the
poles of Γ (s)ω(s) at s = 1, 2, . . . have residue 0 and are in fact removable
singularities (which could have been predicted in advance, as we already
knew that Γ (s)ω(s) is analytic at those points). The remaining poles consist

of a “special” pole at s = 2/3 with residue 1
3Γ
(
1
3

)2
, and a series of (potential)

poles at half-integer points of the form s = (1− k)/2 for k = 0, 1, . . . , where
for an even value k = 2m the residue is

(−1)2m

(2m)!
Γ (m+ 1/2)ζ

(
1− 6m

2

)
=

1 · 3 · 5 · . . . · (2m− 1)

(2m)!2m
Γ
(
1
2

)
ζ

(
1− 6m

2

)
=

1

4mm!

√
π ζ

(
1− 6m

2

)
,

and for k = 2m+ 1 an odd integer the residue is

ρm :=
(−1)2m+1

(2m+ 1)!
Γ (m+ 1)ζ(−3m− 1)

+
(−1)m

m!

m∑
j=0

(
m

j

)
ζ(−m− j)ζ(−2m+ j)
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= − m!

(2m+ 1)!
ζ(−3m− 1) +

(−1)m

m!

m∑
j=0

(
m

j

)
ζ(−m− j)ζ(−2m+ j).

Note that ρ0 = ζ(0)2− ζ(−1) =
(
−1

2

)2
+ 1

12 = 1
3 . However, as we discovered

to our surprise, the remaining values ρ1, ρ2, . . . are all zero! For odd values
of m this is trivially true since ζ(−3m− 1) is a trivial zero of the Riemann
zeta function, and in the summation over j, for each j one of the factors
(depending on the parity of j) is also a trivial zeta zero. For even values
of m, denoting m = 2p, we see that the claim reduces to the summation
identity

ζ(−6p− 1) = (4p+ 1)

(
4p

2p

) 2p∑
j=0

(
2p

j

)
ζ(−2p− j)ζ(−4p+ j),

which is precisely the version (22) of our Bernoulli number summation iden-
tity (note that the summation over j can be taken only over odd values,
again because of the trivial zeta zeros). Thus, (20) and its reformulations
(21), (22) turn out to be equivalent to the claim that Γ (s)ω(s) has no poles
at the negative integers. Since we, and Agoh and Dilcher before us, proved
the former result using other methods, the latter claim about Γ (s)ω(s) fol-
lows.

We summarize our findings about Γ (s)ω(s) in the following theorem,
which will play an important role in our asymptotic analysis of the repre-
sentation enumeration function r(n).

Theorem 4.1. The meromorphic function Γ (s)ω(s) has a simple pole at

s = 2/3 with residue 1
3Γ
(
1
3

)2
; a simple pole at s = 0 with residue 1/3; and for

each k = 0, 1, 2, . . . a simple pole at s = 1/2−k with residue 1
4kk!

√
π ζ
(
1−6k
2

)
.

It has no other singularity points.

From Theorem 4.1 we can now easily infer part (iii) of Theorem 1.2, and
both claims (16), (17) of Theorem 1.3. This is based on two observations:
first, for a complex number s0 which is not a pole of the gamma function,
we have

Ress=s0(ω(s)) =
1

Γ (s0)
Ress=s0(Γ (s)ω(s)).

Second, at the poles s0 = −n of Γ (s), n ≥ 0, we have

ω(s0) =
Ress=s0(Γ (s)ω(s))

Ress=s0(Γ (s))
= (−1)nn! Ress=−n(Γ (s)ω(s))

(where the equation holds in the usual complex-analytic sense, that is, after
removing the removable singularities). Applying the first observation to s0 =
2
3 ,

1
2 ,−

1
2 ,−

3
2 , . . . , and the second observation to s0 = 0,−1,−2, . . . , gives the
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claims; for example, for s0 = 2/3 we get

Ress=2/3(ω(s)) = 1
3Γ
(
1
3

)2
/Γ
(
2
3

)
,

which is equal to 1
2π
√
3
Γ
(
1
3

)3
by the reflection formula Γ (x)Γ (1−x) = π

sin(πx) .

We leave it to the reader to fill in the details for the remaining poles of
Γ (s)ω(s).

We have therefore proved parts (i)–(iii) of Theorem 1.2; proved Theo-
rem 1.3; and established the additional interesting fact that (16) implies,
and is implied by, the summation identity (20). Furthermore, note that the
evaluation ω(0) = 1/3 is directly related to the fact that (20) does not hold
for n = 0.

4.1. Polynomial bound along vertical strips: proof of Theo-
rem 1.2(iv). To conclude our analysis of ω(s), it remains to prove part
(iv) of Theorem 1.2, namely the claim that |ω(σ + it)| grows at most poly-
nomially in t as |t| → ∞ with σ ranging in a bounded interval I = [a, b].
This fact was mentioned briefly in [29] (in the more general context of the
multivariate Mordell–Tornheim zeta function) and is a fairly straightforward
consequence of the representation (51): dividing that representation (with
M taken large enough so that the representation is valid for σ ∈ I) by Γ (s)
and using the standard relation Γ (w + 1) = wΓ (w), we get

ω(s) =
Γ (2s− 1)Γ (1− s)ζ(3s− 1)

Γ (s)
(53)

+

M−1∑
k=0

(−1)k

k!
s(s+ 1) . . . (s+ k − 1)ζ(2s+ k)ζ(s− k)

+
1

2πi

�

(M−1/2)

Γ (s+ z)Γ (−z)ζ(2s+ z)ζ(s− z)
Γ (s)

dz.

Here, all the summands except possibly the integral can be immediately
seen using (45)–(46) to satisfy such a polynomial bound. For the integral,
writing s = σ + it and z = x+ iy, we use (45)–(46) again to see that it can
be bounded as

(54)

∣∣∣∣ �

(M−1/2)

Γ (s+ z)Γ (−z)ζ(2s+ z)ζ(s− z)
Γ (s)

dz

∣∣∣∣
≤ eπt/2

∞�

−∞
e−π|t+y|/2e−π|y|/2 × |Poly(t, y)| dy,

where Poly(t, y) denotes a polynomial factor (with powers and coefficients
that are uniform as σ ranges over compact intervals). However, a quick side
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calculation, which we omit, shows that for any integer n ≥ 0 the function

u 7→ eu
∞�

−∞
|v|ne−|v|e−|v+u| dv

is a polynomial in u. Applying this to the right-hand side of (54) gives the
desired polynomial bound, and finishes the proof of Theorem 1.2.

5. The formula for ω′(0): proof of Theorem 1.4. To prove the
formula (18) for ω′(0), start with the integral representation (53). In the
case M = 2, according to (52) the representation is valid when −1/4 <
Re(s) < 5/2. In particular, in a neighborhood of s = 0 we have

ω(s) =
Γ (2s− 1)Γ (1− s)ζ(3s− 1)

Γ (s)
+ ζ(s)ζ(2s)− sζ(s− 1)ζ(2s+ 1)(55)

+
1

2πi

�

(3/2)

Γ (−z)Γ (s+ z)ζ(2s+ z)ζ(s− z)
Γ (s)

dz,

where in the case of the removable singularity at s = 0 the equality is under-
stood in an appropriate limiting sense. Now inspect the Taylor expansion
of each of the summands up to first order, using standard facts about the
Taylor expansions of the gamma and zeta functions at s = −1, 0, 1. For the
first summand, we have

Γ (2s− 1)Γ (1− s)ζ(3s− 1)

Γ (s)

=
(1 + γs+O(s2))

(
−1/(2s) + (γ − 1) +O(s)

)(
− 1

12 + 3ζ ′(−1)s+O(s2)
)

1
s − γ +O(s)

= 1
24 +

(
1
12 −

3
2ζ
′(−1)

)
s+O(s2).

Similarly, for the second summand,

ζ(s)ζ(2s) =
(
−1

2 −
1
2 log(2π)s+O(s2)

)(
−1

2 − log(2π)s+O(s2)
)

= 1
4 +

(
3
4 log(2π)

)
s+O(s2),

and for the third summand,

−sζ(s− 1)ζ(2s+ 1) = −s(1/(2s) + γ +O(s))
(
− 1

12 + ζ ′(−1)s+O(s2)
)

= 1
24 +

(
1
12γ −

1
2ζ
′(−1)

)
s+O(s2).

The coefficient of s in the sum of the above three expansions is

(56) 1
12 + 1

12γ + 3
4 log(2π)− 2ζ ′(−1),

which accounts for all the terms on the right-hand side of (18) except for
the integral.
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It remains to consider the integral in (55). Define

∆(s, z) =
Γ (−z)Γ (s+ z)ζ(2s+ z)ζ(s− z)

Γ (s)
.

Differentiating ∆(s, z) with respect to s and using the Taylor expansions

Γ (s) =
1

s
− γ +O(s),

Γ ′(s)

Γ (s)
= −1

s
+ γ +O(s),

a short computation, which we omit, shows that

∂

∂s

∣∣∣∣
s=0

∆(s, z) = Γ (z)Γ (−z)ζ(z)ζ(−z),

which, using the functional equations Γ (w+1) = wΓ (w) and Γ (z)Γ (1−z) =
π/sin(πz), simplifies further to

∂

∂s

∣∣∣∣
s=0

∆(s, z) = − π

z sin(πz)
ζ(z)ζ(−z).

Thus, differentiating the integral in (55) and setting s = 0 gives

(57)
∂

∂s

∣∣∣∣
s=0

[
1

2πi

�

(3/2)

Γ (−z)Γ (s+ z)ζ(2s+ z)ζ(s− z)
Γ (s)

dz

]

= − 1

2i

�

(3/2)

ζ(z)ζ(−z)
z sin(πz)

dz =
1

2

∞�

−∞

ζ(3/2 + it)ζ(−3/2− it)
(3/2 + it) cosh(πt)

dt,

since sin(π(3/2+it)) simplifies to − cosh(πt). Combining (57) with the com-
putations leading up to (56) finishes the proof of Theorem 1.4.

6. Asymptotics of generating functions for SU(3) representa-
tions. In this section we begin applying our results on the function ω(s) to
derive asymptotic results for the enumeration of representations of SU(3).
Let us start with a few general remarks about the broader context for our
analysis. Theorem 1.1 is formulated most naturally as an asymptotic enu-
meration result for representations of SU(3), but one can think of the se-
quence r(n) as enumerating a certain combinatorial class of integer parti-
tions, namely the class of representations of an integer n as a sum of inte-
gers of the form aj,k = 1

2jk(j + k), where repetitions are allowed; the order
of the summands is unimportant; and if aj,k = aj′,k′ but (j, k) 6= (j′, k′),
the numbers aj,k and aj′,k′ are considered distinct. Thus, if one ignores
the representation-theoretic aspect, our result broadly falls into the area of
partition asymptotics. This topic, which had its beginnings in 1918 with
the asymptotic expansion of Hardy and Ramanujan [20] for the partition-
counting function p(n), has important connections to analytic number the-
ory and the theory of modular forms (see [5]). Highlights of the theory
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include Rademacher’s [40] refinement of Hardy and Ramanujan’s formula
into a convergent series for p(n) and Wright’s [49] asymptotic formula for
the number of plane partitions of n. See [4], [10], [13], [21] for more recent
results.

One landmark result in the theory was the theorem of Meinardus, who
in his 1954 paper [31] identified a general strategy for proving asymptotic
formulas for a wide class of combinatorial enumeration sequences c(n) whose
generating functions have an Euler product formula of the form

(58) 1 +

∞∑
n=1

c(n)xn =

∞∏
m=1

1

(1− xm)am

for some sequence (am)∞m=1 of nonnegative integers. Assuming certain tech-
nical conditions are satisfied, Meinardus’s result states that c(n) has an
asymptotic formula of the form

(59) c(n) = (1 + o(1))Cn−γ exp(Dnδ)

for certain explicitly computable constants C,D, γ, δ. His result includes
many earlier ones (including (1) and Wright’s formula for plane partitions
mentioned above) as special cases that can be deduced from it without
much difficulty; see [3, Chapter 6] for examples and an accessible exposition
of Meinardus’s result.

Now note that the generating function (2) of our sequence r(n) can in
fact be written in the form (58), with the exponents am being given by
am = #{(j, k) ∈ N2 : m = jk(j + k)/2} (that is, the number of inequivalent
m-dimensional irreducible representations of SU(3)). One might hope that
Meinardus’s theorem will apply in this case, but it turns out that it does
not, and indeed, the asymptotic formula (3) ends up having a more elaborate
form than (59). Nonetheless, the general strategy employed by Meinardus
and earlier authors for proving asymptotic formulas such as (1) and (59)
(described for example in [15, Section VIII.6]) remains valid, and we were
able to adapt it to our needs, although a few nontrivial technical hurdles
need to be overcome. One conceptual innovation that simplifies the anal-
ysis somewhat is to use a probabilistic representation similar to Fristedt’s
probabilistic model for random integer partitions [16].

The first step in the analysis, which we undertake in this section, is to
understand the asymptotic behavior of the generating function of r(n), and
a few related functions, as the argument approaches a singularity point. The
main tool we will use is the Mellin transform and its inverse. Define

G(x) =

∞∏
j,k=1

1

1− xjk(j+k)/2
=

∞∑
n=0

r(n)xn (|x| < 1),(60)
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f(t) =

∞∑
j,k=1

exp
(
−1

2jk(j + k)t
)

(t > 0),(61)

h(t) = logG(e−t), (t > 0).(62)

Note that the trivial bound
∞∑

j,k=1

|x|jk(j+k)/2 ≤
∞∑

j,k=1

|x|(j+k)/2 =
( ∞∑
j=1

|x|j/2
)2

shows that the product defining G(x) (hence also the series) is absolutely
convergent for complex x satisfying |x| < 1 and defines an analytic function,
and that f(t), h(t) are defined and finite for t > 0. We will also need a few
additional easy bounds that are given in the following lemma.

Lemma 6.1. The functions f(t) and h(t) satisfy the asymptotic bounds

f(t) =

{
O(t−2/3) as t↘ 0,

O(e−t) as t→∞,
h(t) =

{
O(t−2/3) as t↘ 0,

O(e−t) as t→∞.

Proof. Consider first f(t); the bound f(t) = O(e−t) as t → ∞ is trivial
and left as an exercise. The behavior of f(t) as t↘ 0 can be understood by
writing

f(t) = t−2/3
∞∑

j,k=1

exp
(
−1

2(t1/3j)(t1/3k)(t1/3j + t1/3k)
)
t1/3 t1/3,

and noting that this is t−2/3 times a Riemann sum (with ∆x = ∆y = t1/3)
for the double integral I =

	∞
0

	∞
0 exp

(
−1

2xy(x + y)
)
dx dy. This integral

can be seen to be finite by making the two-dimensional change of variables
u = x, v = 1

2xy(x+ y), which, after a short computation that we omit, gives

I = 2

∞�

0

∞�

0

e−v
1√

u4 + 8vu
du dv.

Making another substitution, namely w = (8v)−1/3u for the integral with
respect to u, transforms this into

2

∞�

0

e−v
(∞�

0

(8v)1/3 dw√
(8v)4/3w4 + (8v)4/3w

)
dv

= 2 · 8−1/3
∞�

0

v−1/3e−v dv ·
∞�

0

dw√
w4 + w

<∞,

proving therefore that f(t) = O(t−2/3) (in fact f(t) = (I + o(1))t−2/3)
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as t↘ 0. Finally, for h(t), note that

h(t) = −
∞∑

j,k=1

log
(
1− exp

(
−1

2jk(j + k)t
))

(63)

=
∞∑

j,k=1

∞∑
m=1

1

m
exp
(
−1

2jk(j + k)mt
)

=
∞∑
m=1

1

m

( ∞∑
j,k=1

exp
(
−1

2jk(j + k)mt
))

=
∞∑
m=1

1

m
f(mt).

The claim about the behavior h(t) as t→∞ is again trivial, and for t near 0
we have

|h(t)| ≤
∞∑
m=1

1

m
|f(mt)| = O

( ∞∑
m=1

1

m
(mt)−2/3

)

= O

( ∞∑
m=1

1

m5/3
· t−2/3

)
= O(t−2/3).

(Note that the O(t−2/3) bound for f(t) actually holds for all t > 0, since e−t

decays faster than t−2/3 as t→∞.)

We are now ready to prove a much stronger result about the asymptotic
behavior of h(t) and its derivatives as t↘ 0.

Theorem 6.2. As t↘ 0, the function h(t) has the asymptotic expansion

(64) h(t) = µ1t
−2/3 + µ2t

−1/2 − 1
3 log t+ ω′(0) + 1

3 log 2 +O(t1/2),

where µ1, µ2 are constants defined by

µ1 =
22/3

3
Γ
(
1
3

)2
ζ
(
5
3

)
, µ2 =

√
2π ζ

(
1
2

)
ζ
(
3
2

)
.

Furthermore, the expansion (64) can be differentiated termwise; specifically,
the first two derivatives h′(t) and h′′(t) have the asymptotic expansions

h′(t) = −2
3µ1t

−5/3 − 1
2µ2t

−3/2 − 1
3 t
−1 +O(t−1/2),(65)

h′′(t) = 10
9 µ1t

−8/3 + 3
4µ2t

−5/2 + 1
3 t
−2 +O(t−3/2).(66)

Proof. First, we wish to show that f(t), and therefore also h(t), can
be related to the analytic function ω(s) via the Mellin transform. Start by
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considering f(t). Its Mellin transform is

M[f(t)](s) :=

∞�

0

f(t)ts−1 dt =
∞∑

j,k=1

∞�

0

exp
(
−1

2jk(j + k)t
)
ts−1 dt(67)

=

∞∑
j,k=1

(
1
2jk(j + k)

)−s
Γ (s) = 2sΓ (s)ω(s).

Next, consider h(t). Taking the Mellin transform of (63), we obtain easily,
using the standard linearity and scaling properties of the Mellin transform,

M[h(t)](s) =

∞∑
m=1

1

m
M[f(mt)](s) =

∞∑
m=1

1

m
m−sM[f(t)](s)(68)

= 2sΓ (s)ω(s)ζ(s+ 1).

By Lemma 6.1, both (67) and (68) are valid for all complex s satisfying
Re(s) > 2/3. (This is important for the proof below but also provides a
useful consistency check with Theorem 1.2(i).)

We are now in a good position to apply the method of Mellin transform
asymptotics, described for example in [15, Appendix B.7]. The main idea is
that the asymptotic behavior of h(t) as t↘ 0 is closely tied to the singularity
structure in the complex plane of its Mellin transform. Specifically, we apply
the Mellin inversion formula [36, eq. (3.1.5), p. 80] to deduce that h(t) has
the contour integral representation

(69) h(t) =
1

2πi

�

(α)

2sΓ (s)ω(s)ζ(s+ 1)t−s ds,

where α > 2/3, and (α) denotes as before the vertical line from α − i∞ to
α+ i∞. Shifting the contour of integration to the left past a few of the poles
of the integrand will now produce the main asymptotic contributions from
the residues, and the integral will become an error term whose magnitude
is easily controlled. The relevant poles past which we will move the contour
are at s = 2/3, 1/2, 0,−1/2. The first two are simple poles, with respective
residues

Ress=2/3[2
sΓ (s)ω(s)ζ(s+ 1)t−s] =

22/3

3
Γ
(
1
3

)2
ζ
(
5
3

)
t−s = µ1t

−s,

Ress=1/2[2
sΓ (s)ω(s)ζ(s+ 1)t−s] =

√
2π ζ

(
1
2

)
ζ
(
3
2

)
t−s = µ2t

−s.

The pole at s = 0 is a double pole since each of the factors Γ (s) and
ζ(s + 1) contributes a first-order singularity. By the well-known facts that
Γ (s) = 1/s − γ + O(s) and ζ(s + 1) = 1/s + γ + O(s) near s = 0 (where
γ is the Euler–Mascheroni constant), we can easily compute the Laurent
expansion of 2sΓ (s)ω(s)ζ(s+ 1)t−s around s = 0 as
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Γ (s)ω(s)ζ(s+ 1)(t/2)−s = (1/s− γ +O(s))(1/s+ γ +O(s))

×
(
1
3 + ω′(0)s+O(s2)

)
(1− s log(t/2) +O(s2))

=
1

3s2
+
(
ω′(0) + 1

3 log 2− 1
3 log t

)1

s
+O(1).

Thus, the residue at s = 0 is ω′(0) + 1
3 log 2− 1

3 log t. Finally, the residue at

s = −1/2 is
(
1
4

√
π/2 ζ(−5/2)ζ(1/2)

)
t1/2 =: νt1/2.

Now shift the contour in (69) past the four poles, say to (α′) where
α′ = −1. By the residue theorem (with easy justification provided by (45),
(46) and (15)), we get

h(t) = µ1t
−2/3 + µ2t

−1/2 − 1
3 log t+ ω′(0) + 1

3 log 2 + νt1/2(70)

+
1

2πi

�

(−1)

2sΓ (s)ω(s)ζ(s+ 1)t−s ds.

It is easy to see that the integral is O(t−1), so this proves (64). Finally,
(65)–(66) follow by differentiating both sides of (70).

7. A probabilistic model for representations of SU(3). Next, we
take advantage of the product structure of the generating function (2) to
interpret the coefficients r(n) in terms of a probabilistic model involving
a family of independent random variables distributed according to the ge-
ometric distribution. Such probabilistic models are widely applied to the
asymptotic enumeration of combinatorial structures and to the analysis of
their probabilistic properties (see [7]). A version specifically tailored to the
study of integer partitions was introduced by Fristedt [16] (and is sometimes
referred to as Fristedt’s conditioning device) and forms the prototype for a
variety of similar models, considered, e.g., in [46].

Let t > 0 denote a parameter. For integers j, k ≥ 1, let Xj,k denote a
random variable defined on some probability space having the distribution
X ∼ Geom0(1 − e−jk(j+k)t/2), namely the geometric distribution (in the
version that starts at 0, hence the notation Geom0(·)) with parameter pj,k =

1− e−jk(j+k)t/2. That is, we have

Pt(Xj,k = m) = pj,k(1− pj,k)m = (1− e−jk(j+k)t/2)e−jk(j+k)mt/2

for m ≥ 0, where the Pt(·) denotes the probability with respect to the param-
eter value t. We assume that all the variables (Xj,k)j,k≥1 are simultaneously
defined on the same probability space and form an independent family of
random variables.

We interpret the variables (Xj,k)j,k≥1 as encoding the structure of a
certain random representation of SU(3), namely

(71) W =
∞⊕

j,k=1

Xj,kWj,k
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which consists of a sum of Xj,k copies of each of the irreducible representa-
tions Wj,k (see Subsection 1.1). The total dimension of W is therefore the
random variable, which we denote N , given by

(72) N =
∞∑

j,k=1

1
2jk(j + k)Xj,k.

It is easily seen from the Borel–Cantelli lemma that with probability 1 only
finitely many terms in the sum are nonzero, and therefore N is almost surely
finite.

If (mj,k)
∞
j,k=1 is an array of (nonrandom) nonnegative integers, we have

Pt
( ∞⋂
j,k=1

{Xj,k = mj,k}
)

=
∞∏

j,k=1

[(1− e−jk(j+k)t/2)e−jk(j+k)mj,kt/2](73)

=
e−nt

G(e−t)
,

where G(x) is defined in (60), and n =
∑∞

j,k=1
1
2jk(j + k)mj,k. This can be

interpreted as the probability in our random model of the event that the
random representation W in (71) is equal to the specific nonrandom rep-
resentation

⊕∞
j,k=1mj,kWj,k, which has dimension n. Note that representa-

tions with the same dimension have equal probabilities of being observed
under the measure Pt(·). Summing the probabilities (73) over all r(n) rep-
resentations of dimension n therefore gives

(74) Pt(N = n) = e−ntr(n)/G(e−t).

This key formula will be of crucial significance in our analysis; it relates
our integer sequence r(n) to the distribution of the random variable N ,
and will therefore allow us to translate results about that distribution into
information about r(n).

Let Et (·) and Vart(·) denote the expectation and variance, respectively,
relative to the parameter value t. The following lemma provides another
connection of the random variable N with a function we have been studying.

Lemma 7.1. The expectation and variance of N are given, respectively,
by

Et(N) = −h′(t), Vart(N) = h′′(t).

Proof. Denote g(t) = G(e−t) =
∑∞

n=0 r(n)e−nt, so that

g′(t) = −
∞∑
n=0

nr(n)e−nt, g′′(t) =

∞∑
n=0

n2r(n)e−nt.

Using (74) leads to

h′(t) = (log g)′(t) =
g′(t)

g(t)
= −

∞∑
n=0

nPt(N = n) = −Et(N),
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and similarly

h′′(t) =
g′′(t)g(t)− g′(t)2

g(t)2
=
g′′(t)

g(t)
−
(
g′(t)

g(t)

)2

=

∞∑
n=0

n2Pt(N = n)− (−Et(N))2 = Et(N2)− (Et(N))2 = Vart(N).

8. Saddle point analysis I. Our next step is to perform a saddle point
analysis of the generating function G(x). This can be described in two equiv-
alent languages. One standard description of the method commonly found
in analysis textbooks is in terms of the complex-analytic idea that the co-
efficients r(n) may be extracted from G(x) as contour integrals, namely as

(75) r(n) =
1

2πi

�

|z|=rn

G(z)

zn+1
dz.

The idea is then to choose the radius rn in such a way that the bulk of the
contribution to the integral comes from the environment of the point z = rn
on the positive x-axis, and the nature of this contribution can be understood
from the local asymptotic behavior of G(x) near x = 1.

An equivalent way to describe the saddle point technique (as applied to
the present context) is in probabilistic terms, based on the relation (74). The
idea is that we are free to choose the value of the parameter t in the random
representation model, and we will do so in a way that causes the random
variable N to have its mean value at (or near) n. Probabilistic intuition
then predicts that N , being the sum of independent random variables, will
have an approximately Gaussian distribution, and from this intuition an
asymptotic formula for the left-hand side of (74) (hence for r(n)) can be
easily guessed. This guess, known as a “local central limit theorem,” can
then be proved using Fourier inversion, which is formally equivalent to the
contour integral (75). Despite the equivalence of the two approaches from
the point of view of mathematical analysis, they are not psychologically
equivalent, and we prefer the probabilistic approach for putting the analysis
on a more conceptual footing.

Say that a sequence of positive numbers (tn)∞n=1 is an (approximate)
saddle point sequence for the random representation model if the asymptotic
relation

(76) Etn(N) = −h′(tn) = n+O(n7/10)

holds as n → ∞. (As often happens with saddle point analysis, it is not
crucial to identify the saddle point precisely, and for reasons that will become
apparent shortly, an approximate expression with O(n7/10) error will be
sufficient for our needs.)
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Our first goal is to find solutions to (76). Referring to the asymptotic
expansion (65), we see that in order for −h′(tn) to grow to infinity, as it must
according to (76), the sequence tn will decrease towards 0. Considering only
the leading term in (65) temporarily, we get an approximate equation

2
3µ1t

−5/3
n ≈ n,

which can be easily solved to show that tn ≈
(
3n/2µ1

)−3/5
. That is, tn

should decay roughly as a constant times n−3/5, where the constant is
(23µ1)

3/5 = 2X2 (with X as defined in (4)). As it turns out, this expres-
sion is not sufficiently precise for our needs because the contribution from

the second-order term in (65) (proportional to t
−3/2
n � n9/10) is too large,

so we look for a more precise solution to (76) whose form is given by the
ansatz

(77) tn = τ1n
−3/5 − τ2n−7/10 − τ3n−4/5,

with τ1 = 2X2 and τ2, τ3 being constant coefficients whose value needs to
be determined. Solving for τ2 and τ3 is now an amusing calculus exercise.
Introduce symbols q, u, v, defined by

(78) q = n−1/10, u = τ2/τ1, v = τ3/τ1.

Then tn can be written as

(79) tn = τ1q
6(1− uq − vq2) = τ1q

6(1− q(u+ vq)).

Now consider each of the first two leading terms in (65) with t = tn. Using
the second-order Taylor expansion (1− z)α = 1−αz+ 1

2α(α− 1)z2 +O(z3)
and expanding in powers of q, we have

2
3µ1t

−5/3
n = 2

3µ1(τ1q
6)−5/3(1−q(u+vq))−5/3(80)

= q−10
(
1−
(
−5

3

)
q(u+vq)+ 1

2

(
−5

3

)(
−8

3

)
q2(u+vq)2+O(q3)

)
= q−10+

(
5
3u
)
q−9+

(
5
3v+ 5

3 ·
4
3u

2
)
q−8+O(q−7),

and similarly

1
2µ2t

−3/2
n = 1

2µ2(τ1q
6)−3/2(1−q(u+vq))−3/2(81)

=
(
1
2µ2τ

−3/2
1

)
q−9
(
1−
(
−3

2

)
q(u+vq)+ 1

2

(
−3

2

)(
−5

2

)
q2(u+vq)2

)
=
(
1
2µ2τ

−3/2
1

)
q−9+

(
3
2 ·

1
2µ2τ

−3/2
1 u

)
q−8+O(q−7).

The remaining terms are O(t−1n ) = O(q−6) = O(n6/10), which is within our
tolerance range for solving (76). Thus, adding up (80) and (81), we get

Etn(N) = n+
(
5
3u+ 1

2µ2τ
−3/2
1

)
n9/10

+
(
5
3v + 5

3 ·
4
3u

2 + 3
2 ·

1
2µ2τ

−3/2
1 u

)
n8/10 +O(n7/10).
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Comparing this expansion with (76) shows that the sequence (tn)∞n=1 will
be a saddle point sequence provided that the equations

5
3u = −1

2µ2τ
−3/2
1 , 5

3v = −5
3 ·

4
3u

2 − 3
2 ·

1
2µ2τ

−3/2
1 u

hold, or equivalently, provided that τ2, τ3 take the values

τ2 = − 3
10µ2τ

−1/2
1 , τ3 = −4

3τ
2
2 τ
−1
1 − 9

20µ2τ
−3/2
1 τ2.

After a small amount of further algebraic simplification, which we omit,
we arrive at the following result.

Lemma 8.1. Let the numbers X,Y be defined by (4)–(5). Define a se-
quence of numbers (tn)∞n=1 by

(82) tn = τ1n
−3/5 − τ2n−7/10 − τ3n−4/5 (n ≥ 1),

where τ1, τ2, τ3 are the constants

τ1 = 2X2, τ2 = 3
10X

−1Y, τ3 = 3
400X

−4Y 2.

Then (tn)∞n=1 is a saddle point sequence, that is, it satisfies (76).

It is worth noting that the expression (82) for the location of the saddle
point requires considerably more precision than the case of Meinardus’s
theorem on partition asymptotics (discussed in Section 6). In Meinardus’s
analysis the saddle point could be defined using a single term, given as a
constant times a power of n, analogous to the leading term τ1n

−3/5 in (82);
see [3, (6.2.15), p. 93]. The reason is that Meinardus’s theorem makes the
relatively restrictive assumption that the Dirichlet series

∑
m amm

−s (in the
notation of (58)) can be analytically continued to the strip Re(s) > σ0 for
some σ0 < 0, with only a single pole of order 1 at some point s = α > 0. In
our situation the relevant Dirichlet series is 2sω(s), which has not one but
two separate poles with positive real parts, namely at s = 2/3 and s = 1/2.
It is precisely this somewhat novel singularity structure that leads to the
more involved saddle point analysis ending up in (82), and which (as we
shall see in the next few sections) ultimately causes the asymptotic formula
(3) for r(n) to have the interesting structure it does.

9. Saddle point analysis II: the local central limit theorem

Lemma 9.1. As n→∞, the variance of N at the parameter value t = tn
is given asymptotically by

(83) Vartn(N) =
(
5
6X
−2)n8/5 +O(n3/2).

Proof. Since, by Lemma 7.1, the variance is given by Vartn(N) = h′′(tn),
substituting the values (82) into the asymptotic expansion (66) gives the
result after a quick calculation, which we omit.
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We are now ready to formulate our local central limit theorem for the
random variable N ; the proof will be the heart of the saddle point analy-
sis. Note that the saddle point equation (76) identifies the expected value
Etn(N) to within an error of O(n7/10). On the other hand, Lemma 9.1 shows
that N has standard deviation (relative to the parameter value t = tn) of
order n4/5 = n8/10. The local central limit theorem is the statement that
the distribution of N is asymptotically Gaussian near its mean value—or
equivalently, near the value n, since the two values are O(n−1/10) standard
deviations apart (this was the reason we required an error no greater than
O(n7/10) in (76)). The precise statement is as follows.

Theorem 9.2 (Local central limit theorem for N). The variable N “sat-
isfies a local central limit theorem near its mean value.” More precisely, as
n→∞ we have the asymptotic relation

(84) Ptn(N = n) =
1 + o(1)√

2πVartn(N)
= (1 + o(1))

√
3X√
5π
· n−4/5.

It is well-known that local central limit theorems for integer-valued ran-
dom variables are inherently a more delicate and less robust phenomenon
than the usual, nonlocal sort, and this case is no exception. The point is
that the definition of N involves a sum of independent, but not identically
distributed, components 1

2jk(j+k)Xj,k, each of which takes its values in the

sublattice
(
1
2jk(j+k)

)
Z of Z. The proof of local CLTs of this type therefore

invariably requires ruling out the potentially harmful influence of periodic-
ities. (For example, in the most trivial example illustrating this principle,
if the random variable we were looking at were a sum of random variables
taking even values, then there would be zero probability for it to take on
an odd value; however, even the absence of rigid or “deterministic” period-
icities of this sort leaves room for more fuzzy periodicities of a probabilistic
kind.) In our setting, this is at heart a number-theoretic claim, and the
techniques of analytic number theory are the most appropriate to use to
attack it. Specifically, it turns out that the modular transformation proper-
ties of the Jacobi theta functions are sufficient to prove the bounds we will
need.

Before proceeding to read the proof of Theorem 9.2, which we present
in this section and the next one, the reader may wish to skip directly to
Section 11, where we show how Theorem 9.2 and the other results proved
so far imply our theorem (Theorem 1.1) on the asymptotic enumeration of
representations of SU(3).

The proof of Theorem 9.2 begins with the characteristic function (also
known as the Fourier–Stieltjes transform) of N , which we denote φt(u) and
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which is given for u ∈ R by

φt(u) = Et(eiuN ) =
∞∑
n=0

Pt(N = n)einu =
∞∑
n=0

r(n)e−nt

G(e−t)
einu(85)

=
1

G(e−t)

∞∑
n=0

r(n)e−nt+inu =
G(e−t+iu)

G(e−t)
.

(As before, the subscript t emphasizes the dependence on the parameter t,
which we will soon specialize to the saddle point values t = tn.) Since N is
an integer-valued random variable, this is simply a Fourier series. Fourier
inversion therefore gives

(86) Pt(N = n) =
1

2π

π�

−π
φt(u)e−inu du.

Denote σn = (Vartn(N))1/2, the standard deviation of N . Setting t = tn and
scaling the integration variable u by 1/σn in (86), we get

Ptn(N = n) =
1

2πσn

πσn�

−πσn

φtn(u/σn)e−inu/σn du.

Comparing this with the claim (84), we see that it will be enough to prove
that

(87)

πσn�

−πσn

φtn(u/σn)e−inu/σn du −−−→
n→∞

√
2π.

A key first step will be to prove pointwise convergence of the integrand
to the characteristic function of the standard normal distribution.

Theorem 9.3. For each u ∈ R, we have

(88) φtn(u/σn)e−inu/σn −−−→
n→∞

e−u
2/2.

Note that Theorem 9.3 is equivalent to the claim that the normalized
random variable N̂ = σ−1n (N −Etn(N)) converges in distribution to a stan-
dard normal random variable, that is, to a nonlocal CLT.

The proof of Theorem 9.3 involves not much more than a Taylor expan-
sion, but one needs to make sure that the dependence on both the param-
eters t and u is carefully taken into account. We precede the main part of
the proof with two technical lemmas. To motivate the statement of the first
lemma, recall that if X is a random variable with the geometric distribution
Geom0(p), where the parameter 0 < p < 1 is expressed as p = 1− e−t, then
the mean and variance of X are given by

E(X) =
1− p
p

=
e−t

1− e−t
, Var(X) =

1− p
p2

=
e−t

(1− e−t)2
,
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and the characteristic function φX(u) = E(eiuX) of X can be easily com-
puted to be

φX(u) =
∞∑
n=0

(1− e−t)e−nteinu =
1− e−t

1− e−t+iu
.

In particular, if log z denotes the principal branch of the logarithm function,
then log φX(u) has the Taylor expansion

log φX(u) = iE(X)u− 1
2 Var(X)u2 +O(u3) as u→ 0.

Lemma 9.4. Define a function

η(t, u) = log
1− e−t

1− e−t+iu
− i e−t

1− e−t
u+

1

2

e−t

(1− e−t)2
u2 (t > 0, u ∈ R).

For some constant C > 0, the bound

|η(t, u)| ≤ C e−t|u|3

(1− e−t)3

holds for all u ∈ R and t > 0.

Lemma 9.4 has been previously used in the study of integer partition
asymptotics. See [42, pp. 10–11] for the proof.

Lemma 9.5. The improper two-dimensional integral

(89) I =

∞�

0

∞�

0

(
xy(x+ y)

2

)3 exp
(
−1

2xy(x+ y)
)(

1− exp
(
−1

2xy(x+ y)
))3 dx dy

converges.

Proof. Using the expansion x
(1−x)3 =

∑∞
n=1

(
n+1
2

)
xn to expand the inte-

grand, we get

I =

∞∑
n=1

(
n+ 1

2

)∞�
0

∞�

0

(
xy(x+ y)

2

)3

exp
(
−1

2nxy(x+ y)
)
dx dy

≤
∞∑
n=1

n2

n11/3

∞�

0

∞�

0

(
ab(a+ b)

2

)3

exp
(
−1

2ab(a+ b)
)
da db

= ζ
(
5
3

)∞�
0

∞�

0

(
ab(a+ b)

2

)3

exp
(
−1

2ab(a+ b)
)
da db.

The fact that this last integral converges can be shown easily using the same
change of variables as in the proof of Lemma 6.1.

Proof of Theorem 9.3. By (85) and (60), we represent φtn(u/σn)e−inu/σn

as an infinite product. Taking the logarithm, we have
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(90) log[φtn(u/σn)e−inu/σn ] = log
G(e−tn+iu/σn)

G(e−tn)
− inu

σn

=
∞∑

j,k=1

log

(
1− exp

(
−1

2jk(j + k)tn
)

1− exp
(
1
2jk(j + k)(−tn + iu/σn)

))− inu

σn

=
∞∑

j,k=1

[
η

(
jk(j + k)tn

2
,
jk(j + k)u

2σn

)

+ i
1
2jk(j + k) exp

(
−1

2jk(j + k)tn
)

1− exp
(
−1

2jk(j + k)tn
) · u

σn

− 1

2

(
1
2jk(j + k)

)2
exp
(
−1

2jk(j + k)tn
)(

1− exp
(
−1

2jk(j + k)tn
))2 · u

2

σ2n

]
− inu

σn

=

∞∑
j,k=1

η

(
jk(j + k)tn

2
,
jk(j + k)u

2σn

)
+ i

Etn(N)− n
σn

u− 1

2
Vartn(N)

u2

σ2n

= −1
2u

2 +O(n−1/10u) +Rn(u),

where we denote Rn(u)=
∑∞

j,k=1 η
( jk(j+k)tn

2 , jk(j+k)u2σn

)
. Invoking Lemma 9.4,

this quantity can be bounded as

|Rn(u)| ≤
∞∑

j,k=1

∣∣∣∣η(jk(j + k)tn
2

,
jk(j + k)u

2σn

)∣∣∣∣
≤ C |u|

3

σ3n

∞∑
j,k=1

(
jk(j + k)

2

)3 exp
(
−1

2jk(j + k)tn
)(

1− exp
(
−1

2jk(j + k)tn
))3

= C
|u|3

σ3nt
11/3
n

∞∑
j,k=1

(
tnjk(j + k)

2

)3 exp
(
−1

2jk(j + k)tn
)(

1− exp
(
−1

2jk(j + k)tn
))3 t2/3n .

In this expression, the prefactor C|u|3σ−3n t
−11/3
n is of order O(n−1/5|u|3),

and the sum is a Riemann sum (with ∆x = ∆y = t
1/3
n ) for the double

integral (89). Since that integral is finite by Lemma 9.5, the Riemann sum
converges to it and in particular is bounded. This together with the above
computations establishes

log[φtn(u/σn)e−inu/σn ] −−−→
n→∞

−1
2u

2,

which implies (88) and therefore finishes the proof.

The computations in the proof above also imply a useful bound on
|φtn(u/σn)|, which we state in the following lemma.
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Lemma 9.6. There exists a constant D > 0 such that

(91) |φtn(u/σn)| ≤ e−u2/4 for |u| ≤ Dn1/5.

Proof. By our earlier computations, we have

|φtn(u/σn)| = exp[Re(log φtn(u/σn))] ≤ exp
(
−1

2u
2 + C1n

−1/5|u|3
)

for some constant C1 > 0. (Note that the term i(Etn(N)−n)u/σn in (90) is
a pure imaginary number and therefore only contributes a phase factor to
φtn(u/σn).) Restricting u to satisfy |u| ≤ Dn1/5 for some sufficiently small
D > 0 guarantees that −1

2u
2 +C1n

−1/5|u|3 ≤ −1
4u

2, so in that range we get
the bound (91).

10. Saddle point analysis III: the Jacobi theta functions. In
order to deduce (87) (and hence Theorem 9.2) from Theorem 9.3, we will
need the “easy” tail bound (91) together with a much more delicate bound
on |φtn(u/σn)| that can be shown to hold outside the range |u| ≤ Dn1/5.
The goal of this section is to prove this more difficult bound, given in the
following theorem.

Theorem 10.1. There exists a constant E > 0 such that

(92) |φtn(u/σn)| ≤ exp(−En3/10) for Dn1/5 ≤ |u| ≤ πσn,

where D is the constant from Lemma 9.6.

As preparation for the proof, replace u/σn by u, so in view of the asymp-
totics (83) of the variance, the statement we need to prove becomes

(93) |φtn(u)| ≤ exp(−En3/10)

for some constant E > 0, all sufficiently large n, and all u such that
D′n−3/5 ≤ |u| ≤ π, where D′ = 2D/(

√
5/6X−1). More generally, we will

prove that for any ε > 0, there exist numbers β, δ > 0 such that if 0 < t < β
and εt ≤ |u| ≤ π then

(94) |φt(u)| ≤ exp(−δt−1/2).

The bound (93) then follows by substituting t = tn (refer to (82)).

Now observe that

log φt(u) = logG(e−t+iu)− logG(e−t) = h(t− iu)− h(t)

=

∞∑
m=1

1

m

(
f(m(t− iu))− f(mt)

)
.

By the definition of f(t) in (61), clearly Re(f(t − iu)) ≤ Re(f(t)) for any
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u ∈ R, t > 0, so

Re(log φt(u)) ≤
∞∑
m=1

1

m
Re
(
f(m(t− iu))− f(mt)

)
≤ Re(f(t− iu)− f(t))

≤ Re
[ ∞∑
j,k=1

(
exp
(
−1

2jk(j + k)(t− iu)
)
− exp

(
−1

2jk(j + k)t
))]

.

In this last expression, the real part of each of the summands is nonpositive,
so we can omit as many of the terms as we like and still get an upper bound.
We focus on the subset j = 1 of the summation range, leading to the bound

Re(log φt(u)) ≤ Re
[ ∞∑
k=1

exp
(
−1

2k(k + 1)(t− iu)
)
−
∞∑
k=1

exp
(
−1

2k(k + 1)t
)](95)

= Re(λ(t− iu))− λ(t),

where we denote

λ(z) =
∞∑
k=0

exp
(
−1

2k(k + 1)z
)
.

Proposition 10.2. For any ε > 0, there exist numbers β, γ > 0 and
0 < ρ < 1 such that for all t, u satisfying 0 < t < β and εt ≤ |u| ≤ π,

(96) λ(t) ≥ γt−1/2, |λ(t− iu)|/λ(t) ≤ 1− ρ.

Proposition 10.2 is enough to prove (94), and hence Theorem 10.1, since
(95) and (96) imply (under the assumed conditions on t, u) that

|φt(u)| = exp
(
Re(log φt(u))

)
≤ exp

(
−λ(t) + (1− ρ)λ(t)

)
= exp(−ρλ(t)) ≤ exp(−ργt−1/2).

To prove the proposition, we will use the fact that λ(z) can be related
to the Jacobi theta functions. Define

θ2(q) =

∞∑
k=−∞

q(k+1/2)2 = 2q1/4
∞∑
k=0

qk(k+1), J2(z) = θ2(e
iπz),

θ3(q) =

∞∑
k=−∞

qk
2
, J3(z) = θ3(e

iπz),

θ4(q) =
∞∑

k=−∞
(−1)kqk

2
, J4(z) = θ4(e

iπz).

Then J2(z), J3(z), J4(z) are holomorphic functions in the upper half-plane
H = {x+ iy : y > 0}. They are known to satisfy the modular transformation
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relations

J2(z) = (−iz)−1/2J4(−1/z),(97)

J3(z) = (−iz)−1/2J3(−1/z),(98)

where w 7→ w1/2 is the principal branch of the square root function (see [41,
p. 181]). In particular, for real y > 0, J3(iy) = 1 + O(e−πy) and J4(iy) =
1 + O(e−πy) as y → ∞. Therefore (97) and (98) imply that as y → 0, we
have

J2(iy) =
1
√
y
J4(i/y) =

1
√
y

(1 +O(e−π/y)),(99)

J3(iy) =
1
√
y
J3(i/y) =

1
√
y

(1 +O(e−π/y)).(100)

Furthermore, trivially |J4(x+ iy)| ≤ J3(iy).

Now we can relate the previous discussion regarding λ(t − iu) to the
functions J2(z), J3(z), J4(z), by noting that

λ(t− iu) =
∞∑
k=0

exp
(
−1

2k(k + 1)(t− iu)
)

= 1
2e
t/8e−iu/8J2

(
u+ it

2π

)
.

In particular, when t ↘ 0 we have the bound λ(t) = 1
2e
t/8J2(it/(2π)) =

1
2(1 + O(e−2π

2/t))
√

2π/t ≥ γt−1/2, which was the first claim of Proposi-
tion 10.2. For the second claim, by modifying the constants we can forget
about the 1/π factor, and prove instead that

|λ(π(t− iu))|
λ(πt)

=

∣∣J2(u+it2

)∣∣
J2(it/2)

is bounded away from 1 (more precisely, is < ρ for some number ρ < 1),
under the assumption that:

1. εt ≤ |u| ≤ 1 where ε > 0 is given;
2. 0 < t < β where we are free to fix β as small as we please.

(Naturally, β and ρ will depend on ε.) Observe therefore that, thanks to (97),
we have

∣∣J2(u+it2

)∣∣
J2
(
it
2

) =
(t/2)1/2

|(u+ it)/2|1/2
(1 +O(e−2π/t))

∣∣∣∣J4(− 2u

u2 + t2
+ i

2t

u2 + t2

)∣∣∣∣
(101)

≤ (1 +O(e−2π/t))

(
t2

u2 + t2

)1/4

J3

(
i

2t

u2 + t2

)
.

To bound this expression away from 1, we consider three cases:
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Case 1. Assume that εt ≤ |u| ≤ t3/4. In this case,(
t2

t2 + u2

)1/4

≤
(

t2

t2 + ε2t2

)1/4

=

(
1

1 + ε2

)1/4

.

The quantity on the right-hand side is smaller than 1, and we denote it
1 − ρ1. Second, making the further assumption that t < 1 (which simply
puts the constraint β < 1 on our ultimate choice of β), we have

2t

u2 + t2
≥ 2t

t3/2 + t2
≥ 2t

2t3/2
=

1√
t
,

so that (by the bound for J3(iy) as y → ∞) J3
(
i 2t
u2+t2

)
= 1 + O(e−πt

−1/2
)

as t→ 0. Combining the last two estimates, we deduce that the right-hand
side of (101) is bounded by

(1 +O(e−2π/t))(1 +O(e−π/
√
t))(1− ρ1),

which is bounded by 1− ρ1/2 if β is assumed to be small enough.

Case 2. Assume that t3/4 ≤ |u| ≤Mt1/2, where M is some large enough
constant whose value will be specified shortly. In this case, again using the
assumption that t < 1, we have

2t

u2 + t2
≥ 2t

M2t+ t2
≥ 2t

(M2 + 1)t
=

2

M2 + 1
.

The function s 7→ J3(is) of a positive real variable s is monotone decreasing.
So, after fixing M , we find that J3

(
i 2t
u2+t2

)
is bounded by L := J3

(
2i

M2+1

)
in

the range of values under discussion. Furthermore, we have(
t2

t2 + u2

)1/4

≤
(

t2

t2 + t3/2

)1/4

≤
(
t2

t3/2

)1/4

= t1/8.

By restricting β (and therefore t) to be less than
(
1
2L
−1)8, we ensure that(

t2

t2 + u2

)1/4

J3

(
i

2t

t2 + u2

)
≤ t1/8L ≤ 1/2,

which, when combined with (101), proves the claim in this case.

Case 3. Finally, assume that Mt1/2 ≤ |u| ≤ 1 (and recall that we are
still free to specify the value of M). In this case, we have

2t

t2 + u2
≤ 2t

t2 +M2t
≤ 2t

M2t
=

2

M2
.

Using (100), we see that if we assume M to be large enough, this forces
y = 2t/(t2 + u2) to be such that J3(iy) ≤ 1.01/

√
y. Selecting such a value

of M , and restricting β to be small enough to ensure that the 1 +O(e−2π/t)
term in (101) is also < 1.01, we deduce therefore that the right-hand side
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of (101) is bounded by

1.03

(
t2

t2 + u2

)1/4 (t2 + u2)1/2

(2t)1/2
=

1.03√
2

(t2 + u2)1/4 ≤ 0.8(1 + t2)1/4.

If we assume further that β < 1/2, this is bounded by 0.9, which proves the
claim in this case.

Cases 1–3 above cover all the possibilities. We have therefore proved
Proposition 10.2, which as we have seen implies Theorem 10.1.

Proof of Theorem 9.2. Decompose the integral in (87) as

(102)

πσn�

−πσn

φtn(u/σn)e−inu/σn du =

Dn1/5�

−Dn1/5

φtn(u/σn)e−inu/σn du

+
�

[−πσn,πσn]\[−Dn1/5,Dn1/5]

φtn(u/σn)e−inu/σn du.

Here, the first integral converges to
	∞
−∞ e

−u2/2 du =
√

2π by Theorem 9.3,
Lemma 9.6 and the dominated convergence theorem. The second integral
can be seen using Theorem 10.1 to satisfy the bound∣∣∣ �

[−πσn,πσn]\[−Dn1/5,Dn1/5]

φtn(u/σn)e−inu/σn du
∣∣∣ ≤ 2πσn exp(−En3/10),

and therefore converges to 0. It follows that the left-hand side of (102)
converges to

√
2π, which is precisely (87). As we have seen, that result

implies Theorem 9.2.

11. Proof of Theorem 1.1. Rewrite (74) in the form

(103) r(n) = G(e−tn) exp(ntn)Ptn(N = n).

The last factor on the right-hand side is given asymptotically by (84), so the
proof of Theorem 1.1 reduces to writing down explicitly the asymptotics of
the first two factors, using Theorem 6.2 and the definition of tn in (82), and
then combining the pieces. First, we have

(104) exp(ntn) = exp(τ1n
2/5 − τ2n3/10 − τ3n1/5).

Second, to expand G(e−tn), recall that tn can be expressed in the form
tn = τ1q

6(1 − q(u + vq)) as in (79), in terms of the parameters u = τ2/τ1,
v = τ3/τ1, q = n−1/10 defined in (78). Then

(105) G(e−tn) = exp
(
µ1t
−2/3
n + µ2t

−1/2
n − 1

3 log tn

+ ω′(0) + 1
3 log 2 +O(n−3/10)

)
,
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and each of the nonconstant summands in the expansion can be evaluated
asymptotically using a Taylor expansion, similar to the derivation in Sec-
tion 8. The computation is a bit more tedious, since this time we need to
consider the expansion up to the fourth order to attain the desired precision
up to a o(1) error.

Start with the term proportional to t
−2/3
n . We have (compare with (80))

t−2/3n = (τ1q
6)−2/3(1− q(u+ vq))−2/3

= τ
−2/3
1 q−4

(
1 + 2

3q(u+ vq) + 1
2 ·

2·5
3·3q

2(u+ vq)2

+ 1
6 ·

2·5·8
3·3·3q

3(u+ vq)3 + 1
24 ·

2·5·8·11
3·3·3·3 q

4(u+ vq)4 +O(q5)
)

= τ
−2/3
1

(
q−4 +

(
2
3u
)
q−3 +

(
2
3v + 5

9u
2
)
q−2 +

(
10
9 uv + 2·5·8

6·3·3·3u
3
)
q−1

+
(
5
9v

2 + 2·5·8
6·3·3·33u2v + 2·5·8·11

24·3·3·3·3u
4
)
q0 +O(q)

)
.

Similarly, for the t
−1/2
n term we have

t−1/2n = (τ1q
6)−1/2(1− q(u+ vq))−1/2

= τ
−1/2
1 q−3

(
1 + 1

2q(u+ vq) + 1
2 ·

1·3
2·2q

2(u+ vq)2

+ 1
6 ·

1·3·5
2·2·2q

3(u+ vq)3 +O(q4)
)

= τ
−1/2
1

(
q−3 +

(
−1

2u
)
q−2 +

(
1
2v + 1·3

2·2·2u
2
)
q−1

+
(

1·3
2·2·22uv + 1·3·5

6·2·2·2u
3
)
q0 +O(q)

)
.

The contribution of the log tn term is simpler to understand, since after
exponentiating it becomes

exp
(
−1

3 log tn
)

= t−1/3n = (τ1q
6)−1/3(1 + q(u+ vq))−1/3

= τ
−1/3
1 q−2(1 +O(q)),

and the error term 1 + O(q) = 1 + O(n−1/10), being a multiplicative term
outside the exponential sum, is sufficient for our purposes.

Substituting the expansions above into (105) and collecting terms in
powers of n1/10, we conclude that G(e−tn) has an asymptotic expansion of
the form

(106) G(e−tn) = τ
−1/3
1 n1/5 exp

(
B1n

2/5 +B2n
3/10 +B3n

1/5 +B4n
1/10

+B5 + ω′(0) + 1
3 log 2 +O(n−1/10)

)
,

where B1, B2, B3, B4, B5 are constants, having the elaborate definitions

B1 = µ1τ
−2/3
1 ,

B2 = 2
3µ1τ

−2/3
1 u+ µ2τ

−1/2
1 ,

B3 = 2
3µ1τ

−2/3
1 v + 5

9µ1τ
−2/3
1 u2 + 1

2µ2τ
−1/2
1 u,
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B4 = 10
9 µ1τ

−2/3
1 uv + 40

81µ1τ
−2/3
1 u3 + 1

2µ2τ
−1/2
1 v + 3

8µ2τ
−1/2
1 u2,

B5 = 5
9µ1τ

−2/3
1 v2 + 40

27µ1τ
−2/3
1 u2v + 110

243µ1τ
−2/3
1 u4

+ 3
4µ2τ

−1/2
1 uv + 5

16µ2τ
−1/2
1 u3.

The definitions of B1, B2, B3, B4, B5 can be further simplified. The details of
this purely routine algebraic simplification can be found in the companion
package [43]. This results in the more pleasing expressions

B1 = 3X2, B2 = − 7
10X

−1Y, B3 = − 3
100X

−4Y 2,

B4 = − 11
3200X

−7Y 3, B5 = − 1
2560X

−10Y 4.

We are finally ready to derive (3). Multiplying (84), (104), and (106), we
find using (103) that

r(n) = (1 + o(1))

(
τ
−1/3
1

√
3√

5π
X exp

(
B5 + ω′(0) +

1

3
log 2

))
n−3/5

× exp
(
(B1 + τ1)n

2/5 + (B2 − τ2)n3/10 + (B3 − τ3)n1/5 +B4n
1/10

)
.

This expansion is precisely of the form (3), with (as one can easily check)
our claimed values (6)–(9) for A1, A2, A3, A4 and the value (19) for K, which
in conjunction with Theorem 1.5 implies (10). The proof of Theorem 1.1 is
complete.

12. Final comments

12.1. Additional summation identities. Our proof of Theorem 1.6
relied on computer experimentation to discover the coefficients αn,j in (30).
(Moreover, as we commented in Section 2, the coefficients βn,k could also be
guessed in principle although we happened to know them in advance.) This
suggests the possibility of discovering and proving additional identities, and
perhaps even automating the process leading to such results. For example,
by slightly generalizing the system of linear equations (29) to cover different
mod 6 congruence classes, we were able to discover empirically the following
additional identities:

B6n−2
6n− 2

= − 1

2(6n+ 1)

(
4n

2n

) n∑
k=1

(
2n

2k − 1

)
P (n, k)

B2n+2k−2
2n+ 2k − 2

· B4n−2k
4n− 2k

,

B6n

6n
= − 2

3(6n+ 1)
· (4n+ 1)!

(2n)!2

n∑
k=0

(
2n

2k

)
Q(n, k)

B2n+2k

2n+ 2k
· B4n−2k

4n− 2k
,
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where

P (n, k) = (2n− 1)2 − 4(k − 1)(n− k),

Q(n, k) =
(n2 − kn+ k2)(4(n2 − kn+ k2)− 1)− 6kn(n− k)

n(2k + 1)(2n− 2k + 1)
.

Since the discovery was based on the summation technique of Sections 2
and 3, these identities should arise as specializations of similar identities for
the Eisenstein series. We did not work out the details of a proof, but our
methods ought to apply.

12.2. Open problems. This work saw the fruitful meeting of ideas
from complex analysis, number theory, asymptotic analysis, combinatorics,
probability theory, and representation theory. Our results suggest several
open problems that remain ripe for further investigation. Among them are
the following:

1. Find additional lower order terms in the asymptotic expansion for r(n).
2. Prove analogous versions of our results for other connected simple com-

pact Lie groups and simple Lie algebras.
3. Find a direct proof of the result (17) that ω(−n) = 0 for integer n ≥

1 without relying on the Bernoulli number summation identity (20),
thereby deducing (20) in a new way.

4. Use ideas from the theory of modular forms to reprove (23) (1) and to
discover and classify other identities with a similar flavor. Do modular
forms give additional insight into the properties and significance of the
SU(3) zeta function ω(s)?
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71–106.

[18] P. E. Gunnells and R. Sczech, Evaluation of Dedekind sums, Eisenstein cocycles,
and special values of L-functions, Duke. Math. J. 118 (2003), 229–260.

[19] B. C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Intro-
duction, Springer, 2003.

[20] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc.
London Math. Soc. (2) 17 (1918), 75–115.

[21] A. E. Holroyd, T. M. Liggett and D. Romik, Integrals, partitions, and cellular au-
tomata, Trans. Amer. Math. Soc. 356 (2004), 3349–3368.

[22] J. G. Huard, K. S. Williams and N. Y. Zhang, On Tornheim’s double series, Acta
Arith. 75 (1996), 105–117.

[23] K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for
multiple zeta values, Compos. Math. 142 (2006), 307–338.

[24] Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions
associated with semisimple Lie algebras II, J. Math. Soc. Japan 62 (2010), 355–394.

[25] Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions
associated with semisimple Lie algebras III, in: Multiple Dirichlet Series, L-functions
and Automorphic Forms, D. Bump et al. (eds.), Birkhäuser, 2012, 223–286.
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Abstract (will appear on the journal’s web site only)

We derive new results about properties of the Witten zeta function asso-
ciated with the group SU(3), and use them to prove an asymptotic formula
for the number of n-dimensional representations of SU(3) counted up to
equivalence. Our analysis also relates the Witten zeta function of SU(3) to a
summation identity for Bernoulli numbers discovered in 2008 by Agoh and
Dilcher. We give a new proof of that identity and show that it is a special
case of a stronger identity involving the Eisenstein series.


	1 Introduction
	1.1 Asymptotic enumeration of representations
	1.2 The zeta function of SU(3)
	1.3 The Bernoulli numbers and Eisenstein series
	1.4 Methods, organization, and the companion Mathematica package

	2 Bernoulli numbers
	3 Eisenstein series
	4 The function (s) and its analytic continuation
	4.1 Polynomial bound along vertical strips: proof of Theorem 1.2(iv)

	5 The formula for '(0): proof of Theorem 1.4
	6 Asymptotics of generating functions for SU(3) representations
	7 A probabilistic model for representations of SU(3)
	8 Saddle point analysis I
	9 Saddle point analysis II: the local central limit theorem
	10 Saddle point analysis III: the Jacobi theta functions
	11 Proof of Theorem 1.1
	12 Final comments
	12.1 Additional summation identities
	12.2 Open problems

	References

