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Abstract.- We prove that the total variation distance between the cone mea-
sure and surface measure on the sphere of £ is bounded by a constant times
1/4/n. This is used to give a new proof of the fact that the coordinates of a
random vector on the £ sphere are approximately independent with density
proportional to exp(—|t|?), a unification and generalization of two theorems
of Diaconis and Freedman. Finally, we show in contrast that a projection of
the surface measure of the £} sphere onto a random k-dimensional subspace is

“close” to the k-dimensional Gaussian measure.

Résumé.- Nous montrons que la distance de la variation totale entre la mesure
de cone et la mesure d’aire sur la sphere de £} est bornée par une constante fois
1/+/n. Cela fournit une nouvelle démonstration du fait que les coordonées d’un
vecteur aleatoire dans la sphere de £} sont approximativement indépendantes
avec une densité proportionelle & exp(—|t[?), ce qui constitue une unification et
une généralization de deux théoremes de Diaconis et Freedman. Nous montrons
ensuite que la projection de la mesure d’aire de la sphere de £ sur un sous-espace

aléatoire k-dimensionnel est “proche” de la mesure Gaussienne k-dimensionnelle.

1 Introduction

In this paper, we study projections of the surface measure on the £} sphere
onto k-dimensional subspaces. For p = 2, all these projections are clearly equal.
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By a result of Diaconis-Freedman [7], for k& small with respect to n this mea-
sure is close, in total variation distance, to the Gaussian measure. For general
p > 1, we prove in section 4, that for a random choice of k-dimensional subspace,
the projection will be asymptotically close to the Gaussian measure. On the
other hand, the concrete k-dimensional subspace spanned by the first k& coordi-
nates exhibits a different behavior: the measure will be asymptotically close to
the product measure of k i.i.d. random variables with density proportional to
exp(—|t|?). This result unifies and generalizes two results of Diaconis-Freedman,
namely the above statement in the cases p =1 and p = 2. A direct attempt to
prove such a statement, leads instead to a similar statement, with the surface
measure replaced by the so-called “cone measure”, a distinction that does not
appear in the cases p = 1,2. (The cone measure is a measure for which a natural
polar coordinate integration formula holds - see section 2.) In fact, the above
statement was proved by Rachev and Riischendorf in [15] (see also [3] and [14])
for the cone measure, and was conjectured to be true also for the surface mea-
sure. This problem was solved positively by Mogul’skii in [11]. In this paper
we propose a different approach to this problem. Our main result is that the
cone measure and surface measure are in fact close in total variation distance for
large n. Since the cone measure has a simple probabilistic representation, this
result shows how one can approximate the geometric surface measure by the
more concrete probability distribution given by the cone measure. The above
result is applied to give a new proof of Mogul’ski;’s solution to the problem
posed in [15]. In fact, we show that the solution follows from the results of [15]
(although it was conjectured there that it requires a completely different proof).

Section 4 deals with a version of the so-called Randomized Central Limit
Theorem for the £ sphere. This theorem was studied for product measures by
the second-named author in [16], [17]. For uniform measures on convex bodies
in isotropic position, a one-dimensional version of it was proved by Antilla, Ball
and Perissinaki [2] (see also [9] and [6]). Our results hold for general isotropic
measures on R” satisfying a certain negative correlation property, which arises
naturally from the proof in [16] (In fact, it is a standard technique in probability
theory to generalize results known to hold for independent random variables,
by assuming that the variables involved are only negatively correlated). The
usefulness of this property was also noted in [2], where it was shown to imply
the so-called Central Limit Property for the volume measure on the ball of £7.



In section 5 we discuss several related open problems.

2 Cone measure and surface measure

For every star-shaped body K C R", one can define two natural measures on
the boundary of K. One is the regular surface measure and the other is the
“cone measure”. The cone measure of a subset A of 0K is the volume of [0,1]A,
i.e. the cone with base A and cusp 0. Both these measures have appeared in
various contexts in the literature. Most notably, the cone measure appears in the
Gromov-Milman theorem for concentration of Lipschitz functions on uniformly
convex bodies. As far as we know, the relation between these two measures
has not been studied; each measure appears naturally in different contexts, and
most authors have been satisfied with an ad hoc choice of the measure most
suitable for their particular application.

In this section we will show that, for the case of the £} sphere (p > 1), these
measures are asymptotically close. More precisely, the total variation distance
between the two measures is at most a constant (depending on p) times 1/4/n.

We recall some basic facts about the total variation distance. For P, () prob-
ability measures on a measurable space (€2, F), the total variation distance be-
tween them is defined as ||P — Q|| = 2sup{|P(4) —Q(4)|: A € F}. If P,Q are
absolutely continuous with respect to some reference measure A, with respec-
tive densities f and g, then the total variation distance is known to be equal to

Jo |f — gldA.

Fix p > 0 and an integer n. Recall that the £} norm is defined by :

n 1/p
llllp = (Z |in”> -
i=1

The £ sphere is defined by: S(£) = {z € R";||z||, = 1}, and the £ ball is
defined by B({}) = {z € R";||z||, < 1}. We denote by o the normalized surface
measure on S(£), and by u the normalized cone measure. In other words, for
every measurable A C S(¢;) we put :

u(A) = vol([0, 1]4).

_ 1
vol(B(3))



Here “vol” refers to the Lebesgue measure on R", and [0,1]A = {ta:a € A,0 <
t<1}.

The measure p has a useful probabilistic description. Let g be a random variable
with density 1/(2T'(141/p))e~ " (t € R). If g1, ..., g,, areii.d. copies of g, put:

n
S = Z |gi|pa
i=1
and consider the random vector:

X = (%%) € R,

The following result appeared in the paper of Schechtman and Zinn [19], and
later independently also in [15]:

Theorem 1 The random vector X is independent of S. Moreover, For every

measurable A C S({;) we have :
u(A)=P(X € A).

We will now estimate the total variation distance between the surface measure
and cone measure on S(£}).

In this and in what follows, ¢ will denote a numerical constant, which may
change in each particular appearance. Likewise, ¢, will denote a constant de-

pending on the parameter p > 0.

Theorem 2 For all 1 <p < oo, on S(£}),

c

—oll < =2

ol < 2
The measures p and o are in fact equal for p = 1,2, and oco. Since we are
mainly concerned here with the probabilistic applications, the discussion of the
constant ¢, is postponed to a later (more geometrically oriented) paper [13],
where it is proved that there is an absolute constant C' > 0 such that for all
p > 1 we can take ¢, = C (1 - %) ‘% -3 W\/Fi‘ In particular, ¢, is bounded for

p > 1. See Section 5 for a discussion of the case 0 < p < 1.

We start with some general facts concerning the cone and surface measures.
For the sake of greater generality, and in anticipation of future developments,



we state these results for a general convex body K C R". Let ok be the
normalized surface measure on K, and let pux be the normalized cone measure

on 0K, defined as before by px(4) = %(}I(])A)' We will denote by || - ||k the
Minkowski functional (norm) of K.
The cone measure can be thought of as the measure for which a polar coor-

dinate integration formula holds:

Proposition 1 Let f : R* — R be an integrable function (w.r.t. Lebesgue

measure). Then

f(x)dx = n - vol(K) /oo rnt flr-2)duk (z)dr
R 0 oK

Proof: By approximation, it is enough to verify the formula for indicator
functions of sets of the form (a,b)E, where a < b and E C 0K. For such sets

the formula is trivial. [ |

Note 1 An equivalent formulation of Proposition 1, is the statement that the
mapping x — (z/||z||k,||z||x) transforms Lebesque measure on R"™ into the
product of the cone measure on OK and the measure n - vol(K) - r"~ldr on
[0, 00).

In the next lemma we compute the density of the surface measure with respect

to the cone measure.

Lemma 1 ok is absolutely continuous with respect to pug, and its density is
given for almost every x € 0K by

) = %va @)

Where || - ||2 denotes the Euclidean norm on R™.

Proof: We will denote by A the (not normalized) surface area measure of 0K
and by C the unnormalized cone measure of 9K (i.e. C'(F) = vol([0,1]F)). We
will also denote by B(z,t) the Euclidean ball with radius ¢ and center z € R".
The volume of the k-dimensional unit Euclidean ball is denoted by wy. Recall
that the measure A is defined for any open U C R" by:

A(U) = liII(l) vol(U N 812( + B(O,e)).
€— €




It is a classical fact (see for example [10] theorem 16.2) that almost every z € 0K
is a density point of A, in the sense that

o AB@,9)

=1.
e—0 ey, 4

Fix ¢ € 0K which is a density point of A, and which is a point of differentiability
of || - ||x (almost every € 0K has these properties). This means that we can
write:

llz +yllx =1+ V(|- llx)(@), ) + (),

where:

r(y) }
0) = —=:0< <d§p— 0.
p(0) =sup { T8 20 < o <o}

Let H be the tangent hyperplane to 0K at z, i.e. H = z + {V(||- ||x)(z)} .
For simplicity define z = V(|| - ||k)(z). It is well known that (z,z) = 1 (to
see this note that 1+ 6 = ||z + dz||x = 1 + d{(z, 2) + r(dz). Division by § and
taking the limit § — 0 gives the required result). Similarly, for every y € 0K,
[{(z,y)| <1 (in other words, z is the norming functional of z). Now, for every
0 < e < min{1/(2||2||2),||z||2} we claim that:

[0,1] (B(z,e) NOK) C [0,1] (B (z, € + 4||z||2ep(e)) N H) .
Indeed, take 0 < ¢ <1 and y € 0K with ||y — z||]2 < e. Then,
<yaz) = 1+<y—m,z) 2> 1_€||Z||2 2 1/27

and 1 = |ly|lgk = 1+ (y — z,2) + r(y — z) so that |{y — z,2)| < ep(e). If we
put v = (y,2)"'y and s = t(y,2) then ty = sv, 0 < s < 1, v € H (since
(v—1,2) =(y,2) "y, 2) — 1 =0) and:

Y 1
(y,2) (y,2)

< e+ 2ep(e)(|[zl2 +€) < €+ 4f[z]|2€p(e),

-

o= ollz = H

S||y—$||2+‘ 1\||y||2§

2

and this proves our claim.
To prove a reverse inclusion, fix € > 0 such that € — 2||z||2ep(e) = § > 0 and
take y € H with ||y — z||» < d and 0 < t < 1. Now,

llyllk =1+ @ —z,2) +r(y— ) =1+ 7r(y — 2),



so that 1 < |ly||lk <1+ dp(d) <1+ ep(e). Hence, if we put v = y/||y||x and
s =t||ly||x then 0 < s <1+ ep(e), ty = sv, v € OK and as long as § < [|z||2:

llv = =[]z < ly —2[l2 + - 1‘ llylla < &+ 2[|z[|2ep(e) = e.

‘ 1
Iyl
We have proved that as long as € is small enough:

(1+€p(€))[0,1] (B(z,€) NOK) 2 [0,1] (B (z, € — 2[|z[|2ep(€)) N H).

Note that for every a > 0, [0,1](B(z,a) N H) is a cone with cusp 0 and base
B(z,a) N H. The (perpendicular) height of this cone is (z,z)/||z||2 = 1/||2||2,

so that:
o1((0, 1Bz ) 1)) = L “nd
A , z,a =—
nllz|l2
Using this observation and the previous two inclusions we get that for € small

enough:

(€ = 2l|zll2ep())" " wn-1 (€ + 4llzll2ep(€))" " wn—1

< C(B(z,€) NOK) <

L+ep(e)™  nllzll: [l
Hence: (B oK )
i CE@ANOK) _ |
S0 e V() @)
Finally using the fact that x is a density point of A:
dog _ vol(K) .. A(B(w,e) NOK) n-vol(K)
dux ~ ADK) "B C(B o nok)  A@K) HV(“ ”K)(”’")HQ‘

Applying Lemma 1 to the special case of B(£;) (and reverting to our earlier

notation), we have easily

Lemma 2
n

d do 1/2
g B(£z) _
— (x) = Cn,p . (Z |.,L.Z,|2P 2)

@ B d,UB(z;) im1

Where C,p s a constant depending on n and p.



Proof of Theorem 2: By Lemma 2, we are faced with the problem of bound-

ing the expression

" 1/2
w—oll = / Ch, z;|?P 2 —1|duy,
[ I sy |0 (Zl |

i=1

-1
where Cy, , = [fs(en) (E?:l |9U,~|2”_2)1/2 du] is merely a normalizing constant.
Now fix ¢ = 2p — 2. Note that for any random variable Z and any a € R,
E|Z —EZ| <E|Z —a|+E|EZ —a| < E|Z —a|+E(E|Z —a|) = 2E|Z — a|. Using

. . _ a—b a—b
this fact, and using the fact that for a > b > 0, \/a — Vb = NV < 7 we

calculate:

|m—m=/“ (/ |mwwmw> 2192 — 1| du(a) =
sy | \ s

—1
=</ nm%wwﬂ /
5(¢3) 5(¢3)

1/2
sz(/' nmmﬂmmm) / |mmﬂ-—</ nmwmww) i) <
5(62) 5(4) 5(4)
- —1/2
s2</ |mw%mm) (/ |wwwwﬂ -
s(ep) s(eg)

S ellg= [ wlzdnt)
5() 5()

—~1/2
52(/ |mwwmm> (/ |wmwwﬂ -
5(63) S(63)
97 1/2
-U"|MWW@—</ mwww)]
5(63) 5(63)

The last inequality used the fact that for any random variable Z, E|Z —EZ| <
EZ? — (E(2))2.
We now go back to the probabilistic realization of the measure p given in
Theorem 1. Using the notation of Theorem 1, put T = 7" | |g;|?. Note that

= [l duty)| duta) <
S(en)

du(z) <




the independence of S and X (defined as before) implies in particular that for
any a > 0, fs(e") l|z||g?du(z) = E[T*/8%4/P] = (ET*)/(ES*/?). Using this
observation, and Theorem 1, the above inequality translates into:

llu—oll <2-

(ET)/2  (ES9/2P)(ES%/P)L/2 \/ ET?  ES2/p

ET'/2 ~  (ES24/p)1/2 (ET)2>  (ES4/»)2

The first fraction in this expression is bounded by a constant (depending on p).
Indeed,

(ET)2 _ (Bl |)Y2vn _ (Blgi|)'/?/n
ET1/2 ET/2 El[(lg119/2, ..., |gn|?/?)[]2 ~
(Blg: [)"/?v/n (Elg1|*)!/2 -n _

(g2, lgal /v n-Egi[i? 7
The second fraction is trivially bounded by 1, by Jensen’s inequality. To con-
clude our proof of Theorem 2, we thus need to bound the radical by a universal
constant times n~1/2. Note that:

ET? _ nElgl** + n(n —1)(Elg|?)* Cp
= <1+ —,
(ET)? n?(Elg|?)? - oon
for some ¢, € R, and the required inequality follows since % >1 [ ]

3 The asymptotic distribution of the coordinates
of a random vector on the {; sphere

In this section we apply the result of the previous section to prove that for a ran-
dom vector on S(£}) (chosen according to either the surface or cone measures),
the joint distribution of k of its coordinates will be close in total variation to
the law of k ii.d. r.v.s having density 1/(2[(1 + 1/p))e "* (t € R), as long
as k = o(n). More precisely, for any k we will show that the variation dis-
tance is of the order k/n for the cone measure, and k/n + ¢/+/n for the surface
measure. These statements are essentially the results of [15] and [11] (for the
surface measure the estimate in [11] is also of order k/n so that our proof gives
a somewhat worse estimate than that of [11] in the range k < 4/n. In Section 5
we suggest a method which may lead to an improvement of this estimate.). This

application is a generalization of results that appeared in [7]. For the sake of a



more streamlined presentation of these results, and since we wish to emphasize
the simplicity of the proof, we will repeat the proof of a technical calculation
that was needed also in [7] and [15]. We will then reduce the problem to a one
dimensional computation. A reduction argument was also needed in [7] and [15].
We give here a direct and simple argument which achieves such a reduction, and
this makes the presentation self contained.

In what follows, fz will denote the density of a r.v. Z.

The following Lemma is essentially contained in [7]:

Lemma 3 Assume that 0 < a < 3 and 3 > 1. Let X be a r.v. which is (a+ ()
times a Beta(a, 8) r.v.; that is, X has density

B T'(a+ B) z \*! z P! _
f"(“’)‘<a+ﬁ)r<a>r(ﬂ)'(a+ﬂ) '(“m) O<e<ath;

and let Y be an r.v. with Gamma(a, 1) distribution, that is

fr(@) = = - %z%! (0<z < ).

Then the variation distance between the distributions of X and Y is at most
4a412
=

Proof:

fx(z) _ I(a+ B)
fr(z)  (a+pB)T(B)

or 2 — A p(z), where A = 240 and p(z) = (1 - )51 (0<

.ew(1—aiﬁ)ﬁ—1 0<z<a+h),

Fr () (a+B)°T(B) atB
z < a+ (). First, note that logh(z) = z + (8 — 1)log(1 — ;73) attains
its maximum when z = a + 1, therefore logh(z) < a+ 1+ (8 — 1)10g(£%[13)

(0 <z <a+pf). Next, we bound log A using the following version of Stirling’s
formula:
1< F(SE)/( /27sz—1/2e—z) < 61/12z

(see the monograph by Artin [1]).
log A = —alog(a+ B) +logT(a + B) —logT'(8) <

< —alog(a+p)+(a+p— %) log(a+B)—(a+8)—(8— %) log f+5+ ﬁ =

10



a+p 1

1
=(B=2)1 _ -
(8- oa(*5F) —a+ s
Adding the two bounds we have:
B-1. 1. .a+8 1
log(A <1 —1)log(—— -1 =
OB(Ah(z) < 1+ (8 = 1)log(") + 3 log(* 7 F) + o
1 1 a 1
=1 —1)log(l — = —log(1+ — — <
+ (8 — 1) log( ﬂ)+2 og( +,8)+12(a+ﬂ) <
1 a 1 af24+14+1/12  a+3
<-4+ =+ < < < 2.
B8 28 12(a+p) ~ B - 28
Now exponentiating, and using the fact that for 0 <z < 2, e <1+ 4ux:
fx(z) —1§e“2%3 1< 200+ 6
fr (@)
Hence:
o> o T
1P =Pyl = [ Ipx) — sy@le = [ 1D ] oy =
0 o |fr(z)
* [ fx(x) )* da +12
= 2/ ( -1 x)dr <
o \Jr(@) friade < =5
where Pz denotes the distribution of a r.v. Z, and a* = max(a, 0) [ |

Now let k < n. Let X = (X;,X,...,X,) be a random vector on S(¢}),
chosen according to the cone measure. Denote its first k coordinates by X' =
(X1,Xs2,...,Xk). Let G =(g1,92,---,9n) be arandom vector of i.i.d. r.v.s with
density 1/(2I'(1 + 1/p))e 1!, and let G' = (g1,...,gx). We wish to estimate
the variation distance ||P,, x» — Pf||, for normalization constants a, which are

of the order n!/?. For convenience we choose a, = (n/p)'/?.
Lemma 4 Define W = ||a, X'|[} and Z = ||G"||B. Then:
|| Pa, x» — Por|| = || Pw — Pzl|

Proof: Put §' = Y% [g;|”, " = Y7 ;. [g;/”. We will denote by ¢ the
density of S”, and by 1, the density of the random variable (S'/(S’ + r))/?,
where r > 0. Define:

- 1
)= n-vol(B(£p)) - un~1

H(u AWMHWWMK

11



We first claim that the density of X' is H(||z||p). Indeed, take a Borel subset
B C R*. By Theorem 1,

G’ G’
! — —
P(X'eB)=P (7(s'+5~)1/p € B) —EP ((s'+5~)1/p

Therefore, using the independence of S” and G’, and the independence of S’
and G'/(S")'/? (which is Theorem 1 in R¥), we get:

Px' e 5)= "o (g s € B) ar =
= [ o0 <(S'+r)1/p'<s'cj;/”63>dr=
- [Toon[r((55)" o enfs)
= [ o [ v (“ (S')Il/ B) dudr =
/ / e ( )dudr_
= [Tnvom@) vt (2) du = [ (el a

In the last two steps we used, respectively, Fubini’s theorem, and the polar

EB‘S").

dr =

coordinate integration formula of Proposition 1.
Having established the claim about the density of X', the lemma will follow
by another application of Proposition 1:

Papx = Perll = [ Ifunixs = Sl =
R

* -1 1 —rP —

= kvolB) [ /m;) an A0/ = Grarigyee | e =
* -1 1 —rP —
=k- VO](B(E?,))‘/O T‘k an (’I“/(ln) - m@ dr =

- /0°° () = F2()dr = || P — P

Where in the last equality we used the fact that the density of W is equal to
kvol(B(£k))r*=H(r/an)/an and the density of Z is proportional to e~ (these
facts also follow from Proposition 1). ]

12



Remark 1 In the more abstract terminology of the Diaconis-Freedman paper,
we have shown that the sigma-field in RF pulled back from the Borel sets in R
by the mapping u — ||ul|, is “sufficient”, and this implies the lemma.

Remark 2 Since S’ and S" have Gamma(k/p,1) and Gamma((n — k)/p,1)
distribution, respectively (see below), the density H that appeared in the proof of
Lemma 4 can be computed. We get that the density of X' at x € B(ﬁf,) 18:

_ n-k_q
g - (1= ||2]|5)

B
([l=l[») I‘(%)F("Tj’“)

Z has distribution Gamma(k/p,1), since it is a sum of i.i.d. Gamma(1/p,1)

components. The distribution of W is (a rescaling of) a Beta distribution - this
can be seen again using the Schechtman-Zinn realization of the cone measure,
which implies that W has the same distribution as

k
P . Zz’:l gf
zi:1 g; i=k+1 i

an expression of the form a,U/(U+V) where U and V are independent Gamma

r.v.s with the same scale parameter. Thus W has distribution a? times the
Beta(k/p, (n — k) /p) distribution. The total variation distance can therefore be
estimated by Lemma 3 above, where a = k/p, § = (n — k)/p. Finally, we have
(with our choice of a,, = (n/p)'/? as above):

Theorem 3 For 1 < k < min{n/2,n — p}, the following estimate holds:

4k + 12p

P, xi — Par|| <
1Pa,x = Porl| < ——

Note that the above discussion is for a random vector on S(£) chosen according
to the cone measure. Now, let Y = (V1,Y2,...,Y,) be a uniform vector on
S(£y) - that is, a vector chosen according to the normalized surface measure.
Let Y' = (Y1,...,Y%). Combining theorems 2 and 3 we have:

Theorem 4 For 1 < k < min{n/2,n — p}, the following estimate holds:

4k+12p+ Cp
-k N

[|Po,yr — Por|| <

13



4 Random Projections

This section deals with projections of the surface measure of S(£};) onto random
subspaces. This section differs from the previous sections in the techniques used
and the nature of the results proved.

As we noted in the introduction, these projections will be (with high proba-
bility) approximately Gaussian for high dimensions, as long as the subspace is
of dimension much smaller than n. The estimates we give will not use the total

variation metric, but rather a different metric between measures:

Definition 1 Given two probability measures P and Q on R™, we define the
T -distance between them as:

T(P,Q) = sup 1Py : (z,y) <1}) - Q({y : (z,y) <1})| =

=sup {|P(H) — Q(H)| : Haffine half-space}

The use of this metric in the present context was suggested to us by B. Tsirelson.

We will begin by formulating a general principle, which states a “Random-
ized Central Limit Theorem” for probability measures in R" satisfying certain
conditions. It should be pointed out, that this result holds for more general
measures than volume measures on convex bodies, and is not one-dimensional.
Therefore, our result is more general than the treatment of the so-called Central
Limit Problem for Convex Bodies given by e.g. Antilla, Ball and Perissinaki [2].
This generality, however, leads to a worse dependence on € in Theorem 5 below
(see also the remark following Theorem 5).

Let us recall some basic definitions: Given a compactly supported probability
measure P on R™, we say that it is isotropic, if for every § € 71,

/n(x,G)QdP(m) =1

We also say that P has the square negative correlation property, if for every

1<i,j <n:
/ aldP(a) < ( / n;cfdP(w)) ( / n:ﬁdp(@) .

For every k < n we denote by G(n, k) the Grassmanian Manifold of all k¥ di-

mensional subspaces of R”, and by A, we denote the normalized Haar measure

14



on G(n, k). For every k dimensional subspace E C R” we denote by Projg(P)
the orthogonal projection of P onto E. In what follows, ~; is the standard &

dimensional Gaussian measure. We can now state the main theorem:

Theorem 5 Let P be a compactly supported, non-atomic isotropic measure on

R™ satisfying the square negative correlation property. Define:

5=(/[ ||a:||3dP<x>)1/4.

Then for every € > 0 and k < c1e*n?/B* the following inequality holds:

2.4
Ank <{E € G(n, k) : T(Projg(P),v) > e}) < %exp ( ng: ) ’

where ¢y, Ca,c3 are numerical constants.

Remark 3 When P is the normalized volume measure on a symmelric convex
body K C R", and k = 1, the €*-term in the above estimate can be improved
to €2. This was proved in [2] using Busemann’s theorem. It is unclear whether
a similar estimate can be proved in the full generality of the assumptions of
Theorem 5.

In what follows, we will always assume that P satisfies the above conditions.
Denote by w the normalized surface measure on the Euclidean sphere S 1.

Lemma 5 Let h : R — R be a bounded Lipschitz function with constant L.
Then for every n > 3

B2L + 50 sup, g |h(z)]
- .

[ [ @ opar@s®) - [ nan <
Sn=1 JR» R

Proof:

/Sn Lt 0nap()ase /hdvl
- /"Ln_lh<||m||2<ﬁ,a)) dw(H)dP(x)—/hd’Yl =

‘/ /S _ h(llall26) dw(@)aP(a /hd'Yl <
< /R /Sn_lh(||a:||201)dw(0)dP(x)—/Sn_lh(\/ﬁel)dw(e)‘+
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+

)

/Sn_l h (v/nbh) dw(6) /thyl

Where we have used the rotational invariance of the measure w (6; denoting the

first coordinate of 6).

The second summand can be estimated by the special case p = 2, k = 1 of
Theorem 3 (which is in fact part of the original statement proved by Diaconis
and Freedman) as follows:

[ i) ot /hd‘ 0supuce )]
Snl

Note that this is where the assumption n > 3 is used.

The first summand is estimated as follows:

/Rn /SH h (||]26:) dw(6)dP(z) — /SH h (Viibs) dw(g)‘ <

<pf [ lliell = Vil Brldo(@)ap(a) =
=2 ([ 0da®) ([ lslle - valap@) <
<o ([ aaw)” ([l - valare) =

=== [ el = v ap@) < 5 [ {lelly =] aP(a) =

n n 2 1/2
= >t - e <[ (;u%—n) iP@)| =
1/2
= % / D @ -1+ (a7 - 1)(aF —1) | dP(x) < Lf .

i=1 i#j
Where in the last inequality we used the assumption that P is isotropic and the
square negative correlation property. [ ]

In order to prove Theorem 5 we will apply the following concentration in-
equality due to Gordon [8] (see also [18]). In both papers this inequality is
proved in the text but is not specifically stated as a theorem . A weaker ver-
sion of it (with a worse dependence on §) is a classical interpretation of Levy’s
isoperimetric inequality on the sphere (see for example [12] Theorem 2.4). For

the reader’s convenience we will sketch the proof.
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Theorem 6 There are absolute constants c1,ca,c3 > 0 such that for every f :
S"~1 — R which is Lipschitz with constant L (with respect to the Euclidean
metric on S™71), for every 6 > 0 and for every k < ¢16°n/L? :

Aok ({E €Gnk):Iwe ENS™ |f(z)— /S f(y)dw(y)‘ > 5}) <

< C2€76362n/L2 i

Denote by ey, ..., e, the standard basis of R* and let {X;;; i =1,...,k, j=
1,..,n} be ii.d. standard Gaussian random variables. For every a € S*~!

consider the random vector:
k n
Ya = E a; E Xijej.
i=1  j=1

Denote also by G = 2?21 Xije; the standard Gaussian random vector in R".
In [18] the following result was proved for norms. Actually, the proof only
uses the fact that a norm is Lipschitz (the parameter o in [18] is precisely the
Lipschitz constant of the norm). For general Lipschitz functions, the following
proposition is the inequality obtained in the second line of page 276 of [18].

Proposition 2 There are absolute constants cy1,c2,c3 > 0 such that if h : R* —
R is Lipschitz with constant K, then for every n > 0 and k < c1n?/K?
P( sup [h(Y) - Eh(G)| Zn) < cpeeo /K,
acSk-1

Sketch of the proof of Theorem 6: By translating f, we may assume
without loss of generality that for every x € S™7!, |f(z)] < 2L. Let I =
Jsn-1 fdw. Define F, = f(Ya/||Yall2). Clearly, when ||a|lz = 1, EF, =T and
E||Y, |2 = E||G||2 = E, ~ v/n. By standard arguments,

f(z) - /5n—1 f(y)dw(y)‘ > 6}) -

=P< sup |Fa—I|>(5>.

acSk-1

Ank ({E €G(n,k): Iz € EnS"~!

Define f(x) = ||z||2f(z/||z||2). Since f is bounded by 2L, f is Lipschitz with
constant 4L on R \ {0}. Moreover, Ef (Y,) = IE,,. Now, by Proposition 2:

P( sup |Fa—I|>5) <

acSk—1
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F, f(Y,) — IE,
SP< sup | ||||Ya||2_En|+ sup M>5> <
a€Sk-1 E, a€Sk—1 E,

oE z 0FE
§P< sup |||Ya||2_En| 24—;> +P( sup |f(Ya)_IEn|Z 2n) <
a€Sk—1 a€Sk—1

—c362E2/(16L% —c302E2 /(64L% 1 _—chné?/L?
< cpe™ s W/ )+ch 30°E, /( )3026 3nd”/ ,

as long as k < ¢} 62E2 /L?, which implies the required result.

In order to apply Lemma 5, we introduce the following functions:

1 z<t
hia(z) =< U2t cp<tta (t € R,a > 0)
0 t+a<cz

It is clear that hy 4 is Lipschitz with constant 1/a. The following simple approx-

imation result is the key to the application of Lemma 5:

Lemma 6 Let € > 0. Then there exist N = |1/e| numbers t1,ts,...,tn €
R with the following property: If v is a measure on R such that for all i =

1,2,...,N we have
[ et~ [ b
R R

Then T'(v,v1) < 6e. (Note that in dimension 1 the metric T is ezactly the usual

<e

Kolmogorov metric.)

Proof: Denote as usual ®(t) = 71 ((—oc,t]). Take t; = ®~1(e-4). Note that
for some 0 < 0 <1,

tigr —ti=€- () (i +0-€) > eV2r > e
And therefore
A(-00,t) < [ hued < [ huggdn e <
R R

S <I)(tz'+1) +e= ‘I)(tz) + 2e.

Similarly
v((00,t;]) > ®(t;) — 2e.

We have shown that |v((—o0,t;]) —®(t;)| < 2efori=1,2,...,N. It is now easy
to show that this implies |v((—o0,t]) — ®(¢)| < 6¢ for all t € R, as required. MW
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Proof of Theorem 5. To begin with, note that since P is isotropic, for every
h : R — R which is Lipschitz with constant L, the function that maps v € R™ to
Jn h({x,u))dP(z) is also Lipschitz with the same constant. Indeed, for every
distinct u,v € R”,

[ (e u)ir) - [ b ape) <
< Lllu—ovl) / o) ape <

u—w 1/2
< Ljju — v||2 (/ (z, o=l )2dP(:c)) = L||u — v||2.
Rn

lu— ]2
Fix ¢ > 0. By modifying the constant c¢;, we can clearly assume that
40B/+/n < € < 2 (since the metric T is bounded by 2). Note that in this
case, since B > n'/4, it is easy to verify that
€ 6B%/e+50 _ e/n
6 n ~ 12B%°

Now, applying Lemmas 5 and 6 and Theorem 6, we get:
Ak [{E € G(n, k) : T(Projg(P),vk) > €}] =

=M [{E€Gm,k):Tue S 'NE T(Projg,(P),m)>¢€}] <
16/¢]

U {EeGn.k):ues'nE

=1
‘ /R by ep6((z, u))dP(z) — /R his,e/6dm 26/6}] <
16/¢]

U {E€Gn,k):ueS" 'NE

i=1

‘ /R he; e/6((z, u))dP(z) — /S N /]R iy o((a, u))dP(a)deo(u)

S /\n,k

S /\n,k:

>

2
5 € _ 6B /e+50}] <
— 6 n
[6/€]
<M | | {E€Gn,k): Jue s ' nE
i=1
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>

‘/Rn b es6({2,u))dP(z) — /Sﬂ_1 /nhti,f/ﬁ((x,u))dp(x)dw(u)

ev/n cetn?
<= .
—1232}]— ep( B4>

The last estimate uses Theorem 6, which is valid as long as k < cie*n/B*, where

c1 is a (small enough) absolute constant. [ |

We will now apply the above general result to the cone measure and the
surface measure on the sphere of £}, beginning with the case of the cone measure.
The measure p is compactly supported and non-atomic, and it is isotropic up to
multiplication by a constant: that is, we need to take the cone measure on some
3 sphere other than the unit sphere - the exact constant is calculated below.
But first, we prove the square negative correlation property, which in this case
is quite simple. We will give an analytic proof of a more general fact. A similar
result with the cone measure replaced by the volume measure on the ball of £}
was proved in [5] and also in [2]. See also [13] for a an even stronger result for

the cone measure.

Proposition 3 For every ai,...,a, > 0:
n

|z |* dp(z / Yidu(x).
g i< 11

Proof: Using (again) the notation of Theorem 1,

n
/ H ok | du(z) = B | S7# = I ngl‘“‘]
s) k=1

p/ k=1
_ HZ:1 Elgs |** _ HZ:I Elgs |**

. [5% . ai] | [Es% T ai] Y ETES

[Tk Elg1|** _ 171 Elg1[*
s s il | =mvr
H;;E[(s;zi:laz) : ] =) BSe

n

= H gil/p 1—[/(Z )|:L'k|akdu x).
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Remark 4 Note that the only property used in the above proof is the inde-
pendence of S and X, rather than their specific distributions. However, this
property is known to characterize these distributions - see [4].

Because the coordinates of = are p-uncorrelated (an obvious geometric truth)

it is easily seen that for every § € S*~1,

[@07du@) = [ stauo).
The right hand side can be calculated, using the methods of the previous sec-
tions:

o P B Eg? _ T(3/p)-T(n/p)
/ zidp(@) =E [(22;1 |g,~|v)2/p] T EE L, iP)¥? ~ T(1/p) - T((n +2)/p)

r(1/p) . r<<n+2)/p>]1/2
r'@/p)  T(n/p) )
vector X = (X,...,X,) whose distribution law is . Then fi, the distribution

Take as before a random

Define, therefore, a,, = [

measure of Y = ay ;- X, is a compactly supported, nonatomic, isotropic mea-
sure. We now proceed to calculate the constant B of this measure, using again
the log-convexity of the gamma function (or the case n = 2 of Lemma 7):

B = BV |[{ = nY;! = nab X} =nat,, - o SOV
_T/prG/p)  T(n+2)/p)® 4

r@3/p)?  T/pT(n+4)/p)
And so B < ¢-n'/* where ¢ is an absolute constant (although the the bound
may seem to depend on p, it is easy to check that it is bounded by a numerical
constant as long as p > 1). Putting all the pieces together, using Theorem 5,

we have finally:

Theorem 7 Let p be the cone measure on S(£}), and define i(A) = p(A/anp).
Then for every € > 0 and k < ce*n:

Ak {E € G(n, k) : T(Projg(f1), vk) > €}] < Cexp(—cne?).
Here ¢,C > 0 are absolute constants.

The estimate of the total variation distance between u and o allows us to

transfer the above result immediately to a result for o.
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Theorem 8 Let o be the surface measure on S(£}), p > 1, and define 6(A) =
o(A/anyp). Then for every e >0 and k < ce'n:

Ak [{E € G(n, k) : T(Projg(d), ) > €}] < Cpexp(—cyne),
where cp, Cp > 0 are constants (which may depend on p).
Proof: By Theorem 2, for every E € G(n, k),
c
T(Proje (i), Proje(6)) < ||lu —o|| < —E&.
(Proje(fi), Projr(5)) < |[lp— ol < n
Hence, Theorem 7 implies Theorem 8 as long as € > 2¢,/y/n. By modifying the

constant C)p, the theorem follows for every e. |

Remark 5 As was remarked in the discussion following the statement of The-
orem 2, the results in [13] imply in particular that for p > 1 the constants Cp, ¢,

in Theorem 8 may be taken to be independent of p.

5 Concluding remarks

Several natural questions arise from our results:

1. We conjecture that any convex body in R™ has a linear image for which the
surface measure and cone measure are close in total variation distance. It seems
reasonable that we can estimate the above distance by a constant multiple of
1/4/n. Our estimates of the total variation distance between the cone measure
and surface measure on S(£}) are tight and it is possible to calculate the exact
dependence of the constants on p. The interested reader is referred to the paper
[13], in which the first named author studies in greater depth the precise relation

between the surface and cone measures on S(£}).

2. For the purpose of improving the estimate that appears in Theorem 4, it
would be natural to bound the total variation distance between the projections
of the surface and cone measures onto the first k coordinates, although we have
not attempted to do this. The concrete density that was computed in Remark
2 may prove to be useful for such an estimate.

3. The metric T that appears in Section 4 is just one of many possible metrics

on probability measures that could be used. We can in fact state similar results
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for the Kolmogorov distance and other natural metrics. We chose to deal with
the metric T since this is a natural rotation invariant metric for which the proofs
are the simplest. One might think of Theorem 5 as a measure-theoretic version
of Dvoretzky’s Theorem. Qur result is not in complete analogy with Dvoretzky’s
theorem, since it does not reflect the dependence of the dimension k on p that
appears there. The total variation distance is an example of a very natural
metric which our methods seem insufficient to handle.

4. The Central Limit Problem, is the problem of proving that almost all projec-
tions of the volume measure of a convex body K onto 1-dimensional subspaces,
are approximately Gaussian in high dimension. The results of Section 4 show
that in order to prove this Central Limit property for a body K in isotropic
position, it is enough to show that the cone measure on K has the square neg-
ative correlation property (As was noted in the introduction, the above fact is
also proved in [2].) The square negative correlation property seems geometri-
cally plausible when K is unconditional (i.e. when the norm of K is invariant
with respect to sign changes and permutations of the coordinates) - this can be
verified by elementary calculations in dimension 2, but we are presently unable

to prove it for arbitrary dimension.

5. From the proof of Theorem 2 it follows that its conclusion holds as long as
E|g|** < oo. This is true when 2¢ = 4p—4 > —1, or p > 3/4. We believe
that this restriction is unnecessary, i.e. the statement of Theorem 2 holds for
any p > 0. A proof of this would involve proving Theorem 2 without passing
to the second moment. Preliminary calculations show that it may be possible
to avoid the second moment, but the calculations quickly become tedious and
beyond the scope of the present paper. We have therefore chosen to focus on

the convex range p > 1 (i.e. the setting of the Central Limit Problem).

Acknowledgment: The authors would like to express their sincere gratitude
to the referee, whose careful reading of the article, and many helpful suggestions,
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