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Abstract

We derive combinatorial identities, involving the Bernoulli and Eu-
ler numbers, for the numbers of standard Young tableaux of certain
skew shapes. This generalizes the classical formulas of D. André on
the number of up-down permutations. The analysis uses a transfer
operator approach extending the method of Elkies, combined with an
identity expressing the volume of a certain polytope in terms of a
Schur function.
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1 Introduction

1.1 Up-down permutations and the Euler, tan-
gent and Bernoulli numbers

An up-down permutation on n elements is a permutation σ ∈ Sn
satisfying

σ(1) < σ(2) > σ(3) < σ(4) > · · · .

Up-down permutations, also known as zig-zag- or alternating permu-
tations, were first studied in 1879 by D. André [2, 3]. He showed that
if An denotes the number of n-element up-down permutations, then
the exponential generating function

fup-down(x) =
∞∑
n=0

Anx
n

n!

is given by
fup-down(x) = tanx+ secx. (1)

In other words, tanx is the exponential g.f. of the even-indexed An’s,
and secx is the e.g.f. of the odd-indexed An’s. This relates the se-
quence (An) to the Euler numbers En and tangent numbers Tn, tra-
ditionally defined by the Taylor series expansions

secx =
∞∑
n=0

(−1)nE2nx
2n

(2n)!
,

tanx =
∞∑
n=1

Tnx
2n−1

(2n− 1)!
.

In terms of these numbers, we have that

A2n = (−1)nE2n, A2n−1 = Tn. (2)

Recall also that the tangent numbers are related to the Bernoulli
numbers Bn, defined by the Taylor series expansion

x

ex − 1
=
∞∑
n=0

Bnx
n

n!
,

via the relation

Tn =
(−1)n−14n(4n − 1)

2n
B2n. (3)
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For an amusing appearance of Euler and tangent numbers unrelated
to up-down permutations, see [9]. The notation En, Tn and Bn will be
used throughout the paper, always signifying the Euler, tangent and
Bernoulli numbers, respectively, and An will be used throughout to
denote the number of up-down permutations of order n, given by (2).

1.2 Standard Young tableaux

It is well-known ([13, Ex. 23, p. 68], [15, Ex. 7.64.a, p. 469–470, 520]),
that up-down permutations can be thought of as a special case of a
standard Young tableau. Recall that an integer partition is a sequence
λ = (λ1, λ2, . . . , λk), where λ1 ≥ λ2 > . . . > λk > 0 are integers.
We identify such a partition λ with its Young diagram, which is the
set {(i, j) ∈ N2 : 1 ≤ i ≤ k, 1 ≤ j ≤ λi}, graphically depicted as a
set of squares, (also called cells or boxes) in the plane, traditionally
in the “English notation” whereby y-coordinate increases from top to
bottom (similarly to matrix row indices in linear algebra). A skew
Young diagram is the difference λ \ µ of two Young diagrams where
µ ⊂ λ. If λ \ µ is a skew Young diagram, a standard Young tableau
(SYT) of shape λ \µ is a filling of the boxes of λ \µ with the integers
1, 2, . . . , |λ \ µ| that is increasing along rows and columns. See Figure
1 for an example.

5 11

6 8

1 4 12 14

3 10 13

2 7 9

(a) (b)

Figure 1: (a) The skew Young diagram (5, 5, 5, 3, 2)\(2, 2, 1, 1, 0). (b) A stan-
dard Young tableau (SYT).

Up-down permutations on n elements are in simple bijection with
SYT’s of shape

(m+ 1,m,m− 1,m− 2, . . . , 3, 2) \ (m− 1,m− 2, . . . , 1, 0)
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when n = 2m is even, or

(m,m,m− 1,m− 2, . . . , 3, 2) \ (m− 1,m− 2, . . . , 1, 0)

when n = 2m− 1 is odd. The bijection converts such an SYT into an
up-down permutation by reading the values starting from the bottom-
left box and going alternately to the right and up. See Figure 2.

5

2

4

3

1

8

9

10

7

6

σ =

(
1 2 3 4 5 6 7 8 9 10
5 8 2 9 4 10 3 7 1 6

)

Figure 2: A standard Young tableau of shape (5, 5, 4, 3, 2, 1) \ (4, 3, 2, 1, 0, 0)
and the associated up-down permutation.

Our main interest will be in enumerating SYT’s of shapes in a
special family. For a skew Young diagram D = λ \ µ, denote by f(D)
the number of SYT’s of shape D (this is frequently denoted by fλ\µ,
but the current notation will be more convenient for our purposes).
Recall the formula of Aitken [1] (later rediscovered by Feit [12]; see
also [15, Corollary 7.16.3, p. 344], [13, Ex. 19, p. 67, 609]) for f(D):

f(D) = |λ \ µ|! det
( 1

(λi − i− µj + j)!

)
i,j
. (4)

Using (4) can become difficult when the diagrams λ and µ are large
(even when their difference is small!), as the order of the determinant
is equal to the number of parts in λ. As we shall see below, in certain
cases one can give more concise formulas that also relate the numbers
of SYT’s of different shapes to each other, and notably to the “zig-zag”
numbers (An)n≥0.

1.3 Standard Young tableaux in a strip

The standard Young tableaux that we will consider will be of the
following general shape, which we call an m-strip (diagonal) diagram.
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λ=(4,2,1)

µ=(3,3,1)

n

m

columns

boxes

head

tail

Figure 3: An m-strip diagram. The head and tail rotated Young diagrams
are read off in columns.

The body of the diagram consists of an elongated hexagonal shape
with n columns, where the numbers of boxes in the n columns are⌈m

2

⌉
,
⌈m

2

⌉
+ 1, . . . ,m,m,m, . . . ,m,m− 1,m− 2, . . . ,

⌈m
2

⌉
+ 1,

⌈m
2

⌉
.

The head and the tail are Young diagrams that are rotated and con-
nected to the body by leaning against the sides of the body. See Fig.
3 for an example with m = 6. We will usually think of m as fixed and
n growing, which is why we use the term m-strip.

Our main result, Theorem 4 below, is a new formula for enumer-
ating m-strip tableaux (that is, SYT’s whose shape is an m-strip di-
agram) in terms of the zig-zag numbers (An)n≥0. To introduce this
formula, we start with some explicit formulas for small values of m,
and then present the general formula that contains all these formulas
as special cases.
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Theorem 1 (3-strip tableaux).

f

 n

 =
(3n− 2)!Tn

(2n− 1)!22n−2
, (5)

f

 n

 =
(3n− 1)!Tn

(2n− 1)!22n−1
, (6)

f

 n

 =
(3n)!(22n−1 − 1)Tn

(2n− 1)!22n−1(22n − 1)
. (7)

Theorem 2 (4-strip tableaux).

f

 n

 = (4n− 2)!
(

T 2
n

((2n− 1)!)2
− −E2n−2E2n

(2n− 2)!(2n)!

)
, (8)

f

 n

 = (4n)!
(

E2
2n

((2n)!)2
− E2n−2E2n+2

(2n− 2)!(2n+ 2)!

)
. (9)

Theorem 3 (5-strip tableaux).

f

 n

 =
(5n− 6)!T 2

n−1

((2n− 3)!)224n−6(22n−2 − 1)
.

The formulas in Theorems 1, 2, 3 are special cases of an infinite
family of formulas. To formulate them, we introduce some notation.
Let Ān = An/n! (the volume of the n-th up-down polytope, see Section
2). Let

Ãn =
Ān

2n+1 − 1
, Ân =

(2n − 1)Ān
2n(2n+1 − 1)

.
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For nonnegative integers p, q,N , denote

XN (p, q) =
bp/2c∑
i=0

bq/2c∑
j=0

(−1)i+jĀN+2i+2j+1

(p− 2i)!(q − 2j)!

+(−1)
p+1
2

bq/2c∑
j=0

(−1)jĀN+p+2j+1

(q − 2j)!
1[p odd]

+(−1)
q+1
2

bp/2c∑
i=0

(−1)iĀN+q+2i+1

(p− 2i)!
1[q odd]

+(−1)
p+q
2

+1ĀN+p+q+11[p,q odd],

YN (p, q) =
bp/2c∑
i=0

bq/2c∑
j=0

(−1)i+jÂN+2i+2j+1

(p− 2i)!(q − 2j)!

+(−1)
p
2

bq/2c∑
j=0

(−1)jÃN+p+2j+1

(q − 2j)!
1[p even]

+(−1)
q
2

bp/2c∑
i=0

(−1)iÃN+q+2i+1

(p− 2i)!
1[q even]

+(−1)
p+q
2 ÂN+p+q+11[p,q even],

(here 1[x] is 1 if x is true, 0 otherwise). Then we have

Theorem 4. Let D be an m-strip diagram as in Figure 3. Denote the
head Young diagram by (λ1, λ2, . . . , λk) and the tail Young diagram by
(µ1, µ2, . . . , µk) (where k = bm/2c). Define the associated numbers
Li = λi + k− i and Mi = µi + k− i, i = 1, . . . , k. If the diagram has a
total of n columns, then the number of SYT’s of shape D is given by

f(D) = (−1)(
k
2)|D|! det

(
X2n−m+1(Li,Mj)

)
i,j=1,...,k

(10)

if m is even, or by

f(D) = (−1)(
k
2)|D|! det

(
Y2n−m+1(Li,Mj)

)
i,j=1,...,k

(11)

if m is odd.
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Note that XN (p, q) and YN (p, q) are linear combinations of the
zig-zag numbers AN+1, AN+2, . . . , AN+p+q+1. Thus, the theorem rep-
resents f(D) for an m-strip diagram as a polynomial in the numbers
An, whose complexity depends on the thickness m of the strip but
not on the number of columns n. For example, for the diagram D in
equation (9) we have (λ1, λ2) = (µ1, µ2) = (1, 0), so we get

f(D) = −(4n)! det
(
X2n−3(0, 0) X2n−3(0, 2)
X2n−3(2, 0) X2n−3(2, 2)

)
= −(4n)! det

(
Ā2n−2

1
2Ā2n−2 − Ā2n

1
2Ā2n−2 − Ā2n

1
4Ā2n−2 − Ā2n + Ā2n+2

)
,

which simplifies to give (9). By comparison, trying to use (4) to
compute f(D) would result in a daunting-looking determinant of order
n + 3, whose relation to the analogous determinants for the An’s is
unclear.

The following theorem gives a direct combinatorial meaning to
XN (p, q). The first part is a simple corollary to Theorem 4, and the
second part does not follow from Theorem 4 but can be proved using
the same techniques – see Section 8.

Theorem 5. For a permutation σ ∈ Sn and 1 ≤ i ≤ n−1, we say that
σ has a descent at i if σ(i) > σ(i+ 1). For integers n, p, q ≥ 0, denote
by αn the number of permutations in S2n+p+q whose set of descents is
equal to

{1, 2, 3, . . . , p, p+ 1, p+ 3, p+ 5, . . . , p+ 2n− 3, p+ 2n− 1,
p+ 2n, p+ 2n+ 1 . . . , p+ 2n+ q − 1}.

Denote by βn the number of permutations in S2n+p+q whose descent
set is equal to

{1, 2, 3, . . . , p, p+ 1, p+ 3, p+ 5, . . . , p+ 2n− 3, p+ 2n− 1}

(equivalently, αn and βn count SYT’s of the shapes shown in Figure
4 below). Then we have

αn = (2n+ p+ q)!X2n−1(p, q), (12)
βn = (2n+ 1 + p+ q)!X2n(p, q). (13)

Similarly, one can also give a combinatorial meaning to YN (p, q) in
terms of the number of SYT’s for certain 3-strip diagrams. We leave
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q

p

n columns

p

q

n+1 columns

Figure 4: The shapes whose standard Young tableaux are enumerated by αn
and βn, respectively.

the precise formulation of this statement to the reader, as an exercise
in implementing the techniques of Section 8.

In the next sections we develop the tools that will be used to
prove the theorems above. The idea is to use transfer operators. This
generalizes the transfer operator approach to up-down permutations
introduced by Elkies [10]. Another tool is a geometric-combinatorial
identity that expresses the volume of a certain polytope in terms of
a Schur symmetric function, and can be thought of as a continuous
analogue of a known result on the enumeration of certain shifted Young
tableaux. This identity, Proposition 12, is the subject of Section 7.

The understanding of m-strip tableaux that we gain using our
analysis of the transfer operators gives more, and is perhaps more
important, than just the proof of the formulas given above. In fact,
more general formulas could be derived, and even more results such as
an understanding of random m-strip tableaux of given shape. Thus,
we have the following theorem.

Theorem 6. The m-strip tableaux model is an exactly solvable model
in the statistical mechanics sense (see Baxter [7]). That is, the transfer
operators can be explicitly diagonalized.
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For more details, see Theorems 10, 11 and comment 1 in Section 9.

To conclude this introduction, we note that the m-strip tableaux
model is related to the bead model studied by Boutillier [8]: The Gibbs
measures he constructs seem to describe the limiting distribution of
uniform random elements of the order polytope (see Section 4 for the
definition) associated with an m-strip diagram. The m-strip tableaux
model is also related to the square ice model from statistical physics
(see [7, Chapter 8]), and our explicit diagonalization of the transfer
operators can be thought of as a degenerate case of the so-called Bethe
ansatz used in the solution of that model.

1.4 Acknowledgements

Theorem 1, from which this project evolved, was first discovered and
proved when the second-named author was visiting Microsoft Research
in 2004, in collaboration with Henry Cohn, Assaf Naor and Yuval
Peres. We are also grateful to George Andrews, Omer Angel, Cedric
Boutillier, Ehud Friedgut, Ander Holroyd, Rick Kenyon, Christian
Krattenthaler, Andrei Okounkov, Igor Pak, Andrea Sportiello, Bálint
Virág and Doron Zeilberger for helpful discussions.

2 The transfer operator method of Elkies

Noam Elkies [10] proposed the following approach to proving (1). De-
fine the n-th up-down polytope by

Pn = {(x1, . . . , xn) ∈ [0, 1]n : x1 ≤ x2 ≥ x3 ≤ x4 ≥ . . . }.

Computing vol(Pn), the volume of Pn, in two ways, one first observes
that this is simply related to the number An of up-down permutations
by

vol(Pn) =
An
n!
.

This is because (in probabilistic language) n independently drawn
uniform random variables in [0, 1] will be in Pn with probability An/n!,
since for each up-down permutation σ the probability is 1/n! that the
random variables will have order structure σ, and these events have
measure 0 pairwise intersections.
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On the other hand, by computing the volume as an iterated inte-
gral, namely

vol(Pn) =
∫ 1

0
dx1

∫ 1

x1

dx2

∫ x2

0
dx3

∫ 1

x3

dx4 . . . ,

upon some more simple manipulation one obtains the following conve-
nient representation in terms of linear operators on the function space
L2[0, 1]:

vol(Pn) =
〈
Tn−1(1),1

〉
, (14)

where 1 is the constant function 1, T : L2[0, 1] → L2[0, 1] is the self-
adjoint operator given by

(Tf)(x) =
∫ 1−x

0
f(y)dy, (15)

and 〈·, ·〉 is the usual scalar product on L2[0, 1]. The operator T is
called the transfer operator 1. Transfer operators are commonly used
in combinatorics and statistical mechanics (where they are sometimes
called transfer matrices) and in the theory of dynamical systems. In
this case, having obtained the representation (14), all that is left to
do is to find the orthonormal basis (φk)∞k=1 of eigenfunctions, with
respective eigenvalues λk, of T (note that T is a self-adjoint operator),
since then one gets that

An = n!vol(Pn) = n!
∞∑
k=1

λn−1
k

〈
1, φk

〉2
.

The eigenfunction problem for T leads easily to the solutions

φk(x) =
√

2 cos
(

(2k − 1)πx
2

)
, λk =

(−1)k−1 · 2
(2k − 1)π

, k = 1, 2, 3, . . .

whereby one obtains, after some computations that we omit,

An =
2n+2n!
πn+1

∞∑
k=1

(−1)(k−1)(n−1)

(2k − 1)n+1
, (16)

a formula that is equivalent to (1).

1This operator, or rather its discrete version, was applied to up-down permutations by
V. Arnold, see [5] and [14].
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3 Markovian polytopes

We wish to generalize the transfer operator method to the setting of
m-strip tableaux. For skew Young diagrams we can define their as-
sociated order polytope and try to apply the same idea to its volume
computation. However, there is a certain property of the polytopes as-
sociated with up-down permutations that makes usage of the transfer
operator method possible (after all, computing volumes of polytopes
exactly is in general quite difficult). Borrowing from the language of
probability theory, we call this property the Markov property.

Definition 7. Let P ⊂ Rd be a polytope. If there exists a partition of
the coordinate set

{1, 2, . . . , d} = C1 ∪ C2 ∪ . . . ∪ Ck (disjoint union),

such that for all j = 2, . . . , k − 1, any Cj-section of P , namely a set
of the form

Px̃ := P ∩ {x ∈ Rd : x|Cj
= x̃},

where x̃ ∈ RCj is fixed, decomposes as a cartesian product of the form

Px̃ = P x̃j− × P x̃j+, (17)

where P x̃j− ⊂ RC1×C2×...×Cj−1 and P x̃j+ ⊂ RCj+1×Cj+2×...×Ck , then
we say that P is Markovian with respect to the coordinate filtration
(C1, C2, . . . , Ck). If P has this property, for any j = 1, 2, . . . , k − 1
define the j-th transfer operator Tj : L2(RCj )→ L2(RCj+1) associated
with P by (

Tj(f)
)
(u) =

∫
RCj

f(v)1{Pu,v 6=∅}dv,

where Pu,v is the section

Pu,v =
{
x ∈ Rd : x|Cj

= v, x|Cj+1
= u

}
.

The importance of these definitions becomes apparent in the fol-
lowing proposition, which shows how certain volumes can be repre-
sented as scalar products in some L2 space.

Proposition 8. In the above notation, if u ∈ RC1 , v ∈ RCk , then

vol∗(Pu,v) =
〈
Tk−1 ◦ Tk−2 ◦ . . . ◦ T2 ◦ T1(δu), δv

〉
L2(RCk )

. (18)
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Here δu, δv are Dirac delta functions centered around (respectively) u, v
in the respective distribution spaces, and vol∗ is the Lebesgue measure
of appropriate dimensionality (in this case, d− |C1| − |Ck|). Further-
more,

vol(P ) =
〈
Tk−1 ◦Tk−2 ◦ . . .◦T2 ◦T1(1L2(RC1 )),1L2(RCk )

〉
L2(RCk )

, (19)

where 1 represents the constant function 1 in the respective L2 space.

Proof. First, note the following trivial identity: If d1, d2, d3 ∈ N and
A : L2(Rd1) → L2(Rd3), B : L2(Rd2) → L2(Rd3) are linear operators,
then for any functions f ∈ L2(Rd1), g ∈ L2(Rd2) we have∫

Rd3

〈
Af, δx

〉〈
Bg, δx

〉
dx =

〈
Af,Bg

〉
. (20)

Second, note that from the definition it follows that the set P x̃j− in
(17) is, if it’s not empty, also Markovian with respect to the filtration
(C1, . . . , Cj−1), with the same transfer operators T1, . . . , Tj−2 as P .

Now, equation (19) clearly follows from (18) by integrating over
u ∈ RC1 , v ∈ RCk . To prove (18), we use induction together with the
above observations. For each xk−1 ∈ RCk−1 let Pu,xk−1,v be the section

Pu,xk−1,v =
{
x ∈ Rd : x|Cj

= v, x|Ck−1
= xk−1, x|Cj+1

= u
}
.

Then

vol(Pu,v) =
∫

RCk−1

vol(Pu,xk−1,v)dxk−1

(Markov)
=

∫
RCk−1

vol∗(P
xk−1

(k−1)−,u)1{Pxk−1,v 6=∅}dxk−1

(induction)
=

∫
RCk−1

〈
Tk−2 . . . T2T1δu, δxk−1

〉〈
Tk−1δxk−1

, δv

〉
dxk−1

=
∫

RCk−1

〈
Tk−2 . . . T2T1δu, δxk−1

〉〈
δxk−1

, T ∗k−1δv

〉
dxk−1

(by eq. (20))
=

〈
Tk−2 . . . T2T1δu, T

∗
k−1δv

〉
=

〈
Tk−1Tk−2 . . . T2T1δu, δv

〉
,

as claimed.
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4 The 3-strip

As a first novel application of the transfer operator technique, we an-
alyze the case of 3-strip tableaux. As in the case of up-down permuta-
tions, the first step is to change the discrete problem of enumeration
of tableaux to a continuous problem of the computation of a volume
of a polytope. Given a skew Young diagram D (considered as a subset
of N2), define its associated order polytope as

PD =
{
x ∈ [0, 1]D : x(i,j) ≤ x(i′,j′) if i ≤ i′, j ≤ j′

}
.

For the same reasons as before, we have the connection between the
discrete and continuous problems:

vol(PD) =
f(D)
|D|!

. (21)

A key step in simplifying the analysis is choosing the correct co-
ordinate filtration for the polytope. There is no unique way of doing
this, but a judicious choice will result in a more easily diagonalizable
transfer operator. For the case of a 3-strip, we choose the filtration
described in Figure 5 below.

c
j−1

c
j+1

c
j

c
j+2

Figure 5: The coordinate filtration for the 3-strip.

Note that in the figure only the part of the filtration corresponding
to the body of the diagram is shown. However, for the head and the
tail the principle of cutting the diagram along diagonal lines remains
the same, and the filtration is constructed accordingly.

Thus, from the figure it is clear that for the body of the diagram
we get two transfer operators repeating periodically in alternation.
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Denote Ω = {(u, v) ∈ [0, 1]2 : u < v}, then the two operators are
A : L2[0, 1]→ L2(Ω), B : L2(Ω)→ L2[0, 1] given by

(Af)(u, v) =
∫ v

u
f(x)dx, (Bg)(x) =

∫ x

0

∫ 1

x
g(u, v)dv du.

Because the composition C := B ◦A will repeat periodically, to prove
Theorem 1 we will need to diagonalize this operator. We compute:

(Cf)(x) = (B(Af))(x) =
∫ x

0

∫ 1

x
(Af)(u, v)dv du

=
∫ x

0

∫ 1

x

∫ v

u
f(y)dy dv du

=
∫ 1

0
f(y)

(∫ x∧y

0
du

∫ 1

x∨y
dv

)
dy

=
∫ 1

0
f(y)(x ∧ y)(1− x ∨ y)dy

= (1− x)
∫ x

0
f(y)ydy + x

∫ 1

x
f(y)(1− y)dy.

Now, to find the eigenfunctions:

λf(x) = (Cf)(x)

= (1− x)
∫ x

0
f(y)ydy + x

∫ 1

x
f(y)(1− y)dy, (22)

λf ′(x) = −
∫ 1

0
yf(y)dy +

∫ 1

x
f(y)dy,

λf ′′(x) = −f(x).

From (22) we get the boundary conditions f(0) = f(1) = 0. This
gives the solutions (scaled to have L2-norm 1):

φk(x) =
√

2 sin(πkx), λk =
1

π2k2
, k = 1, 2, 3, . . .

Proof of Theorem 1. We prove (7); the proof of the other formulas is
similar and is omitted. If Dn is the skew Young diagram appearing in
(7), then its associated order polytope is Markovian with respect to
the coordinate filtration in Figure 5. One has to be careful at the ends
of the diagram; the first and last transfer operators are easily seen to
be, respectively,

(Tfirstf)(x) = (Tlastf)(x) =
∫ 1

x
f(y)dy.
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This gives, using Proposition 8 and (21), that the left-hand side of (7)
is given by

f(Dn) = (3n)!vol(PDn) = (3n)!
〈
Tlast(BA)n−1Tfirst1,1

〉
= (3n)!

〈
Cn−1(1− x), x

〉
= (3n)!

∞∑
k=1

λn−1
k

〈
x, φk

〉〈
1− x, φk

〉

A quick computation gives that
〈
x, φk

〉
=
√

2(−1)k−1/πk,
〈

1−x, φk
〉

=
√

2/πk, so

f(Dn) = (3n)!
∞∑
k=1

(−1)k−12
π2k2(πk)2(n−1)

=
2(3n)!
π2n

(
1− 2

22n

)
ζ(2n)

(where as usual ζ(x) =
∑∞

n=1 n
−x). Now substituting the classical

identity

ζ(2n) =
∞∑
k=1

1
k2n

=
(−1)n−1π2n22n−1B2n

(2n)!
(23)

(together with (3)) gives (7).

5 The 4-strip

While the analysis so far has been relatively straightforward, the case
of the 4-strip is the first case where one encounters relative diffi-
culty in diagonalizing the transfer operator, which now works on a
2-dimensional domain. As before, we choose the coordinate filtration
obtained by cutting the diagram along diagonal lines, as shown in the
figure below.

Again, we get the following two transfer operators repeating peri-
odically in alternation. Denote as before Ω = {(u, v) ∈ [0, 1]2 : u < v},
then we have that A,B : L2(Ω)→ L2(Ω) are given by

(Af)(x, y) =
∫ x

0

∫ y

x
f(u, v)dv du,

(Bg)(u, v) =
∫ v

u

∫ 1

v
g(x, y)dx dy.
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c
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Figure 6: The coordinate filtration for the 4-strip.

A small simplification is to note that there is a certain symmetry,
in that A and B are conjugate to each other: B = CAC, where
C : L2(Ω)→ L2(Ω) is the reflection operator

(Cf)(x, y) = f(1− y, 1− x).

So, instead of diagonalizing the composition BA = CACA we can
diagonalize its simpler “square root” CA, given by

(CAf)(x, y) =
∫ 1−y

0

∫ 1−x

1−y
f(u, v)dv du. (24)

So we are looking for λ, f which are solutions of

λf(x, y) =
∫ 1−y

0

∫ 1−x

1−y
f(u, v)dv du.

Differentiating once with respect to each variable gives

λ
∂2f

∂x∂y
= f(1− y, 1− x). (25)

Differentiating again w.r.t. x, y and substituting in (25) gives the PDE

∂4f

∂2x∂2y
=

1
λ2
f(x, y). (26)

The boundary conditions are easily seen to be

f(x, 1) ≡ 0, f(x, x) ≡ 0, fx(0, y) ≡ 0, (27)

17



a mixture of Dirichlet- and Neumann-type conditions on the three
boundary sides of Ω.

Now, it may be verified that the L2-normalized solutions to this
boundary value problem are given by

φj,k(x, y) = 2 det

 cos
(
π(2j−1)x

2

)
cos
(
π(2j−1)y

2

)
cos
(
π(2k−1)x

2

)
cos
(
π(2k−1)y

2

)  ,

λj,k =
4(−1)j+k−1

π2(2j − 1)(2k − 1)
, k > j > 0 integers, (28)

(note that the eigenfunctions are parametrized by two integers). While
verification is easy, two related questions that should be addressed are:
how these solutions can be derived rather than guessed; and how to
prove that these solutions span all eigenspaces. We answer the first
question and then point out how this essentially contains the answer
to the second. The PDE (26) is of a very simple form that suggests
trying to use Fourier series and the method of separation of variables.
However, the domain Ω is not of a shape suitable for the application
of this method. But looking at the boundary conditions (27) suggests
looking for a function on a larger domain that satisfies the symmetry
and anti-symmetry conditions

f(y, x) = −f(x, y),
f(−x, y) = f(x,−y) = f(x, y), (29)

f(x, 2− y) = f(2− x, y) = −f(x, y)

since such a function will automatically satisfy (27). Now, any func-
tion satisfying (29) is periodic in both variables with period 4, i.e.,
satisfies f(x+ 4, y) = f(x, y + 4) = f(x, y), and its values everywhere
are determined by its values on Ω. Thus one gets a problem suitable
for the application of the method of separation of variables: Expand
f in a Fourier series

f(x, y) =
∑
a,b∈Z

ca,b exp
(
πi

2
(ax+ by)

)
.

The symmetry conditions (29) translate to the following equations on
the coefficients ca,b:

c−a,b = ca,b, ca,−b = ca,b, cb,a = −ca,b,

18



ca,b = (−1)b+1ca,b, ca,b = (−1)a+1ca,b.

In particular the last conditions imply that a, b are odd if ca,b 6= 0.
Eq. (25) implies the additional equation

−π
2

4
λab ca,b = −ia+bca,b,

Denoting λ = 4ia+b/π2ab for some (and therefore all) a, b for which
ca,b 6= 0, it is easy to verify from these relations that f is a linear
combination of the functions φj,k with k > j > 0 and |ab| = (2j −
1)(2k − 1) (note that some eigenvalues do have multiplicity greater
than 1, corresponding to different representations of |ab| as products
of distinct odd positive integers).

It remains to answer the second question posed above, of showing
that the system (28) is indeed a complete eigensystem for the operator
CA . The answer is encoded in the previous discussion, but one has
to argue more formally now. Let X be the subset of L2([−2, 2]2) of
functions satisfying the symmetry conditions (29), and let Y be the
subset of L2(Ω) of functions satisfying the boundary conditions (27).
Let D be the linear operator on X given by

(Df)(x, y) =
∫ 1−y

0

∫ 1−x

0
f(u, v)dv du, (30)

manifestly a compact self-adjoint operator.
Note that Df can be also defined by the right-hand side of (24)

due to the symmetry conditions imposed on elements of X. Let P :
X → Y be defined by Pf = f|Ω. Then P is clearly an isomorphism of
Hilbert spaces, and D is conjugate to CA under P , i.e., CA = PDP−1.
Therefore f ∈ Y is an eigenfunction of CA iff P−1f is an eigenfunction
of D. As the eigenfunctions of D form a complete orthonormal system
in X, we have proved:

Proposition 9. The system (28) is a complete normalized eigensys-
tem for the operator CA.

Proof of Theorem 2. Denote by Fn and Gn the skew Young diagrams
appearing on the left-hand sides of (8), (9), respectively. Following
the same reasoning as before using Proposition 8 and (21), we have
that

f(Fn) = (4n− 2)!
〈

(CA)2n−3(y − x), y − x
〉
, (31)

f(Gn) = (4n)!
〈

(CA)2n−3

(
y2 − x2

2

)
,
y2 − x2

2

〉
. (32)
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Using these formulas and Proposition 9, after a straightforward com-
putation one finally arrives at (8) and (9). For completeness we include
the details of the computation in Appendix A.

6 The 2k-strip and the (2k + 1)-strip

Having analyzed the case of 4-strip diagrams, the results are now easily
generalized to the 2k-strip and the (2k + 1). Here are the results for
the 2k-strip. The coordinate filtration is again constructed by cutting
the diagram along diagonals. This leads to a transfer operator on
L2(Ωk), where

Ωk =
{
x ∈ [0, 1]k : x1 ≤ x2 ≤ . . . ≤ xk

}
.

The transfer operator is given by

(S2kf)(x1, . . . , xk) =∫ 1−xk

0

∫ 1−xk−1

1−xk

∫ 1−xk−2

1−xk−1

. . .

∫ 1−x1

1−x2

f(y1, . . . , yk)dyk dyk−1 . . . dy1.

(33)

In this representation we have already taken advantage of the sym-
metry using the “square root” trick as in the case of the 4-strip to
reduce two conjugate transfer operators repeating in alternation to a
single operator. Diagonalizing S2k leads to the following boundary
value problem:

∂kf(x1, x2, . . . , xk)
∂x1∂x2 . . . ∂xk

=
(−1)k

λ
f(1− xk, . . . , 1− x2, 1− x1),

f ≡ 0 on x1 ≡ x2, x2 ≡ x3, . . . , xk−1 ≡ xk, xk ≡ 1,
fx1 ≡ 0 on x1 ≡ 0.

The ideas of Section 5 can be used to prove:

Theorem 10 (Diagonalization of the 2k-strip transfer operator). The
system of functions and associated eigenvalues

φj1,...,jk(x1, . . . , xk) = 2k/2 det
(

cos
(
π(2jp − 1)xq

2

))
1≤p,q≤k

,

λj1,...,jk =
2k(−1)(

k
2)+

P
p(jp+1)

πk(2j1 − 1)(2j2 − 1) . . . (2jk − 1)
,

j1 > j2 > . . . > jk > 0 integers,
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is a complete orthonormal eigensystem for the operator S2k in (33).

For the (2k+1)-strip, we have similar results generalizing the anal-
ysis of Section 4. In this case, we have two operators A : L2(Ωk+1)→
L2(Ωk), B : L2(Ωk)→ L2(Ωk+1) given by

(Ag)(x1, . . . , xk) =∫ x1

0

∫ x2

x1

∫ x3

x2

. . .

∫ xk

xk−1

∫ 1

xk

g(y1, . . . , yk+1)dyk+1 . . . dy1,

(Bh)(y1, . . . , yk+1) =∫ y2

y1

∫ y3

y2

∫ y4

y3

. . .

∫ yk+1

yk

h(x1, . . . , xk)dxk . . . dx1.

The relevant operator to diagonalize is the composition AB. This
leads to the following boundary value problem:

∂2kf

∂2x1∂2x2 . . . ∂2xk
=

1
λ2
f, f∣∣∂Ωk

≡ 0

The solution is given by the following theorem.

Theorem 11 (Diagonalization of the (2k+1)-strip transfer operator).
The system of functions and associated eigenvalues

φj1,...,jk(x1, . . . , xk) = 2k/2 det
(

sin (πjpxq)
)

1≤p,q≤k
,

λj1,...,jk =
1

π2kj2
1j

2
2 . . . j

2
k

,

j1 > j2 > . . . > jk > 0 integers,

is a complete orthonormal eigensystem for the operator AB.

7 A Schur function identity

In this section, we prove an identity that will be used in the next
section in the proof of Theorem 4.

Let λ = (λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0) be a Young diagram, possibly
with some parts being 0. Consider the head (or tail) polytope Pλ,
defined by the system of linear inequalities:

0 ≤ yi,j ≤ 1 1 ≤ i ≤ k, −(k − i) ≤ j ≤ λi,
yi,j ≥ yi+1,j where defined,
yi,j ≥ yi,j+1 where defined.
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Let Ωk be the simplex

Ωk =
{

(x1, . . . , xk) ∈ Rk : 0 ≤ x1 ≤ x2 ≤ x3 ≤ . . . ≤ xk ≤ 1
}
,

and for x = (x1, . . . , xk) ∈ Ωk, denote by Pλ(x) the section

Pλ(x) =
{
y ∈ Pλ : yk+1−i,−(i−1) = xi, i = 1, 2, . . . , k

}
(see Figure 7).

λ

0
1

6

3
3

x
x

x
x

x

1

2

3

4

5

Figure 7: The polytope Pλ is the order polytope of the diagram (which is
not a skew Young diagram) formed by leaning the Young diagram λ against
a triangular (“staircase”) diagram, and Pλ(x) is its section where the values
along the main diagonal are x1, . . . , xk. In this example λ = (6, 3, 3, 1, 0).

Obviously, the volume of Pλ(x) is a polynomial function on the
simplex Ωk. More precisely, we have the following.

Proposition 12. Let Li = λi + k − i, 1 ≤ i ≤ k. The volume of the
polytope Pλ(x) (of the appropriate dimensionality) is

vol∗(Pλ(x)) =
1∏k

i=1 Li!
det
(
x
Lj

i

)
1≤i,j≤k

(34)

Proposition 12 generalizes a well-known fact corresponding to the
case λ = (0, 0, . . . , 0), see for example [6, Lemma 1.12] and [11, Sec-
tion 4]. It is known to experts, though perhaps in a slightly dif-
ferent form, and can be proved using the Karlin-McGregor theory
of non-intersecting paths. We will give a direct proof by induction.
Note that the expression on the right-hand side of (34) is equal to(∏k

i=1 Li!
)−1

sλ(x)V (x), where sλ is the Schur symmetric function
associated to λ and V (x) =

∏
i<j(xi − xj) is the Vandermonde deter-

minant.
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Proof. We will proceed by induction on |λ|+k (where |λ| = λ1 + . . .+
λk). The induction base is trivial. For the inductive step, we divide
into two cases according to whether λk > 0 or λk = 0. In the former
case, the inductive hypothesis holds for the smaller Young diagram

λ′ = (λ1 − 1, λ2 − 1, . . . , λk − 1) ,

and the volume of the polytope Pλ(x) can be represented as∫ x1

0

∫ x2

x1

. . .

∫ xk

xk−1

vol∗[Pλ′(y1, . . . , yk)]dyk dyk−1 . . . dy1 (35)

(this is essentiallly a transfer operator computation, since the diagram
formed by λ with its adjoining triangular part can be obtained from
the corresponding diagram for λ′ by adding one diagonal). Using the
inductive hypothesis, the integrand is antisymmetric, and therefore
the expression in (35) can be rewritten as∫ x1

0

∫ x2

0
. . .

∫ xk

0
vol∗[Pλ′(y1, . . . , yk)]dyk dyk−1 . . . dy1 (36)

(similar reasoning was used in the proof of Proposition 9), which in
turn, again by the inductive hypothesis, is equal to∫ x1

0
. . .

∫ xk

0
det
(

1
(Lj − 1)!

y
Lj−1
i

)
i,j

dyk . . . dy1

= det
(

1
Lj !

x
Lj

i

)
i,j

, (37)

proving the inductive step in this case.
The other induction step deals with the second case where λk = 0.

Here, we use the inductive hypothesis for the Young diagram

λ′ = (λ1, . . . , λk−1)

(the same diagram, but we attach to it a smaller triangle of order
k − 1 only). The relation between the two polytopes Pλ(x), Pλ′(y)
can be seen (again using an iterated integral which is really a transfer
operator computation) to be

vol∗(Pλ(x)) =
∫ x2

x1

∫ x3

x1

. . .

∫ xk

x1

vol∗(Pλ′(y2, . . . , yk))dyk . . . dy3 dy2.
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This can be dealt with similarly to (37), simplifying eventually to the
expression

1∏k−1
i=1 Li!

det


xL1

1 xL1
2 . . . xL1

k
...

...
...

x
Lk−1

1 x
Lk−1

2 . . . x
Lk−1

k

1 1 . . . 1


which is exactly the right-hand side of (34) (since Lk = 0 in this
induction step).

It is worth noting that this proof, similarly to the computations in
the previous sections, is based on cutting the diagram along diagonal
lines and computing recursively using transfer operators.

8 Proof of Theorems 4 and 5

Lemma 13 (Andreief’s Formula [4]). If (Ω, µ) is a measure space,
and f1, f2, . . . , fk, g1, g2, . . . , gk are real-valued functions on Ω, then∫

Ωm

det
(
fi(xl)

)
1≤i,l≤k

det
(
gj(xl)

)
1≤l,j≤k

dµ(x1) . . . dµ(xk)

= k! det
(∫

Ω
fi(x)gj(x)dµ(x)

)
i,j

.

Proof.∫
Ωm

det
(
fi(xj)

)
i,j

det
(
gj(xl)

)
1≤l,j≤k

dµ(x1) . . . dµ(xk)

=
∫

Ωm

∑
σ∈Sk

∑
π∈Sk

ε(σ)ε(π)
k∏
l=1

fσ(l)(xl)gπ(l)(xl)dµ
⊗k(x1, . . . , xk)

=
∑
σ∈Sk

∑
π∈Sk

ε(σ)ε(π)
k∏
i=1

(∫
Ω
fσ(l)(x)gπ(l)(x)dµ(x)

)

=
∑
σ∈Sk

∑
π∈Sk

ε(πσ−1)
k∏
j=1

(∫
Ω
fj(x)gπσ−1(j)(x)dµ(x)

)

= k! det
(∫

Ω
fi(x)gj(x)dµ(x)

)
i,j

.
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Figure 8: The coordinate filtration for the diagram D.

Proof of Theorem 4. We now compute f(D), where D is described in
Theorem 4, for the case when m = 2k is even. The case of odd m is
done similarly and is left to the reader. We choose the usual filtration
(C1, C2, . . . , Ct), except that the first coordinate set C1 represents the
tail and the triangular part of the body to which it is attached, and
similarly the last coordinate set Ct represents the head and the trian-
gular part of the body to which it is attached, as shown in Figure 8.
Proposition 12 gives us a good starting position for this computation,
since it implies that the first and last transfer operators, T1 and Tt,
satisfy

(T11)(x1, . . . , xk) =
1∏k

i=1 Li!
det
(
x
Lj

i

)
1≤i,j≤k

=: ψλ(x1, . . . , xk),

(T ∗t 1)(x1, . . . , xk) =
1∏k

i=1Mi!
det
(
x
Mj

i

)
1≤i,j≤k

=: ψµ(x1, . . . , xk).

The transfer operator for the body part is S2k defined in (33). There-
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fore we get using Proposition 8 that

f(D)
|D|!

=
〈
Tt ◦ S2n−m+1

2k ◦ T11,1
〉

=
〈
S2n−2m+1

2k ψλ, ψµ

〉
Expanding this using Theorem 10, we get, in the notation of that
theorem,

f(D)
|D|!

=
∑

j1>j2>...>jk>0

λ2n−m+1
j1,...,jk

〈
ψλ, φj1,...,jk

〉〈
ψµ, φj1,...,jk

〉
. (38)

To compute
〈
ψλ, φj1,...,jk

〉
,
〈
ψµ, φj1,...,jk

〉
, we use Lemma 13:

〈
ψλ, φj1,...,jk

〉
=

∫
. . .

∫
Ωk

det
(
xLs
r

Ls!

)
r,s

det
(√

2 cos
(π

2
(2jr − 1)xs

))
r,s

dx1 . . .dxk

=
1
k!

∫
. . .

∫
[0,1]k

det
(
xLs
r

Ls!

)
r,s

det
(√

2 cos
(π

2
(2jr − 1)xs

))
r,s

dx

= 2k/2 det
(

1
Ls!

∫ 1

0
xLs cos

(π
2

(2jr − 1)x
)
dx

)
r,s

= 2k/2 det
(
I(Ls, jr)

)
r,s

,

where we have denoted

I(a, j) =
1
a!

∫ 1

0
xa cos

(π
2

(2j − 1)x
)
dx.

Now, continuing (38), we get, again using Lemma 13 (this time used
with a discrete measure), that

(−1)(
k
2) · f(D)
|D|!

= 2k
∑

j1>...>jk>0

k∏
r=1

(
2(−1)jr+1

π(2jr − 1)

)2n−m+1

det
(
I(Ls, jr)

)
r,s

det
(
I(Ms, jr)

)
r,s

=
2k

k!

∑
j∈Nk

k∏
r=1

(
2(−1)jr+1

π(2jr − 1)

)2n−m+1

det
(
I(Ls, jr)

)
r,s

det
(
I(Ms, jr)

)
r,s

= det

(
2
∞∑
j=1

(
2(−1)j+1

π(2j − 1)

)2n−m+1

I(Ls, j)I(Mr, j)

)
r,s

. (39)
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A simple computation, which we include in Appendix A, shows that

I(a, j) = (−1)j+1

ba/2c∑
p=0

(−1)p

(a− 2p)!

(
2

π(2j − 1)

)2p+1

+(−1)
a+1
2

(
2

π(2j − 1)

)a+1

1[a odd]. (40)

We also verify in Appendix A that

XN (p, q) = 2
∞∑
j=1

(
2(−1)j+1

π(2j − 1)

)N
I(p, j)I(q, j). (41)

Therefore the expression written inside the determinant in (39) is ex-
actly X2n−m+1(Ls,Mr). This proves (10).

Sketch of proof of Theorem 5. Eq. (12) follows immediately from the
case m = 2 of Theorem 4. Eq. (13) does not follow from Theorem 4,
but can be proved using the same techniques. In fact, a both formulas
can be treated simultaneously by showing that

XN (p, q) =
〈
TN (xp/p!), xq/q!

〉
,

where T is Elkies’s transfer operator defined in (15), and relating this
quantity to αn and βn using Proposition 8 and the trivial (k = 1) case
of Proposition 12.

9 Additional comments and questions

We conclude with some final comments and open questions.

1. More enumeration formulas. Our treatment of enumera-
tion formulas that can be derived by using the explicit diagonalization
of the transfer operators in Theorems 10, 11 is by no means complete
and is meant more as an illustration of the power and generality of
the technique. One may consider several variant formulas. For exam-
ple, one may lean the head Young diagram against the vertical side of
the triangle (the shape on the right-hand side of Figure 4 is a simple
example of this). This will result in enumeration formulas which are
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minor variations on the formulas of Theorem 4. More generally, one
may consider m-strip diagrams with head and tail shapes which are
not Young diagrams, so that the overall shape is not necessarily even a
skew Young diagram. Formula (4) will no longer apply, but the trans-
fer operator technique will still enable deriving enumeration formulas
for such “generalized tableaux”, although the use of Proposition 12
would have to be replaced with more tedious manual computation.

2. The principal eigenfunction. It is interesting to look at the
principal eigenfunction of the transfer operators, since, for example, it
controls the limiting behavior of uniform random points in the order
polytope of a very long m-strip diagram (when m is fixed and n goes
to infinity). One gets a simple product representation. For example,
for the even case where m = 2k, the principal eigenfunction is

ψ(x1, . . . , xk) = 2k/2 det

(
cos
(
π(2i− 1)xj

2

))
1≤i,j≤k

.

By representing each of the cosines as a Chebyshev polynomial in
cos(πxj/2), one can transform this determinant into

ψ(x) = 2k/2
k∏
i=1

cos
(πxi

2

) ∏
1≤i<j≤k

(
cos2

(πxj
2

)
− cos2

(πxi
2

))
.

The probability density ψ(x)2, which will arise as the stationary dis-
tribution of the coordinates of a uniform point in the order polytope
when cutting along successive diagonals, is similar to eigenvalue den-
sities arising in random matrix theory. One may hope to exploit this
to derive interesting results about random m-strip tableaux.

3. Open problem: Generating functions. It would be in-
teresting to find formulas for the generating functions of some of the
families of diagrams treated above. In some cases it’s easy. For ex-
ample, for the diagram Dn in eq. (7) the generating function can be
computed to be

∞∑
n=0

f(Dn)x2n

(3n)!
= x

(
cot

x

2
− cotx

)
.

In more complicated cases we have not found formulas for the gener-
ating functions.
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4. Open problem: Bijective and combinatorial proofs.
Another direction which might be interesting to pursue is to look for
combinatorial or bijective proofs of some of our formulas, for example
to prove Theorem 1 by directly relating 3-strip tableaux to up-down
permutations in some combinatorial way.

5. Extension to periodic ribbon tableaux. We restricted our
computations to the simplest case of “periodic” Young diagrams, those
having the slope (1, 1). Most of the results above can be carried over
(at the cost of a sizable increase of complexity) to the case of Young
diagrams shaped as stacks of m periodic ribbon Yound diagrams (if
one considers our m-strip diagonal YD’s as stacks of m up-down YD’s).
We plan to present these results in a subsequent publication.

Appendix A. Some computations

A.1. Proof of (8) and (9)

The computation for (8). Here are the computations required
for the proof of (8) in Theorem 2. Our starting point is the iden-
tity (31). We compute

〈
y − x, φj,k

〉
. Denote for convenience j′ =

2j − 1, k′ = 2k − 1. Using obvious symmetries, we have that
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〈
y−x, φj,k

〉
=

1
2

∫ 1

0

∫ 1

0
(y−x)·2 det

 cos
(
πj′x

2

)
cos
(
πj′y

2

)
cos
(
πk′x

2

)
cos
(
πk′y

2

)  dy dx

= 2
∫ 1

0

∫ 1

0
y

(
cos
(
πj′x

2

)
cos
(
πk′y

2

)
− cos

(
πk′x

2

)
cos
(
πj′y

2

))
dy dx

= 2
[∫ 1

0
y cos

(
πk′y

2

)
dy

∫ 1

0
cos
(
πj′x

2

)
dx

−
∫ 1

0
y cos

(
πj′y

2

)
dy

∫ 1

0
cos
(
πk′x

2

)
dx

]
= 2

[(
2(−1)k−1

πk′
− 4
π2k′2

)
· 2(−1)j−1

πj′

−
(

2(−1)j−1

πj′
− 4
π2j′2

)
· 2(−1)k−1

πk′

]
=

16
π2j′2k′2

(
(−1)k−1k′ − (−1)j−1j′

)
.

It follows that (in the notation of (31))

f(Fn) = (4n− 2)!
∑

0<j<k

〈
y − x, φj,k

〉2
λ2n−3
j,k

=
1
2

(4n− 2)!
∞∑
j=1

∞∑
k=1

28
(
(−1)k−1(2k − 1)− (−1)j−1(2j − 1)

)2
π6(2j − 1)4(2k − 1)4

·
(

4(−1)j+k−1

π2(2j − 1)(2k − 1)

)2n−3

=
24n+1(4n− 2)!

π4n

− ∞∑
j=1

(−1)j−1

(2j − 1)2n+1

∞∑
k=1

(−1)k−1

(2k − 1)2n−1

−
∞∑
j=1

(−1)j−1

(2j − 1)2n−1

∞∑
k=1

(−1)k−1

(2k − 1)2n+1

+2
∞∑
j=1

1
(2j − 1)2n

∞∑
k=1

1
(2k − 1)2n

 .
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Now use the classical identity (23) together with (3) and another clas-
sical identity due to Euler, namely

β(2n+ 1) :=
∞∑
j=1

(−1)j−1

(2j − 1)2n+1
=

(−1)nπ2n+1E2n

22n+2(2n)!
,

to get that

f(Fn) =
24n+1(4n− 2)!

π4n

(
ζ(2n)2

(
1− 1

22n

)2

− β(2n− 1)β(2n+ 1)

)

= (4n− 2)!

(
24n
(
22n − 1

)2
B2

2n

((2n)!)2
+

E2n−2E2n

(2n− 2)!(2n)!

)

= (4n− 2)!
(

T 2
n

((2n− 1)!)2
− −E2n−2E2n

(2n− 2)!(2n)!

)
,

as claimed.

The computation for (9). Here the computation is similar start-
ing with (32). This time, an integration similarly as before gives that〈y2 − x2

2
, φj,k

〉
=

32(−1)j+k

π4(2j − 1)(2k − 1)

(
1

(2j − 1)2
− 1

(2k − 1)2

)
.

Continuing as before we can represent f(Gn) in (32) as a double in-
finite series which we express in terms of the values β(2n + 1). The
details are left as an exercise.
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A.2. Proof of (40)

Let θ = π
2 (2j − 1). By repeated integration by parts, we get

I(a, j) =
1
a!

∫ 1

0
xa cos (θx) dx

=
θ−1

a!
xa sin (θx)

∣∣1
0

+
θ−2

(a− 1)!
xa−1 cos (θx)

∣∣1
0

− θ−3

(a− 2)!
xa−2 sin(θx)

∣∣1
0
− θ−4

(a− 3)!
xa−3 cos(θx)

∣∣1
0

+
θ−5

(a− 2)!
xa−4 sin(θx)

∣∣1
0

+
θ−6

(a− 5)!
xa−5 cos(θx)

∣∣1
0

− θ−7

(a− 6)!
xa−6 sin(θx)

∣∣1
0
− θ−8

(a− 7)!
xa−7 cos(θx)

∣∣1
0

+ . . .

= (−1)j+1

ba/2c∑
p=0

(−1)p

(a− 2p)!
θ−(2p+1) + (−1)

a+1
2 θ−(a+1)1[a odd].

A.3. Proof of (41)

Rewrite (16) as

Ān = 2
∞∑
`=1

(
2(−1)`+1

π(2`− 1)

)n+1

.
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Using this and (40), the right-hand side of (41) is seen to be

bp/2c∑
i=0

bq/2c∑
j=0

(−1)i+j

(p− 2i)!(q − 2j)!

[
2
∞∑
`=1

(
2(−1)`+1

π(2`− 1)

)N+2i+2j+2
]

+(−1)
p+1
2

bq/2c∑
j=0

(−1)j

(q − 2j)!

[
2
∞∑
`=1

(
2(−1)`+1

π(2`− 1)

)N+p+2j+2
]

1[p odd]

+(−1)
q+1
2

bp/2c∑
i=0

(−1)i

(p− 2i)!

[
2
∞∑
`=1

(
2(−1)`+1

π(2`− 1)

)N+2i+q+2
]

1[q odd]

+(−1)
p+q
2

+1

[
2
∞∑
`=1

(
2(−1)`+1

π(2`− 1)

)N+p+q+2
]

1[p,q odd]

=
bp/2c∑
i=0

bq/2c∑
j=0

(−1)i+jĀN+2i+2j+1

(p− 2i)!(q − 2j)!

+(−1)
p+1
2

bq/2c∑
j=0

(−1)jĀN+p+2j+1

(q − 2j)!
1[p odd]

+(−1)
q+1
2

bp/2c∑
i=0

(−1)iĀN+q+2i+1

(p− 2i)!
1[q odd]

+(−1)
p+q
2

+1ĀN+p+q+11[p,q odd]

= XN (p, q).
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