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Read This First
The combinatorics of fully packed loops and Razumov-Stroganov conjectures
A Mathematica-based presentation
Copyright (c) 2014 Dan Romik. You may distribute this document freely for all noncommercial purposes as long as it
is  kept  in its  original  unmodified form. You may freely modify,  use and distribute the Mathematica  source code
contained in the initialization code blocks below, but not other parts of the document. If you distribute any derivative
works based on the code, an acknowledgement to the author is appreciated.

ü Initialization code (for geeks)
ü Instructions (for everyone)
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Download this Mathematica notebook at https://www.math.ucdavis.edu/~romik/data/uploads/talks/fpl.nb
PDF version at https://www.math.ucdavis.edu/~romik/data/uploads/talks/fpl.pdf
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Noncrossing matchings
This talk will feature several families of combinatorial objects; some well-known, others less so. Let’s start with the
most well-known one.
A noncrossing matching is, informally, a “handshaking pattern,” that is, a way for an even number of people sitting
around a table to pair off into pairs, with each pair shaking hands across the table, so that their arms don’t have to cross
over or under each other.  

ü An example
Graphics@8NoncrossingMatchingGraphicsCircular@82, 1, 8, 5, 4, 7, 6, 3<, FalseD@@1DD,

Table@8ColorData@"Rainbow"D@Hj - 1L ê 7D,
8stickfigure@1.25 Cos@2 Pi Hj - 1L ê 8D, -0.03 + 1.25 Sin@2 Pi Hj - 1L ê 8D, 0.5D,
Text@Style@8"Alice", "Bob", "Cindy", "Dan", "Emily", "Fred", "Gina", "Harry"<@@jDD,

16D, 81.25 Cos@2 Pi Hj - 1L ê 8D,
-0.15 + 1.25 Sin@2 Pi H j - 1L ê 8D<D<<, 8j, 1, 8<D<, ImageSize Ø 500D
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Typically we’ll forget about the people and their social interactions and talk about a “noncrossing matching of order
n”, meaning a matching of 2 n abstract objects, or points, arranged around a circle:
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Graphics@
NoncrossingMatchingGraphicsCircular@82, 1, 8, 5, 4, 7, 6, 3<, TrueD@@1DD, ImageSize Ø 450D
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We can decide to cut the circle open at an arbitrary place, to get a matching of points arranged on a line, giving a
slightly different (but equivalent) graphical representation of the matching:
Graphics@
NoncrossingMatchingGraphicsLinear@82, 1, 8, 5, 4, 7, 6, 3<, TrueD@@1DD, ImageSize Ø 450D

1 2 3 4 5 6 7 8

ü Enumeration of noncrossing matchings
How many noncrossing matchings are there for a given order n? Let’s investigate:
Table@Length@NoncrossingMatchings@nDD, 8n, 1, 9<D

81, 2, 5, 14, 42, 132, 429, 1430, 4862<

Hmm. These numbers look familiar... Maybe the internet can help?
OnlineEncyclopediaOfIntegerSequencesLookup@%D

Indeed, these are the famous Catalan numbers:
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catalan@n_D :=
1

n + 1
K
2 n
n

O;

Table@catalan@nD, 8n, 1, 9<D

81, 2, 5, 14, 42, 132, 429, 1430, 4862<

 The enumeration of noncrossing matchings is one of several hundred interpretations (to be listed in a forthcoming
book by Richard P. Stanley) of these magical numbers.
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Fully Packed Loop arrangements
A Fully Packed Loop (FPL) arrangement of order n is a certain arrangement of paths and loops on an Hn - 1Lµ Hn - 1L
square lattice to which are added “stubs” which are 2 n alternating edges around the boundary of the square. Here’s an
example:
fpl = RandomFPL@8D;
Graphics@FPLgraphics@fplDD

Given an FPL arrangement, we can associate with it in an obvious way a noncrossing matching of order n  called its
connectivity pattern:
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NoncrossingMatchingGraphicsCircular@FPLmatching@fplD, TrueD
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ü Enumeration of Fully Packed Loop arrangements
How many FPL arrangements are there for a given order n? Let’s investigate.
Table@Length@AllFPLs@nDD, 8n, 1, 6<D

81, 2, 7, 42, 429, 7436<

OnlineEncyclopediaOfIntegerSequencesLookup@%D

A formula for this sequence of numbers was guessed by Mills, Robbins and Rumsey in the early 1980s:
           
             FPLn = 1!ÿ4!ÿ7!ÿÿÿH3 n-2L!

n!ÿHn+1L!ÿÿÿH2 nL!
= ¤j=0

n-1 H3 j+1L!
Hn+ jL!

             
 This was proved in 1994 by Doron Zeilberger, and later by Greg Kuperberg and others.

numfpls@n_D := ProductB
H3 j + 1L!

Hn + jL!
, 8j, 0, n - 1<F;

Table@numfpls@nD, 8n, 1, 8<D

81, 2, 7, 42, 429, 7436, 218 348, 10 850 216<

ü A story for another day
FPL arrangements are in (fairly simple) bijective correspondences with several other classes of combinatorial objects:

Ë Alternating sign matrices (ASMs)

Ë Square ice configurations with “domain wall” boundary conditions

Ë 3-colorings of a square lattice with certain boundary conditions

Ë Complete monotone triangles

They are also equinumerous with (but not known to be in natural bijection with):
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Ë Totally symmetric self complementary plane partitions

Ë Descending plane partitions

These bijections and the remarkable enumeration results mentioned above are described in several readable accounts:

Ë “The story of 1, 2, 42, 429, 7436, ...” by David P. Robbins (Mathematical Intelligencer 1991)

Ë “The many faces of alternating sign matrices” by James Propp (Discrete Mathematics and Theoretical Computer 
Science, 2001)

Ë “Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture” by David Bressoud 
(Mathematical Association of America, 1991)

ü The rotational symmetry of FPLs
The set of noncrossing matchings of order n has an obvious rotational symmetry -- matchings can be rotated by an
angle 2 p j ê H2 nL for integer j. The square lattice has no such obvious rotational symmetry, but it turns out FPLs do
have a natural operation whose effect is to rotate the associated connectivity pattern. This operation, discovered by Ben
Wieland in 2001, is called Wieland gyration. Let’s see how it works.
CreatePalette@FPLsInteractiveDemo@D, WindowTitle Ø "Fully Packed Loops"D;
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Loop percolation
Loop percolation (a.k.a. the “dense OH1L loop model”) is another combinatorial structure that gives rise to a noncross-
ing matching.
The idea is to tile a planar region with the following two kinds of square tiles (known by the Frenchism “plaquettes”):
Graphics@8plaquette@0, 80, 0<D, plaquette@1, 82, 0<D<D

Putting together many of these plaquettes produces a collection of loops and paths (reminiscent of Fully Packed Loops,
but not quite the same):
myplaquettes = randombits@10, 10D;
Graphics@plaquettes@myplaquettesDD

(Connoisseurs of percolation theory will recognize that this is a disguised version of critical bond percolation on the
square lattice.)

ü The connectivity pattern of loop percolation
What we’ll  do is to consider this as an arrangement of plaquettes on a cylinder,  by identifying the left  and right
boundary edges of the big square. The paths then connect boundary points on the bottom and top edges (the “lids” of
the cylinder) to each other in some complicated pattern.
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plaquettegr =
Graphics@8plaquettes@myplaquettesD, Table@plaquettesendpointpathgraphics@myplaquettes,

j, ColorData@"Rainbow"D@Hj - 1L ê 9DD, 8j, 1, 10<D<, ImageSize Ø 400D;
Row@8plaquettegr, CylinderGraphics@plaquettegrD<D

We’re interested in the connectivity pattern that emerges between the bottom boundary endpoints. Imagine now the
cylinder to be infinitely long, extending upwards all the way to infinity. The bottom boundary endpoints become more
and more likely to be interconnected among themselves -- in other words to define a noncrossing matching.
CreatePalette@LoopPercolationInteractiveDemo@D, WindowTitle Ø "Loop Percolation"D;

Notice what happens in the randomized setting when the plaquette bias becomes very close to 0 or 1. In this case the
model converges to a limiting process called pipe percolation.
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Pipe percolation
In pipe percolation (a.k.a. the Temperley-Lieb random walk, Temperley-Lieb stochastic process), we lay down a
sequence of graphical pipe operators that act on noncrossing matchings.
Graphics@8AbsoluteThickness@2D, PipeOperatorGraphics@10, 3, 0D<D

In this representation, the jth operator has the effect of matching points j and j + 1, and rerouting the point previously
matched to j  to the point that was matched to j + 1. For each operator, j  is chosen uniformly at random from the
integers 1,...,2 n.
CreatePalette@PipePercolationInteractiveDemo@D, WindowTitle Ø "Pipe Percolation"D;
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All loops lead to Rome
We defined random noncrossing matchings obtained as the connectivity patterns of several different processes: Fully
Packed Loop arrangements, loop percolation, and pipe percolation. There are several amazing connections between
these different random objects.

ü The connectivity pattern of loop percolation is independent of the plaquette bias 0 < p < 1
Ë This property observed by Di Francesco, Zinn-Justin (2006) and possibly others. Catch phrase: “Loop percolation is 

integrable”

Ë Technically, the row-transfer matrices TnHpL all commute with each other, therefore share the same Frobenius-Perron 
eigenvector

Ë Proof using a beautiful algebraic technique -- the Yang-Baxter equation

Ë New proof (R.+Peled 2014) using an explicit combinatorial bijection

ü The connectivity pattern of pipe percolation is the same as that of loop percolation
Ë Follows easily from the above invariance result by taking the limit as p Ø 0

ü The Cantini-Sportiello-Razumov-Stroganov theorem
Ë In 2001, Alexander Razumov and Yuri Stroganov numerically computed the distribution of the connectivity pattern 

of pipe percolation (equivalently: the stationary distribution of the Temperley-Lieb random walk). Let’s follow in 
their footsteps:

Manipulate@Column@8Apply@Plus, ÒD, Ò<D &üRazumovStroganovEigenvector@nD, 8n, 1, 7, 1<D

n

429
842, 17, 17, 14, 4, 17, 6, 14, 4, 17, 6, 6, 4, 1, 17, 6, 6, 4, 1, 14,
4, 4, 1, 17, 6, 6, 4, 1, 42, 17, 17, 14, 4, 17, 6, 14, 4, 17, 6, 6, 4, 1<

Ë They recognized that the coordinates of the vector enumerated Fully Packed Loops, and formulated a conjecture, 
which was proved in 2010 by Luigi Cantini and Andrea Sportiello:

The Cantini-Sportiello-Razumov-Stroganov theorem. The probability in pipe percolation/loop percolation (of 
order n) for a given connectivity pattern a is equal to the number of FPL arrangements (of order n) whose 
connectivity pattern is equal to a divided by the total number FPLn of arrangements.

Equivalently: the connectivity pattern of a uniformly random FPL arrangement is equal in distribution to that of 
loop percolation (with any bias p) and pipe percolation.

Ë Cantini and Sportiello’s proof is ingenious and highly nontrivial. A variant of Wieland’s gyration map plays a key 
role.
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Rational probabilities of connectivity events
In numerical work around 2001-2004, D. Wilson, J.-B. Zuber and Mitra-Nienhuis-de Gier-Batchelor found simple
formulas  for  probabilities  of  simple events  in  the Razumov-Stroganov distribution on noncrossing matchings (the
distribution of the connectivity pattern of loop percolation, Fully Packed Loops etc.).

ü Example: The submatching event “
1 2

”

Table@ProbabilityForSubmatchingEvent@n, 82, 1<D, 8n, 1, 6<D

:1,
1

2
,
3

7
,
17

42
,
13

33
,
111

286
>

GuessFormula@%, 8n, 1, 6<, 1D

3 Hn2 + 1L

8 n2 - 2

ü Example: The submatching event “
1 2 3 4

”

Table@ProbabilityForSubmatchingEvent@n, 82, 1, 4, 3<D, 8n, 2, 6<D

:
1

2
,
2

7
,

5

21
,

94

429
,

779

3718
>

GuessFormula@%, 8n, 2, 6<, 2D

97 n6 + 82 n4 - 107 n2 - 792

32 H1 - 4 n2L2 Hn2 - 1L

ü Other examples
Event Probability

1 2

3

2
µ n2+1

4 n2-1

1 2 3 4
1

8
µ 97 n6+82 n4-107 n2-792

I4 n2-1M2 I4 n2-9M

1 2 3 4

1

16
µ 59 n6+299 n4+866 n2+576

I4 n2-1M2 I4 n2-9M

1 2 3 4 5 6
1

512
µ 214 093 n12-980 692 n10-584 436 n8-1 887 916 n6+1 361 443 n4-17 432 892 n2-316 353 600

I4 n2-1M3 I4 n2-9M2 I4 n2-25M

ü Theoretical developments

Ë The formula for the probability of the simplest submatching event “
1 2

” was proved in 2009 (Fonseca-

Zinn-Justin 2009).
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Ë Using the “qKZ equation” techniques developed by Di Francesco-Zinn Justin (2006) and Fonseca-Zinn-Justin, I 
proved a couple of the other conjectured formulas (R. 2014).

Ë In the same paper, I also proved a general formula expressing the probability of an arbitrary submatching event as a 
constant term of a certain multivariate Laurent polynomial. It’s not clear yet how to see that this complicated 
algebraic expression is always a rational function of n (the obvious empirical pattern one observes in the simple 
cases). This is an interesting conjecture in algebraic combinatorics with beautiful probabilistic consequences 
(especially in the limit as n Ø¶).

Ë My constant term formula was discovered experimentally using Mathematica. In fact, I wrote Mathematica code 
specifically looking for a certain kind of algebraic expansion (relating a sum over a certain class of “wheel 
polynomials” to another sum involving a different basis of the same vector space; see my paper). Thus, using a 
combination of intuition, patience and coding skills I was able to discover (and eventually prove) a beautiful 
mathematical theorem.

Ë (Moral of the story: good programming skills can make you look smarter than you are!)
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Razumov-Stroganov conjectures and symmetry classes of FPLS
Razumov and Stroganov also studied several natural variants of pipe percolation and the associated Temperley-Lieb
random walk with different boundary conditions, and discovered numerically a host of similar “Razumov-Stroganov
conjectures” relating the associated eigenvector with classes of FPL arrangements. A few of them were also proved by
Cantini and Sportiello using their generalized gyration; others are still unsolved.

ü Example: aperiodic boundary conditions and Vertically Symmetric FPLs
Thinking of  noncrossing matchings as  objects  existing on a line rather  than a circle,  it  is  natural  to  disallow the
“wraparound” pipe operator  connecting the points  1  and 2 n.  The associated stationary distribution no longer  has
rotational symmetry. Let’s explore this.
eigenvectors = Table@RazumovStroganovAperiodicEigenvector@nD, 8n, 1, 7, 1<D;
Manipulate@Column@8Apply@Plus, ÒD, Ò<D &üeigenvectors@@nDD, 8n, 1, 7, 1<D

n

45 885
87429, 3235, 3021, 2346, 580, 3021, 1199, 2234, 561, 1995, 560, 565,
246, 42, 3235, 1375, 1199, 890, 210, 2346, 890, 580, 210, 1995, 565, 560,
246, 42, 1862, 539, 588, 267, 48, 539, 154, 267, 48, 133, 27, 27, 8, 1<

Map@Apply@Plus, ÒD &, eigenvectorsD

81, 3, 26, 646, 45 885, 9 304 650, 5 382 618 660<

OnlineEncyclopediaOfIntegerSequencesLookup@%D

It turns out that the stationary probabilities are related to the connectivity patterns of uniformly random FPL arrange-
ments chosen from the set of Vertically Symmetric FPLs (related to Vertically Symmetric Alternating Sign Matrices,
known as VSASMs).

ü Other Razumov-Stroganov variants
The Razumov-Stroganov conjectures involve symmetry classes of FPLs, or equivalently of ASMs. Here our story
intersects with another story --  the enumeration of these symmetry classes (mostly solved in two papers by Greg
Kuperberg and Soichi Okada). Some of the symmetry classes that show up are:
Ë Half-Turn Symmetric ASMs (HTASM)

Ë Quarter-Turn Symmetric ASMs (QTASM)

Ë Diagonally and Antidiagonally Symmetric ASMs (DASASM)

Ë ... (?)
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The End - Thank You!
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