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This Mathematica notebook contains suggestions for experimental mathematics projects 
you can work on (with Mathematica or with any other mathematical software, or even 
with straightforward programming in C, Python etc.). Enjoy!
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Experimental Mathematics Project 1: investigating the 
Robbins numbers mod 2

Define the Robbins numbers.

A[n_, k_] :=
(n + k - 2)! (2 n - k - 1)!

(n - 1)! (k - 1)! (n - k)!
Product

3 j + 1!

n + j!
, {j, 0, n - 2};

Have a look at the first few rows of the Robbins triangle.

Table[A[n, k], {n, 1, 8}, {k, 1, n}] // Grid

1
1 1
2 3 2
7 14 14 7
42 105 135 105 42
429 1287 2002 2002 1287 429
7436 26026 47320 56784 47320 26026 7436

218348 873392 1 813968 2 519400 2 519400 1 813968 873392 218348

When you run across an interesting sequence of numbers, the first thing you should always do is to 
look it up in the amazing Online Encyclopedia of Integer Sequences (OEIS). We can do this from 
Mathematica by defining a convenience function OEISLookup[ ] and then looking up the Robbins num-
bers to see what OEIS has to say about them.



OEISLookup[sequence_] := Module[{url},
url = "http://oeis.org/search?q=";
Do[url = url <> ToString[sequence[[i]]] <> If[i < Length[sequence],

"%2C", "&languge=english&go=Search"] , {i, 1, Length[sequence]}];
SystemOpen[url]

];

Try evaluating the next command.

OEISLookup[Flatten[Table[A[n, k], {n, 1, 4}, {k, 1, n}]]]

Now look at the Robbins numbers mod 2. Try evaluating this command and then changing the upper 
range of the index n to get a larger data set

Table[Mod[A[n, k], 2], {n, 1, 40}, {k, 1, n}] // Grid

1
1 1
0 1 0
1 0 0 1
0 1 1 1 0
1 1 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Since this is a rather sparse array, it helps to show only the nonzero values, which can be done by 
forming generating polynomials of each row.

Dopoly = SumMod[A[n, k], 2] xk, {k, 1, n};
If[CoefficientList[poly, x] ≠ {}, Print[n, " ", poly]], {n, 1, 200, 1}
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1 x

2 x + x2

3 x2

4 x + x4

5 x2 + x3 + x4

6 x + x2 + x5 + x6

11 x6

12 x + x4 + x9 + x12

21 x10 + x11 + x12

22 x + x2 + x5 + x6 + x17 + x18 + x21 + x22

43 x22

44 x + x4 + x9 + x12 + x33 + x36 + x41 + x44

85 x42 + x43 + x44

86 x + x2 + x5 + x6 + x17 + x18 + x21 + x22 + x65 + x66 + x69 + x70 + x81 + x82 + x85 + x86

171 x86

172 x + x4 + x9 + x12 + x33 + x36 + x41 + x44 + x129 + x132 + x137 + x140 + x161 + x164 + x169 + x172

The project: you’re now on your own. Your goal is to investigate the interesting patterns that emerge 
from this question and try to 

1) formulate conjectures;
2) prove theorems;
3) generalize the question to find other interesting patterns;
4) importantly, don’t forget to use the internet to do a literature search to see if anything is 

known about this question.

Experimental Mathematics Project 2: the number of steps 
in the hook walk

Let Wn,m denote the average number of steps that the hook walk (discussed in the lecture) takes until 
terminating when it is performed on an n×m rectangular Young diagram. By the definition of the hook 
walk, Wn,m can be expressed as

Wn,m =
1
n m

Σ
1≤i≤n, 1≤ j≤m

S(i, j),

where we denote by S(i, j) the average number of steps of the hook walk on the same Young diagram 
started from the box with coordinates (n + 1 - i, m + 1 - j) (this labeling of the indices is selected so that 
S (i, j) is independent of m and n -- think of the hook walk as happening in reverse, moving to the left 
and down towards the bottom-left corner of the diagram). Moreover, again by the definition, it is easy to 
see that S (i, j) satisfies the recurrence relation
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S(i, j) = 1 +
1

i + j - 2
Σk=1
i-1 S(k, j) + Σk=1

j-1 S(i, k), (i, j) ϵℕ2 \(1, 1),

together with the initial condition S (1, 1) = 1. Let’s program this function in Mathematica. Calling the 
function SijArray[n] defined below returns a two-dimensional array with the values S(i,j) for 1 ≤ i, j ≤ n.

SijArray[n_] := Module{myarray},
myarray = Table[0, {i, 1, n}, {j, n}];

Domyarray[[i, j]] = If{i, j} ⩵ {1, 1}, 0, 1 +
1

i + j - 2
Sum[myarray[[k, j]], {k, 1, i - 1}] + Sum[myarray[[i, k]], {k, 1, j - 1}],

{i, 1, n}, {j, 1, n};
myarray

;

SijArray[6] // MatrixForm

0 1 3
2

11
6

25
12

137
60

1 2 5
2

17
6

37
12

197
60

3
2

5
2

3 10
3

43
12

227
60

11
6

17
6

10
3

11
3

47
12

247
60

25
12

37
12

43
12

47
12

25
6

131
30

137
60

197
60

227
60

247
60

131
30

137
30

The project: investigate these numbers and find interesting things to say about them. Some possible 
questions to think about are:

1. Can you find a closed-form formula for S(i,j) and/or for the average values Wn,m? (A sugges-
tion: try small examples first, such as setting i = 1, i = 2, ..., etc.) 

2. Can you determine the asymptotics of Wn,n? My guess is it should behave asymptotically like 
a constant times log (n). 

3. Can you prove upper and lower bounds that are logarithmic in n? 
4. Can you find the precise constant in the asymptotics? 
5. Can you understand the distribution (rather than just the average value) of the number of 

steps?
6. What can you say about the number of steps in the hook walk for non-rectangular Young 

diagrams?

Experimental Mathematics Project 3: improved upper 
bounds in the moving sofa problem

The moving sofa problem is an open problem in geometry. It asks for the two-dimensional shape of 
maximal area that can be move around a right-angled corner in a corridor of unit width. The problem 
was first asked 1966 and has been open since.

The best bounds for the maximal area of a moving sofa are 2.21953... (lower bound) and 2 2 ≈ 2.82 
(upper bound). The lower bound is the area of a specific shape proposed by Joseph Gerver in a 1992 
paper.

The project. I have an idea for an experimental math project whose goal is to prove improved upper 

bounds. The upper bound of 2 2  is pretty trivial and should not be too hard to improve using a compu-
tational/experimental math approach that involves some programming to do a computer search of a 
certain configuration space. Getting any improvement of the upper bound (which will already be a 
publishable result in my opinion) is essentially a purely computational problem, whereas getting a 
significant improvement that pushes the upper bound much closer to the lower bound would require 
some additional (possibly rather nontrivial) mathematical reasoning.

I will not include the details of the idea here since this problem is not related to combinatorics, the topic 
of the summer school, but I’ll be happy to explain them to anyone who’s interested, so feel free to ask 
me about it. The explanation should not take more than 5 minutes.

Here is a link to a short HTML article I wrote about the moving sofa problem, with a summary of what’s 
known about the problem (including some new results I proved, making heavy use of experimental math 
and Mathematica) and some fun animations of moving sofas: https://www.math.ucdavis.edu/~romik/mov-
ingsofa/
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Experimental Mathematics Project 4: the Witten zeta 
function

For a problem I was working on in 2015 related to the asymptotic enumeration of representations of the 
group SU(3), I was led to study the function of a complex variable

f(s) = Γ(s) Σ
j,k=1

∞
1

( j k ( j + k))s

Specifically, I needed to understand where f (s) has poles and what their residues are. Actually the 
series only converges for s>2/3, but it turns out the function can be analytically continued using the 
following approximate formula

g(s) = Γ(2 s - 1) Γ(1 - s) ζ(3 s - 1) + Σ
k=0

N
(-1)k

k !
Γ(s + k) ζ(2 s + k) ζ(s - k)

where N is a large integer. It can be shown that f (s) - g(s) is an analytic function in the half-plane 
Re(s) > -N/2, so g (s) encodes the necessary information about the singularities of f (s).

We can now study the singularitiies of g (s) both experimentally (and then theoretically). It is not hard to 
see they are located at s = 2 /3; s = 1 /2, -1 /2, -3 /2, -5, 2,...; and s = 0, -1, -2, -3, ....

g[s_] := Gamma[2 s - 1] Gamma[1 - s] Zeta[3 s - 1] +

Sum
(-1)k

k!
Gamma[s + k] Zeta[2 s + k] Zeta[s - k],

{k, 0, 20}; (* We choose 20 as the upper range of the summation *)

Try evaluating the following commands.
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Residue[g[s], {s, 2 / 3}]

1

3
Gamma

1

3

2

Table[Residue[g[s], {s, x}], {x, 1 / 2, -7 / 2, -1}]

 π Zeta
1

2
,

1

4
π Zeta-

5

2
,

1

32
π Zeta-

11

2
,

1

384
π Zeta-

17

2
,

π Zeta- 23
2


6144


Table[Residue[g[s], {s, x}], {x, 0, -7, -1}]


1

3
, 0, 0, 0, 0, 0, 0, 0

Hmm. This last result is surprising, isn’t it? Thinking about why this should happen led me to discover 
(and eventually prove -- using software developed here at RISC!) a very interesting theorem. 

The project: try to analyze the problem theoretically, using standard facts (that can be easily found on 
Wikipedia, etc.) about the Euler gamma function and Riemann zeta function, and rediscover the theo-
rem I found, then see if you can prove it. Is this just an isolated fact or one of a larger family of similar 
results? I don’t know.

Experimental Mathematics Project 5: unleash your creativity
This is an open-ended assignment. Try to think of your own math research problems and write some 
code to explore them experimentally, or even just write code to visualize and explore a known concept 
or theorem you are interested in.
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