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Homework Problem Set

A. Experimental math problems

1. Download and install on your computer a symbolic math software ap-
plication such as SageMath or Mathematica. Play with it for a while
to get familiar with using the software for doing some simple computa-
tions (e.g., manipulation of polynomials, symbolic differentiation and
integration).

2. Think of, and execute, a cool programming exercise to illustrate a
mathematical concept or theorem. (For example: the 3x + 1 map;
some concept in basic calculus; an exploration of the parity of bino-
mial coefficients; etc. If you are still short of inspiration, the Wolfram

Demonstrations project has many beautiful Mathematica-based de-
mos.)

3. If you are using Mathematica, download from the course web page
https://www.math.ucdavis.edu/˜romik/aec-2016/ the experimen-
tal math notebook experimental-math.nb that I prepared. (If you
don’t use Mathematica, you can download a PDF printout of the note-
book.) This notebook suggests several possible experimental math
projects you could work on. One of the assignments is to come up
with your own project involving an open problem you are interested
in.

B. Theory problems

1. Let m ≥ n ≥ 1 be integers. Assume that two candidates, Alice and
Bob, are competing in an election with m+ n voters, of which m are
voting “A” for Alice and n are voting “B”for Bob. An (m,n)-ballot
sequence is an ordering v1 . . . vm+n ∈ {A,B}m+n of the list of votes
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such that at any time during the vote-counting process, Alice is ahead
of, or tied with, Bob. For example, if m = 5 and n = 3 then

AABBAABA

is a (5, 3)-ballot sequence, but

ABABBAAA

is not a (5, 3)-ballot sequence.

(a) Prove that the number Bm,n of (m,n)-ballot sequences is given
by

Bm,n =
m− n+ 1

m+ 1
×
(
m+ n

m

)
.

This can be interpreted probabilistically as the statement that if
the m+ n votes are read in a random order, the probability that
Alice maintains a lead or tie over Bob throughout the counting
process is precisely m−n+1

m+1 .

(b) In particular, in the case m = n, deduce that Bn,n is equal the
nth Catalan number, Cn = 1

n+1

(
2n
n

)
. (This is one of literally

hundreds of interpretations of the combinatorial meaning of the
Catalan numbers, surveyed in the recently published book “Cata-
lan Numbers” by Richard Stanley.)

(c) Show that (m,n)-ballot sequences are in bijection with standard
Young tableaux of shape (m,n) (=a Young diagram with one row
of length m and another row of length n).

(d) Show that the result of (a) can be derived using the bijection of
part (c) together with the hook-length formula.

(e) Show that standard Young tableaux of shape λ = (λ1, . . . , λk)
are in bijection with “(λ1, . . . , λk)-ballot sequences”, which are
generalizations of ordinary (m,n)-ballot sequences corresponding
to an election of k candidates in which candidate j received λj
votes for each j = 1, . . . , k, and where the votes are counted in
an order for which at each point during the count candidate 1
has the most votes, candidate 2 has the second-highest number
of votes, etc. (Thus, the hook length formula can be thought
of as an elegant generalization of the solution to the 2-candidate
ballot problem.)
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2. The Erdős-Szekeres theorem cited in the lecture has many proofs. Find
three different ones (by thinking about the question yourself and/or
looking for proofs online, which is also a useful exercise since it is likely
to lead you to other interesting and related topics).

3. (a) Show using the Erdős-Szekeres theorem that for a permutation
σ ∈ Sn, the inequality

LDS(σ) LIS(σ) ≥ n

holds.

(b) Explain how this implies the lower bound Ln ≥ 1
2

√
n (discussed

in the lecture) on the expected maximal of a longest increasing
subsequence of a random permutation σn ∈ Sn.

(c) Show that in fact the bound can be improved to Ln ≥
√
n.

4. Show that for any D > e there exists a constant c > 0 such that if
k ≥ D

√
n then

1

k!

(
n

k

)
<

nk

(k!)2
< e−c

√
n.

(This inequality was used in the proof of the upper bound Ln ≤ 3
√
n.)

5. Consider the following alternative “proof” of the hook-length formula:
Given a Young diagram λ with n boxes, choose a uniformly random
filling of the boxes of λ with the numbers 1, . . . , n. There are n! possi-
bilities, and the probability of the event E that the resulting filling is
a standard Young tableau is precisely dλ/n!. On the other hand, we
can represent the event E as an intersection of events

E =
⋂
(i,j)

Fi,j

over all boxes (i, j) of λ, where Fi,j is the event that the number written
in box (i, j) is the smallest from among the numbers appearing in the
hook of (i, j).

Clearly the probability of each event Fi,j is 1/hλ(i, j), the reciprocal
of the hook length of (i, j). The events Fi,j are independent, so the
probability of their intersection is the product of the probabilities, and
we get precisely the hook-length formula.

(a) Find the flaw in the proof. Why doesn’t it work?
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(b) Moreover, prove that this argument is not just incomplete, but
actually incorrect.

(c) Given a rooted tree T with n vertices, we can define an ana-
logue of a standard Young tableau to be a labeling of the vertices
of the tree with the numbers 1, . . . , n such that the labels are
strictly increasing as one moves further away from the root of the
tree. Prove the following analogue of the hook-length formula for
trees, which states that the number dT of “tree standard Young
tableaux,” as defined above, is equal to n! divided by the product
of hook lengths of the vertices of the tree, where the hook length
of a vertex v counts the number of vertices that are ... . Hint:
adapt the incorrect argument given above to the setting of trees
and show that in this case it is actually correct.

C. Recommended exercises from my book

• 1.6(a), 1.7, 1.8, 1.9, 1.10, 1.11, 1.13, 1.14, 1.15, 1.16 (pp. 72–76)

• 4.9, 4.10(a), 4.10(b), 4.10(e) (pp. 265-267)

• 5.20, 5.21 (p. 328; see also p. 312)
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