A proof of the Hardy-Ramanujan formula
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1. Introduction

Let p(n) be the number of unordered partitions of n. Our aim in this note is to
prove the Hardy-Ramanujan formula

1) o)~ eV

where a,, ~ b, means lim,_, a,/b, = 1. Our method, like most existing

proofs of this formula, uses contour integration in the complex plane. However,

we will show that the proof of (1) reduces to proving a local limit theorem in a

probabilistic model for random partitions introduced by Fristedt [1]. This will

result in a proof that is nicely structured and conceptually quite simple.
Throughout, we use the following notation:
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is the generating function for p(n). Denote
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We now describe Fristedt’s probabilistic model for partitions: Let 0 < z < 1.
Define independent random variables Rl,Rz, Rs, ... such that Ry + 1 has geo-
metric distribution with parameter 1 — z*. More precisely:

where P, denotes probability (the subscript 2 denotes the choice of parameter).
Let N = Y77, kRi. Then (Ry, R, R3, ...) can be thought of as the frequential
coding of a random partition of the (random) integer N, i.e. the partition in
which 1 appears R; times, 2 appears Ry times etc. Then for any (nonrandom)
partition

n=1-r4+2-r9+3-r3+...
of n, given in frequential coding, the probability of it appearing in the random

model is
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Therefore the probability that N = n is a sum over all p(n) different partitions
of n of this quantity, namely

This is the key observation that we will require for our proof; we have con-
structed a random variable whose value probabilities are related to p(n) in a
simple way. Furthermore, this random variable is a sum of lattice random vari-
ables, and thus we can expect it to be an approximately normal lattice random
variable and satisfy a local limit theorem.

The proof of (1) will now follow from the following facts:

Fact 1. For positive real s, we have
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as s \( 0.

Fact 2. For choice of parameter x,,, IV is a random variable with expectation

E.,(N) =n(1+0(1/vn))

and variance
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Fact 3. The random variable NV “satisfies a local limit theorem at 0”, that is
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as n — o0.

Fact 1 is well-known. Facts 2 and 3 were proved by Fristedt [1]. We give
complete proofs below, but first, let us show how they imply (1):

Deduction of (1) from Facts 1,2,3:
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2. Proof of Fact 1
We follow Newman [2,3]:
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It remains therefore to prove that
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But this integral is the limit, as m — oo, of the integral
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These integrals can be evaluated by noticing that
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and then interchanging the order of integration, to get
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= mlogm — log(m!) —m + 3 log(m + 1),
which by Stirling’s formula indeed converges to — log(27)/2.




3. Proof of Fact 2

We use the simple probabilistic facts that if X is a random variable such that
X + 1 has geometric distribution with parameter 0 < p < 1, that is

P(X=j)=p(l-py j=0,1,2,3,..

then
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Now N =72 | kRy, so
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The sum is a Riemann sum, with Au = 1/4/n, for the integral

/°° ue s — Li;(1)  «?/6 1,
0

1—e—cu U= 2 2
where Liy(z) = — ["log(1 —t)dt/t = Yo~ | ™ /m? is the dilogarithm function.
The difference between the Riemann sum and the integral is easily seen to be
O(1/y/M), 0

E,, (N) =n(1+0(1/vn))

Similarly, the variance
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The integral can be evaluated to be
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4. Proof of Fact 3

We now reach the “delicate” part of the analysis, namely the proof of the
claim that IV satisfies a local limit theorem at 0. We proceed by the stan-
dard methodology of probability theory, which is to represent the probabilities
as inverse Fourier integrals of the characteristic function. But this is exactly a
parametrized contour integral! So the probabilistic approach leads to the same
analytic ideas that appear in the traditional proofs of (1). However, the prob-
abilistic thinking assigns meanings to the various quantities that appear in the
analysis. This puts the analysis on a solid conceptual framework, and makes it
easier to find the correct estimates and manipulations, as well as enabling one
to “guess” formula (1) before actually proving it.

Denote by ¢, (t) = E,(e®) the characteristic function of N for parameter
choice z. Then
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And using Fourier inversion we get the disguised contour integral
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So it is enough to prove that
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Indeed, probabilistic thinking leads us to expect that for any u € R,
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which will give us (2) if we can prove some additional boundedness estimates.
Note that (3) is equivalent to the claim that N satisfies a (non-local) central
limit theorem, i.e. that (N —n)/o,, (N) — N(0,1) in distribution as n — oo.
This can be deduced e.g. by using the Lindeberg central limit theorem for
triangular arrays. Instead, we give a direct proof. First, we need a technical
lemma:

Lemma. For 0 <z <1,t€R, let
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Proof. First, consider the case |t| < (1 —z)/2:
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When |t| < (1 — 2)/2 this gives us |f.(t)] < 2z|t|3/3(1 — z)®. Next, for |¢t| >
(1 —z)/2 we have
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so it remains to prove
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For |t| > 1/4, clearly
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Finally, for 0 < (1 —z)/2 < |t| < 1/4 (which means in particular 1/2 <z <1,)
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where we denote T' = 2sin(t/2)z/(1 — z). We have
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and therefore, since 7/2 — 1/8 < arg(iTe®/?) < 7/2 +1/8,

l-x g it \° o|t]?
log [ ——— )| = |log(1 +iTe*/?)| < C"|TP <C" [ —= ) <20"——
o8 (1o )| = o1 + ey s o < o () caon A

|



Proof of (3).
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Proof of (2). To prove that (2) follows from (3), note first that for z = ze®,
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This implies that for |sint| > 1 — x, we have the estimate
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And for |sint| <1 -,
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Now (2) follows immediately, because
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In the first term, the integrand is bounded in absolute value by exp(—O(u?)),
therefore this term converges to /27w by the dominated convergence theorem
(note that o, (N)arcsin(l — z,) ~ An'/* — 00). The second term is bounded
in absolute value by
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