MAT235C: Probability Theory UC Davis, Spring 2022

MAT235C Problem Sheet #1

1. Let (2, F, P,T) be a measure preserving system. Prove that a random
variable X is invariant, i.e., X oT = X almost surely, if and only if X
is measurable with respect to the g-algbera Z of invariant subsets.

2. Let (Q,F,P,T) be a measure preserving system. Prove that the fol-
lowing two conditions are equivalent:

(a) For any invariant set A, P(A) is 0 or 1.

(b) For any invariant random variable X, X is almost surely constant.

3. Let T": [0,1] — [0,1] be a piecewise continuously differentiable unit
interval map. Given a measure p(dzr) = f(x)dr (an absolutely con-
tinuous measure with density f) on [0,1], show that in order to test
whether p is preserved under the map 7', it is necessary and sufficient
to check whether the following identity holds:

f(z) = Z |T’ty)|f<y) for almost every z € [0, 1].
yeT—1(z)

Here, the sum ranges over preimages y of z.

(To think about this, it helps to frame the property of being measure
preserving in the following terms: 7' preserves the measure p if and
only if, given a random variable X with distribution u, the random
variable Y = X o T also has distribution px.)

4. Apply the criterion in the previous question to check these claims that
were discussed in class:

(a) The doubling map = — 2z mod 1 and the rotation map z
x + a mod 1 both preserve Lebesgue measure.

(b) The logistic map = — 4x(1 — z) preserves the measure p(dr) =

L__dx.
z(1—x)

(¢) The continued fraction map x + 1/x mod 1 preserves the Gauss

_ 1 dz
measure p(dzr) = 5175
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5. Along similar lines as the previous question, check that the following
dynamical systems are measure preserving:

(a)

(b)

E

if0<z<1/2,

acting on (0, 1),
ifl<z<l. gon (0,1)

—_ =

88

The Gauss map G(z) = {

‘|

with the Gauss measure p(dz) = 102216-%'
= if0<z <,

The map D(z) = 1;%3 if % <z< %, acting on (0, 1), with the
2l jfr<ar<l

measure dv(z) = m dx.

Remarks. 1. This is an example of a measure preserving system
with an infinite measure; the branch of ergodic theory studying
such systems is a somewhat specialized area of research called
infinite ergodic theory.

2. The map D(x) is related to a number-theoretic expansion for
Pythagorean triples, discussed in the paper “The dynamics of
Pythagorean triples” (D. Romik, Trans. Amer. Math. Soc. 360
(2008), 6045-6064).

The map = — z + 1 acting on R with Lebesgue measure (another
infinite ergodic theory example).

The Boole map B(z) = z—1 acting on R with Lebesgue measure
(another infinite ergodic theory example).

The tangent map 7(x) = tan(x) acting on R with the measure
do(x) = % dz (another infinite ergodic theory example).

Tz

6. With the notation of problem B, it seems worthwhile to define an op-
erator 1" acting on functions on (0, 1) by

(TH)= Y

yeT~1(x)

This operator is called the transfer operator associated with the
interval map 7T

(a)

Convince yourself that the following statement is true (and also
helps explain why transfer operators are an interesting object to
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think about): if X is a random variable with distribution u(dx) =
f(z)dz, then the random variable Y = X o T has distribution
v(dz) = g(x) dzx, where g = T(f).

Note. Once you understand the above statement, the condition
of T' preserving the measure u(dzx) = f(x)dz is now seen to be
equivalent to the statement that T f = f; that is, the function f
has to be an eigenfunction of T" associated with the eigenvalue 1.
Such an eigenfunction is sometimes referred to as the Perron-
Frobenius eigenfunction (it is an infinite dimensional version of
the Perron-Frobenius eigenvector for nonnegative matrices, stud-

ied in the theory of Markov chains).

It is also interesting to study the eigenfunctions of the transfer
operator associated with eigenvalues other than 1, i.e., functions
f for which T'f = A\f for some A\. These are sometimes referred
to as “resonances” of the dynamical system, and encode useful
information about the behavior of iterates 7% f when f is a density
that is not invariant under the map 7', that is, when the dynamical
system has an initial state that is not statistically in equilibrium.

The resonances are usually extremely difficult to analyze. (As a
famous example, in the case of the continued fraction map, the
transfer operator is known as the Gauss-Kuzmin-Wirsing opera-
tor, and there is an extensive literature dedicated to analyzing its
spectral structure; see this Wikipedia page.)

Show that in the case of the doubling map 7'(z) = 2z mod 1, the
resonances can be analyzed precisely. Specifically, prove that for
this map, its eigenfunctions are precisely the Bernoulli polynomi-
als (B, (x))2,, defined in terms of the generating function

n=0"
= o te™
%Bn(l‘)ﬁ = et — 1’

with the eigenfunction relation for the nth eigenfunction in the
series taking the form


https://en.wikipedia.org/wiki/Gauss\OT1\textendash Kuzmin\OT1\textendash Wirsing_operator
https://en.wikipedia.org/wiki/Bernoulli_polynomials
https://en.wikipedia.org/wiki/Bernoulli_polynomials

