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Chapter 1: Dynamical systems

Ergodic theory is a mathematical theory that evolved out of the study of global properties

of dynamical systems. Here, we speak loosely of a dynamical system as consisting of a

phase space Ω (a set, whose points are the possible states of the system) together with

some dynamics, which are a notion of how the state of the system evolves over time. Time

may flow continuously or in discrete steps. In the simplest case of discrete-time dynamics,

the dynamics are encapsulated by a mapping T : Ω→ Ω. We imagine that if at a given time

the state of the system is some point ω ∈ Ω, then in the next time step it will be T (ω). (We

assume that the dynamics, i.e., the rules of evolution of the system over time, are themselves

unchanging over time.)

The description of the dynamics in a continuous-time dynamical system is more subtle;

it consists of a family (Ts)s≥0 of maps, where for each s ≥ 0, Ts : Ω → Ω takes the current

state of the system ω ∈ Ω and returns a new point ω′ = Ts(ω) which represents the state of

the system s time units into the future. The maps therefore have to satisfy the conditions

T0 = id,

Ts+t = Ts ◦ Tt, (s, t ≥ 0),

i.e., the family (Ts)s≥0 is a transformation semigroup. In a context where the phase space

has a differentiable structure and the dynamics are a result of solving a differential equation,

the semigroup (Ts)s≥0 is often called a flow.

Dynamical systems arise naturally in physics, probability, biology, computer science (al-

gorithmic computations can often be interpreted as discrete-time dynamical systems) and

many other areas. To illustrate the types of questions that ergodic theory deals with, con-

sider the example of (mathematical) billiards: this is a mathematical idealization of the

game of billiards in which a small ball is bouncing around without loss of energy in some

bounded and odd-shaped region of the plane, being reflected off the walls; see Figure 1 for

two examples. The main question of ergodic theory can be roughly formulated as follows:

If an observer watches the system for a long time, starting from some arbitrary

(random) initial state, can the ideal statistics of the system be recovered?

The question is formulated in a deliberately vague way, but the idea behind “ideal statis-

tics” is that they are represented by some probability measure P on the phase space Ω
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(a) (b)

Figure 1: Billiard dynamical systems: (a) The “Bunimovich stadium”; (b) The “Sinai bil-

liard” (source: Wikipedia)

(equipped with a suitable measurable structure F) that is compatible with both the way

the “arbitrary” initial state of the system is chosen, and with the action of the dynamics of

the system (we shall make these ideas more precise soon). The way the observer will try to

recover the measure P is as follows: starting from the initial state x0 one gets a sequence of

subsequent states

x0, x1 = T (x0), x2 = T (T (x0)), x3 = T 3(x0), . . .

in the case of a discrete-time system, or a one-parameter family of states

xs = Ts(x0), (s ≥ 0)

for a continuous-time system (in both the discrete and continuous cases this would be referred

to as the orbit of x0 under the dynamics). For a given event A ∈ F , the observer computes

the empirical frequencies of occurrence of A in the orbit, namely

µ
(n)
A (x0) =

1

n
#{1 ≤ k ≤ n : xk ∈ A} =

1

n

n−1∑
k=0

1A(xk), (n ≥ 1),

or, in the case of a continuous-time system

µ
(s)
A (x0) =

1

s

∫ s

0

1A(xs) ds, (s ≥ 0).
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One might expect that in a typical situation, the quantity µ
(n)
A (x0) or its continuous-time

analogue µ
(s)
A (x0) should converge (as n or s tend to infinity) to a limit that is a constant

and independent of x0, except possibly for some small set of “badly-behaved” initial states

x0. If that is the case, we might denote this limit by P(A) and say that it represents the

“ideal” statistics of the system.

A more general way of recovering the statistics of the system is to look at observables,

which are measurable functions f : Ω→ R on the phase space (an observable is the dynamical

systems or physics equivalent term for a random variable, really). For an observable f we

can form the ergodic average

µ
(n)
f (x0) =

1

n

n−1∑
k=0

f(xk) =
1

n

n−1∑
k=0

f(T k(x0)),

(or the analogous continuous-time quantity, whose form we leave to the reader to write

down), and hope that again the ergodic averages converge to a limit, which is independent

of x0 and represents the “ideal” average value of the observable f , denoted E(f) (in physics,

usually this would be denoted 〈f〉). By computing this ideal average for many different

observables we can recover all the information on the probability measure P.

One can now ask whether the nice situation described above actually happens in practice.

Coming back to the example of billiards, it is easy to see that for some shapes of the billiard

“table” one cannot hope to recover any meaningful statistics for the system, for what may

be a trivial reason. For example, a rectangular table has the property that the ratio of

the absolute values of the horizontal and vertical components of the initial speed of the

ball is always preserved (equivalently, the quantity | tan(α)| where α is the initial angle is

preserved). Thus, by observing the trajectory of a single ball we have no hope of recovering

any meaningful information on the statistics of the system when started with a ball for

which the “invariant” quantity | tan(α)| is different. In this case we say that the billiard

dynamical system on a rectangular domain is non-ergodic. Less trivially, an ellipse-shaped

billiard can also be shown to be non-ergodic, because of a less obvious geometric invariance

property: it can be shown that an orbit will not fill the entire ellipse but will have a non-

trivial envelope which is either a smaller ellipse, a hyperbola, a closed polygon or a line (see

http://cage.ugent.be/~hs/billiards/billiards.html, and Figure 2).

On the other hand, in many cases, such as the domains shown in Figure 1, it can be
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Figure 2: Billiard in an ellipse-shaped domain

proved that the nice situation exists, i.e., the billiard is ergodic (we will define later what

that actually means). This is related (in a way that is difficult to articulate precisely),

to the emergence of a kind of “chaos” – i.e., the billiard ball trajectories are erratic and

irregular rather than forming a nice pattern as in the trivial examples discussed above. When

ergodicity holds, the statistics of the system can be recovered from the typical trajectory of

a single ball; in the case of billiards, it turns out that these statistics are quite interesting:

the underlying measure P on the phase space (which may be parametrized in terms of three

parameters φ, θ, ` — see the article [3] for the meaning of these quantities) takes the form

P(A) =

∫∫∫
A

sin θ

sin θ1

dθ dφ d`.

Note that even when the system is ergodic, there may be exceptional orbits from which

one cannot recover any statistics. For example, in the Bunimovich stadium shown in Figure 1,

a trajectory that starts in a vertical direction starting in the rectangular area bounded

between the two semi-circles will be a periodic vertical line. However, the key point is that

such trajectories are atypical examples that only occur on a measure 0 set of the phase space.

It should also be noted that in any given example, proving that the ergodicity property

holds may be extremely difficult. In fact, the family of dynamical systems (and even more

restrictively billiard systems) for which ergodicity has been proved rigorously is quite limited,

and in practical dynamical systems that one encounters in physics or other applied areas

usually this is assumed without proof, as long as there is a sufficiently strong intuition that

allows one to rule out a “trivial” reason why ergodicity should fail to hold. (This assumption

is sometimes referred to as the ergodic hypothesis.)

In the next few sections, we shall start developing the basic ideas of ergodic theory in a
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more formal and precise way. The key concept is of a measure-preserving system, which

is a probability space together with a measure-preserving map representing the dynamics

of the system. The main result we will prove is the fundamental result of ergodic theory,

known as Birkhoff’s pointwise ergodic theorem. It explains precisely the connection

between the notion of ergodicity and the ability to “recover the statistics of the system” as

illustrated above. We shall also give some important examples and explain why the study of

ergodic theory is natural from the point of view of probability theory, since one can consider

the Birkhoff ergodic theorem as a powerful generalization of the strong law of large numbers.
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Chapter 2: Measure preserving systems

2.1 Measure preserving systems

In the previous section we cheated a little bit by considering dynamical systems without an

underlying measurable structure or notion of measure (in fact, such a structure was implicit

in the discussion of the orbit of a “typical” or “random” initial state). In ergodic theory we

concentrate on dynamical systems which come equipped with a measure, and furthermore,

we require the measure to be preserved under the action of the dynamics. This idea leads

to the following definitions.

Definition 2.1. Let (Ω,F ,P) be a probability space. A measurable map T : Ω→ Ω is called

measure preserving if for any event E ∈ F we have

P(T−1(E)) = P(E). (1)

If T is measure preserving, we say that the probability measure P is invariant under T .

The condition (1) is sometimes written in the form P = P◦T−1. This can be interpreted

as the statement that the push-forward of P under T is again P; that is, if X is an Ω-valued

random variable with distribution P, then T (X) has the same distribution.

Definition 2.2. A measure preserving system is a probability space equipped with a

measure preserving map, i.e., a quadruple (Ω,F ,P, T ), where (Ω,F ,P) is a probability space

and T : Ω→ Ω is a measure preserving map.

Measure preserving systems are the fundamental objects studied in ergodic theory (just

like vector spaces are the fundamental objects of linear algebra, topological spaces are the

fundamental objects of topology, etc.). It makes sense to ask to see some examples of such

systems before proceeding with their theoretical study. Aside from some very interesting

measure preserving systems that originate in dynamical systems (such as the billiard systems

mentioned in the previous chapter), a huge class of examples arise in a very natural way in

probability theory, and are intimately related to the notion of a stationary sequence,

which is the subject of the next section.
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2.2 Stationary sequences

Let (Xn)∞n=1 be a sequence of random variables. The sequence is called stationary if for

any n,m ≥ 1, we have the equality in distribution

(Xn, . . . , Xn+m−1)
D
= (X1, . . . , Xm). (2)

Note that in particular this implies that the variables X1, X2, . . . are identically distributed.

Stationarity is a stronger property that also ensures that any pair of successive variables

(Xn, Xn+1) is equal in distribution to the first pair (X1, X2), any triple (Xn, Xn+1, Xn+2) is

equal in distribution to the first triple (X1, X2, X3), etc.; that is, any probabilistic question

about a block of adjacent variables does not depend on the “origin” of the block. An i.i.d.

sequence is a trivial example of a stationary sequence.

A stationary sequence gives rise in a natural way to a measure preserving system known

as the shift dynamics. To define it, first note that although the variables may be defined

on a generic probability space (Ω,F ,P), there is no real loss of generality in assuming that

the probability space is the canonical product space

Ω = RN

(sometimes denoted by R∞) together with the product σ-algebra B = B(RN), and the

probability measure µ defined by

µ(E) = P((X1, X2, . . .) ∈ E),

(i.e., the distribution measure of the infinite-dimensional vector (X1, X2, . . .)). In this rep-

resentation, the random variables are simply the coordinate functions

Xn(ω) = πn(ω) = ωn,

where ω = (ω1, ω2, . . .) ∈ RN.

On the space (RN,B, µ) we define the shift map S : RN → RN by

S(ω1, ω2, ω3, . . .) = (ω2, ω3, ω4, . . .).

Lemma 2.3. The shift map S is a measure preserving map of the probability space (RN,B, µ)

if and only if the sequence (Xn)∞n=1 is stationary.
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Exercise 2.4. Prove Lemma 2.3.

Definition 2.5. If (Xn)∞n=1 the measure preserving system (RN,B, µ, S) described above is

called the one-sided shift map (or sometimes just shift map) associated to (Xn)∞n=1.

What about a two-sided shift map? One can consider a two-sided infinite sequence

(Xn)∞n=−∞, and say that it is stationary if the equation (2) holds for any m ≥ 1 and n ∈ Z.

One may associate with such a stationary sequence the two-sided shift dynamics, which

is the measure preserving system (RZ,B(RZ), µ, S), where as before µ is the distribution

measure of the sequence (Xn)n∈Z, and S is the two-sided shift, given by

S((ωn)n∈Z) = (ωn+1)n∈Z.

One may check easily that Lemma 2.3 remains true when replacing the one-sided concepts

of stationary sequence and shift dynamics with their two-sided analogues.

From the definitions it may appear that the notion of a two-sided stationary sequence is

more general than that of a one-sided shift, since half of the elements of a two-sided stationary

sequence (Xn)n∈Z can be removed to give a one-sided stationary sequence (Xn)n≥1. However,

in fact this is not the case, as the next result shows.

Lemma 2.6. Given a one-sided stationary sequence (Xn)n≥1, there exists a two-sided sta-

tionary sequence (Yn)n∈Z defined on some probability space such that (Yn)n≥1
D
= (Xn)n≥1.

Proof. This is a simple example of an application of the Kolmogorov extension theorem, a

useful result from measure theory that enables one to construct measures on infinite product

spaces with prescribed finite-dimensional marginals (see [4, Sec. A.3]). Here, the stationarity

condition (2) determines the joint m-dimensional distribution of any block (Yn, . . . , Yn+m−1)

of m successive random variables in the sequence, where m ≥ 1 and n ∈ Z. These distribu-

tions satisfy the consistency condition in the Kolmogorov extension theorem, and therefore

are indeed the m-dimensional marginals of some infinite sequence (Yn)n∈Z defined on a single

probability space.

We saw that we can associate with any stationary sequence a measure preserving system.

Going in the opposite direction, if we start with a measure preserving system (Ω,F ,P, T ),
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any random variable X : Ω→ R (what we called an observable in the previous chapter) can

be transformed by T to a new variable

X ◦ T = X(T ).

The measure preserving property implies that X◦T is equal in distribution to X. By starting

with X and repeatedly iterating the transformation T we get a sequence (Xn)∞n=1 given by

Xn = X ◦ T n−1.

Lemma 2.7. (Xn)n is a stationary sequence.

Exercise 2.8. Prove Lemma 2.7

The conclusion from the above discussion is that the study of stationary sequences is

roughly equivalent to the study of measure preserving systems with a distinguished ob-

servable, and indeed much of ergodic theory could be developed using just the language of

stationary sequences, although this would come at great cost to the elegance and beauty of

the theory.

2.3 Examples of measure preserving systems

1. i.i.d. sequences. As mentioned in the previous section, any i.i.d. sequence is stationary

and hence has an associated shift measure preserving system, referred to as an i.i.d. shift.

In the case when the i.i.d. random variables take on only a finite number of values with

positive probability this measure preserving system is known as a Bernoulli shift.

2. A shift-equivariant function of a stationary sequence. Given a stationary sequence

(Xn)∞n=1 and a measurable function F : RN → RN one can manufacture a new stationary

sequence (Yn)∞n=1 via the equation

Yn = F (Xn, Xn+1, Xn+2, . . .), (n ≥ 1). (3)

The verification that (Yn)n is stationary is easy and is left to the reader. In this way one

can generate starting from a known stationary sequence (e.g., an i.i.d. sequence) a large

class of new and interesting sequences.
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3. Stationary finite-state Markov chains. Let A = {α1, . . . , αd} be a finite set. A

finite-state Markov chain with state space A is a sequence (Xn)∞n=0 of A-valued

random variables such that for each n ≥ 0 and 1 ≤ j1, j2, . . . , jn+1 ≤ d we have that

P(Xn+1 = αjn+1 |X1 = α1, . . . , Xn = αn) = P(Xn+1 = αjn+1 |Xn = αn). (4)

That is, the conditional distribution of Xn+1 given the n preceding values X1, . . . , Xn is

only dependent on the value of the last observed variable Xn; this property is known as the

Markov property. In most cases the chain is also assumed to be time-homogoneous,

meaning that the expression in (4) is independent of n. In this case, if we denote

pi,j = P(X2 = αj |X1 = αi), (1 ≤ i, j ≤ d),

then the matrix P = (pi,j)
d
i,j=1 together with the probability distribution of the initial

state X0 determine the distribution of the entire sequence. The probability pi,j is referred

to as the transition probability from state i to j, and the matrix P is called the

transition matrix of the chain. The distribution of X0 is usually given as a probability

vector π = (π1, . . . , πd) where πj = P(X0 = j). It is easy to show that the vector

π(n) = (π
(n)
1 , . . . , π

(n)
d ) representing the probability distribution of Xn is obtained from π

and P via

π(n) = πP n,

the linear-algebraic result of multiplying the row vector π by the matrix P multiplied by

itself n times.

Assume now that π is chosen to be a probability vector satisfying the equation π = πP ;

i.e., π is a left-eigenvector of the transition matrix P with eigenvalue 1. By the above

remarks, this means that the sequence (Xn)n is a sequence of identically distributed

random variables, and furthermore it is easy to see that (Xn)n is in fact a stationary

sequence. A Markov chain started with such an initial state distribution is called a

stationary Markov chain. The associated shift measure preserving system is known

as a Markov shift.

4. Tossing a randomly chosen coin. Let 0 ≤ U ≤ 1 be a random variable. We can

define a stationary sequence X1, X2, . . . by the following “two-step experiment”: first,

pick a random coin with bias U ; then, toss the chosen coin infinitely many times (the
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coin tosses being independent of each other), denoting the results (encoded as 0’s or 1’s)

by X1, X2, . . .. Formally, we can define the distribution of the sequence by

P(X1 = a1, . . . , Xn = an) = E
[
U

∑
j aj(1− U)n−

∑
j aj
]
, a1, . . . , an ∈ {0, 1}.

Note that the Xn’s are identically distributed (in fact, the sequence is stationary), but

not independent (except in the extreme case when U is a.s. constant); rather, they are

said to be conditionally independent given U .

5. Pólya’s urn experiment. Pólya’s urn is a famous probabilistic model that illustrates

many concepts in probability theory, including the notion of martingale, stationary se-

quences, exchangeable sequences, and more. Picture an urn that originally contains a

white balls and b black balls. The experimenter samples a uniformly random ball from

the urn, examines its color, then puts the ball back and adds another ball of the same

color; this is repeated to infinity. Let Xn denote the number of white balls in the urn

after the nth step. Clearly X0 = a and the distribution of Xn+1 can be expressed most

naturally by conditioning on Xn, namely

Xn+1
∣∣Xn=m

=

m+ 1 with probability m
n+a+b

,

m with probability n+a+b−m
n+a+b

.
(5)

Let In be the indicator random variable of the event that in the nth sampling step a white

ball was drawn. A surprising property of the sequence (In)∞n=1 is that it is a stationary

sequence, and therefore has an associated measure preserving shift. In fact, we’ll prove

that a stronger claim is true:

Lemma 2.9. The sequence (In)∞n=1 is invariant in distribution under finite permuta-

tions.1 That is, for any permutation σ of the numbers {1, 2, . . . , n}, the random vector

(Iσ(1), Iσ(2), . . . , Iσ(n)) is equal in distribution to the random vector (I1, . . . , In).

Proof. It is enough to prove this when the permutation is an adjacent transposition, that

is, a permutation that swaps the positions of the numbers k and k + 1 for some value

1A sequence of r.v.’s with this property is called exchangeable. There is an important result about

such sequences (that we will not talk about here) called De-Finetti’s theorem, which you might want to

read about.

13



k ≥ 1; if the claim holds for such permutations then it holds for permutations obtained by

composing two or more adjacent transpositions, and it is well-known that any permutation

of n numbers can be obtained as such a composition.

To prove the claim for the adjacent transposition that swaps k and k + 1, note that,

conditioned on the event that at stage k− 1 of the experiment the urn contained A white

and B black balls, the probability to draw “white then black” in the next two steps would

be
A

k + a+ b
· B

k + a+ b+ 1
.

On the other hand, the probability of drawing “black then white” is

B

k + a+ b
· A

k + a+ b+ 1
.

Since these two probabilities are equal, it follows that the two-dimensional random vectors

(Ik, Ik+1) and (Ik+1, Ik) are equal in distribution conditionally on (I1, . . . , Ik−1). From here

it is a small step (left as an exercise) to conclude the equality in distribution

(X1, . . . , Xk−1, Xk+1, Xk, Xk+2, . . . , Xn)
D
= (X1, . . . , Xk−1, Xk, Xk+1, Xk+2, . . . , Xn),

which finishes the proof of the lemma.

Exercise 2.10. Complete the argument in the proof of Lemma 2.9 above.

Exercise 2.11. Explain why Lemma 2.9 implies that the sequence (In)∞n=0 is stationary.

Exercise 2.12. (a) Use the result of Lemma 2.9 to prove that the joint distribution of

I1, . . . , In can be written in terms of the following explicit formula: for any x1, . . . , xn ∈
{0, 1}, we have

P(I1 = x1, . . . , In = xj) =
a(a+ 1) . . . (a+ k − 1) · b(b+ 1) . . . (b+ n− k − 1)

(a+ b)(a+ b+ 1) . . . (a+ b+ n)
, (6)

where k =
∑n

j=1 xj.

(b) From (6), deduce that the probability of having p white balls after n steps is

P(Xn = p) =

(
n

p− a

)
a(a+ 1) . . . (a+ p− a− 1) · b(b+ 1) . . . (b+ n− p+ a− 1)

(a+ b)(a+ b+ 1) . . . (a+ b+ n)
(7)
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for a ≤ p ≤ n+ a.

(c) Use the above formula (7) for the distribution of Xn to prove that the proportion of

white balls in the urn converges to a limiting beta distribution. Specifically, prove that

Xn

n+ a+ b
=⇒ Beta(a, b). (8)

(In fact, Xn/(n + a + b) converges almost surely to a limiting random variable Y that

has the beta distribution Beta(a, b) as its probability distribution. This follows from the

martingale convergence theorem; see [11, Sec. 4.1].)

6. Rotation of the circle (a.k.a. x+α modulo 1). Let (Ω,F ,P) be the unit interval [0, 1]

with Lebesgue measure. One can consider [0, 1] to be topologically a circle by identifying

both endpoints 0 and 1 as a single point. Fix 0 ≤ α < 1. The circle rotation map

Rα : [0, 1)→ [0, 1), which rotates the circle by a fraction α, is defined by

Rα(x) = x+ α mod 1 =

x+ α if x+ α < 1,

x+ α− 1 otherwise.

Lemma 2.13. Rα preserves Lebesgue measure.

Proof. If A ⊂ [0, 1] is a Borel set, then

Leb(R−1
α (A)) = Leb

((
A ∩ [0, α) + 1

)
t
(
A ∩ [α, 1)− 1

))
= Leb

(
A ∩ [0, α) + 1

)
+ Leb

(
A ∩ [α, 1)− 1

)
= Leb

(
A ∩ [0, α)

)
+ Leb

(
A ∩ [α, 1)

)
= Leb

((
A ∩ [0, α)

)
t
(
A ∩ [α, 1)

))
= Leb(A).

7. The 2x mod 1 map. Similarly to the previous example, the 2x mod 1 map or doubling

map is also defined on the probability space [0, 1] with Lebesgue measure, and is given

by

D(x) = 2x mod 1 =

2x x < 1
2
,

2x− 1 x ≥ 1
2
.

15



Lemma 2.14. D preserves Lebesgue measure.

Proof. If A ⊂ [0, 1] is a Borel set, then

Leb(D−1(A)) = Leb
(

1
2
A t

(
1
2
A+ 1

2

))
= 1

2
Leb(A) + 1

2
Leb(1

2
+ A) = Leb(A).

We have seen before that the measure space [0, 1] with Lebesgue measure is isomorphic

to the product space of an infinite sequence of i.i.d. unbiased coin tosses. It is easy to

see that under this isomorphism, the doubling map translates to the shift map S of the

Bernoulli sequence. So, the doubling map is really a disguised version of the Bernoulli

shift associated with i.i.d. unbiased coin tosses.

8. The continued fraction map. A well-known fact from number theory says that any

rational number x ∈ (0, 1) has a unique continued fraction expansion of the form

x =
1

n1 + 1
n2+ 1

n3+
1

...+ 1
nk

,

where k ≥ 1, n1, . . . , nk ∈ N and nk > 1. Such an expansion is said to be finite, or

terminating. Similarly, any irrational x ∈ (0, 1) has a unique infinite continued fraction

expansion, which takes the form

x =
1

n1 + 1
n2+ 1

n3+
1

n4+
1
...

,

where n1, n2, n3 . . . ∈ N. The numbers n1, n2, . . . are called the quotients of the expan-

sion, and are analogous to the digits in the decimal (or base-b) expansion of a real number.

They are computed using a process that is a natural generalization of the Euclidean al-
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gorithm to real numbers, namely:

n1 = the number of times a stick of length x “fits” inside a stick of length 1,

n2 = the number of times a stick of length x2 = (1− n1x) fits inside a stick

of length x,

n3 = the number of times a stick of length x3 = (x− n2x1) fits inside a stick

of length x2,

...

Gauss studied in 1812 the statistical distribution of the quotients for a number x chosen

uniformly at random in (0, 1). In this case, since x is irrational with probability 1 we need

not worry about terminating expansions, and can consider the quotients n1, n2, . . . to be

random variables defined on the measure space (0, 1) equipped with Lebesgue measure.

Gauss reformulated the problem in terms of a measure preserving system (before this

concept even existed!) now called the continued fraction map or Gauss map. To see

how this reformulation works, note first that, in the computation above, the first quotient

n1 can be represented in the form

n1 =

⌊
1

x

⌋
(where bzc denotes as usual the integer part of a real number z). Next, observe that, to

continue with the computation of the next quotients n2, n3, . . ., instead of replacing the

two yardsticks of lengths 1 and x (which are used in the computation of the first quotient

n1) by a pair of yardsticks of lengths x and x2 = 1 − n1x, one can instead rescale the

yardstick of length x to be of length 1, so that the yardstick of length x2 becomes of

length

x′ =
1− n1x

x
=

1

x
− n1 =

{
1

x

}
(where {z} = z − bzc is the fractional part of z). The quotient n2 can be computed

from this rescaled value x′ in the same way that n1 is computed from x. By continuing

in this way one can obtain all the quotients by successive rescaling operations. Formally,

define the Gauss map G : (0, 1)→ [0, 1) and a function N : (0, 1)→ N by

G(x) =

{
1

x

}
, N(x) =

⌊
1

x

⌋
.
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Then the above comments show that the quotients n1, n2, . . . are obtained by

n1 = N(x),

n2 = N(G(x)),

n3 = N(G2(x)), . . .

nk = N(Gk−1(x)), . . .

(Note that the range of G is [0, 1) instead of the open interval (0, 1) since G(x) = 0 exactly

when x is a rational number of the form x = 1/m; this is related to the fact that if we

start with any rational number x, after a finite number of iterations of G we will reach 0

and will not be able to extract any more quotients.)

If you guessed that the Gauss map G preserves Lebesgue measure, you guessed wrong.

The real situation is more interesting:

Lemma 2.15. The map G preserves the Gauss measure γ on (0, 1), given by

γ(A) =
1

log 2

∫
A

dx

1 + x
.

Exercise 2.16. Prove Lemma 2.15.

An important observation is that Gauss measure and Lebesgue measure are mutually

absolutely continuous with respect to each other. This means that any event which

has probability 1 with respect to one is also a probability 1 event with respect to the

other. Thus any almost-sure statistical results about the measure preserving system

((0, 1),B, γ, G) (which will be obtained from the Birkhoff ergodic theorem once we develop

the theory a bit more) will translate immediately to statements about the behavior of the

continued fraction expansion of a uniformly random real number.

The continued fraction map described above is intimately related to the Euclidean algo-

rithm for computing the greatest common divisor (GCD) of two integers, since iterating

the map starting from a rational fraction p/q reproduces precisely the sequence of quo-

tients (and remainders, if one takes care to record them) in the execution of the Euclidean

algorithm, and the last non-zero iteration T k(p/q) is of the form 1/d, where d is precisely

the GCD of p and q. Given the usefulness of the Euclidean algorithm and its historical
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status as one of the earliest algorithms ever described, is not surprising that already in

the early days of the theory of algorithms (a.k.a. the 1960’s) researchers were interested

in giving a quantitative analysis of the running time of this venerable procedure. Such

analyses lead directly to ergodic theoretic questions about the continued fraction map;

the renewed interest in this classical problem has stimulated new and extremely interest-

ing studies into the mathematics of the Gauss map. A highly readable account of these

fascinating developments (some of which are topics of active current research) is told in

[5, Sections 4.5.2–4.5.3].

9. The binary GCD algorithm. Continuing the discussion above, a fact that is little-

known outside computer science circles is that in modern times a new algorithm for

computing GCD’s was proposed that gives the Euclidean algorithm a serious run for its

money, and is actually faster in some implementations. This algorithm was proposed by

Josef Stein in 1967 and is known as the binary GCD algorithm or Stein’s algorithm.

It replaces the integer division operations of the Euclidean algorithm, which are costly

in some computer architectures, with a clever use of subtractions (which are generally

cheap) and divisions by 2, which can be implemented in machine language as (also cheap)

bit shift operations.

[Here is a summary of the algorithm: start with two integers u < v. First, extract the

common power-of-2 factor to get to a situation where at least one of u, v is odd. Then,

successively replace (u, v) with the new pair (v− u)/2k, u (sorted so that the smaller one

gets called “u” and the bigger one “v”), where 2k is the maximal power of 2 dividing

v − u. Eventually one of the numbers becomes 0 and the remaining one represents the

odd component of the GCD of the original numbers.]

The computer scientist Richard Brent noticed in 1976 that this algorithm can also be

reformulated in terms of a dynamical system. Similarly to the case of the Euclidean

algorithm, the theoretical analysis of the running time of the binary GCD algorithm

leads to highly nontrivial questions (most of them still open) about the behavior of this

dynamical system. In particular, this system has an invariant measure that is mutually

absolutely continuous with respect to Lebesgue measure, and is analogous to the Gauss

measure, but no good formula for it is known. See [5, Sec. 4.5.3] for more details.
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10. The 3x+ 1 map. The 3x+1 problem or Collatz problem is a famous open problem

(studied since the 1950’s, and originating in work of L. Collatz around 1932) about a

discrete dynamical system on the positive integers. It pertains to iterations of the map

T : N→ N defined by

T (n) =

3n+ 1 if n is odd,

n
2 if n is even.

The conjecture is that for any initial number n0, iterating the map will eventually lead to

the cycle 1, 4, 2, 1, 4, 2, 1, . . . The mathematician Paul Erdös was quoted as saying “Math-

ematics is not yet ready for such problems” and offered a $500 prize for its solution.

One of the many (ultimately unsuccessful) attempts to study the problem was based

on the beautiful observation that this dynamical system can be turned into a measure

preserving system, by extending its domain of definition to the ring Z2 of 2-adic integers.

This is an extension of the usual ring Z of integers in which every element has a binary

expansion that extends infinitely far to the left (instead of to the right as a real number

would). That is, a dyadic integer is a formal expression of the form

a0 + 2 · a1 + 4 · a2 + 8 · a3 + . . .+ 2nan + . . . =
∞∑
n=0

an2n

where a0, a1, a2, . . . ∈ {0, 1}. It can be shown that one can do algebra, and even an exotic

form of calculus, on these numbers (and more generally over similar sets of numbers in

which the binary expansion is replaced by a base-p expansion where p is an arbitrary

prime number — these are the so-called p-adic integers). Since the notion of the parity

of a number extends to 2-adic integers, the 3x+ 1 map T extends in an obvious way to a

map T̃ : Z2 → Z2. It can be shown that T̃ preserves the natural volume measure of Z2.

For more information, see Wikipedia and [6].

11. Billiards. In Chapter 5 we discussed billiard dynamical systems, and mentioned a for-

mula on the limiting statistics of such a system, in the case when it is ergodic. This is

related to the fact that the billiard dynamics also has an invariant measure, given (in a

suitable parametrization of the phase space) by

µ(A) =

∫∫∫
A

sin θ

sin θ1

dθ dφ d`.
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12. Hamiltonian flow. Hamiltonian mechanics is a formalism for modeling a mechani-

cal system of particles and rigid bodies interacting via physical forces, with no external

influences. The phase space is some set Ω representing the possible states of the system

(formally, it is a symplectic manifold, and has a smooth structure — i.e., one can solve

differential equations on it and do other calculus-type operations). The Hamiltonian

flow is a semigroup of maps (Hs)s≥0 representing the time-evolution of the system, i.e.,

Hs(ω) takes an initial state ω ∈ Ω of the system and returns a new state representing

the state of the system s time units in the future. A result known as Liouville’s theorem

says that the natural volume measure of the manifold is preserved under the Hamiltonian

system. Thus, the Hamiltonian flow is a measure preserving flow (the continuous-

time analogue of a measure preserving system, which we will not discuss in detail). Such

flows provided some of the original motivation for questions of ergodic theory, since, e.g.,

statistical physicists in the 19th century wanted to understand the statistical behavior

of ideal gases (note that billiard can be thought of a toy model for a gas in an enclosed

region).

13. Geodesic flow. On a compact Riemann surface (or more generally a Riemannian man-

ifold), the geodesic flow (ϕs)s≥0 is a family of maps, where each ϕs takes a point on the

manifold together with a “direction” at s (formally, an element of the tangent space at

s), and returns a new pair “point+direction” that is obtained by proceeding s units of

distance along the unique geodesic curve originating from s in the given direction. (For

a more formal description, see Wikipedia or a textbook on differential geometry). The

geodesic flow preserves the volume measure and is thus a measure preserving flow.

14. The logistic map. The logistic map was originally studied as a simple model for the

dynamics of population growth of animal and plant species. It is given by the formula

Lr(x) = rx(1− x) (0 < x < 1),

where r > 0 is a parameter of the system. Here, x represents the size of the popula-

tion, and Lr(x) represents the size of the population one generation later, so successive

iterations Lnr (x) correspond to the evolution of the population sizes over time starting

from some initial size x. The assumptions underlying the model are that when x is small

one should observe roughly exponential growth when iterating the map, but as the size
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Figure 3: Chaos in the logistic map (source: Wikipedia)

of the population increases, the environmental resources required to support growth are

depleted, leading to starvation and a sharp decrease in the population size.

The logistic map is a famous example of the emergence of chaos: for values of r between

0 and 3, the system stabilizes around a unique value (0 if r ≤ 1, or (r−1)/r if 1 ≤ r ≤ 3).

When r becomes slightly bigger than 3 a bifurcation occurs, leading to an oscillation

between 2 values; as r increases further, additional bifurcations occur (oscillation betweeen

4 values, 8 values etc.) until chaotic behavior emerges at r ≈ 3.57 and continues (with

occasional intervals of stability) until r = 4, after which point the range of the map

leaves [0, 1] so the model stops making sense as a dynamical system. See Figure 3 for an

illustration of this remarkable phenomenon.

Lemma 2.17. When r = 4, the map L4 has an invariant measure λ on (0, 1) given by

λ(dx) =
1

π
√
x(1− x)

dx

(also known as the Beta(1
2
, 1

2
) distribution).

Exercise 2.18. Prove Lemma 2.17
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2.4 Ergodicity

Let (Ω,F ,P, T ) be a measure preserving system. An event A ∈ F is called T -invariant (or

invariant under T , or just invariant if the context is clear) if

T−1(A) = A a.s.,

with the convention that two events A,B are considered equal almost surely if their sym-

metric difference has probability 0. That is, A is invariant if

P(A4T−1(A)) = 0,

(where A4B = (A \B) ∪ (B \A) denotes the symmetric difference of two sets). We denote

by I the collection of a.s. invariant events.

Lemma 2.19. I is a σ-algebra.

Exercise 2.20. Prove Lemma 2.19.

Definition 2.21. The measure preserving system (Ω,F ,P, T ) is called ergodic if for any

invariant event A, P(A) = 0 or P(A) = 1.

A sub-σ-algebra of F all of whose events have probability 0 or 1 is called trivial. (We

already saw an example: the σ-algebra of tail events of an i.i.d. sequence of random variables

is trivial, according to the Kolmogorov 0-1 law.) So, another way of saying that a measure

preserving system is ergodic is that its σ-algebra I of invariant events is trivial.

There is an equivalent way to characterize ergodicity in terms of invariant random vari-

ables rather than events, given in the following exercise.

Exercise 2.22. If (Ω,F ,P, T ) is a measure preserving system, a random variable X : Ω→ R
is called invariant if X ◦ T ≡ X almost surely. Prove that a random variable is invariant

if and only if it is measurable with respect to I, and that a system is ergodic if and only the

only invariant random variables are almost surely constant.

Exercise 2.23. Show that a measure preserving system (Ω,F ,P, T ) is ergodic if and only

if the probability measure P cannot be represented in the form

P = αQ1 + (1− α)Q2,
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where 0 < α < 1 and Q1, Q2 are two distinct T -invariant probability measures on the mea-

surable space (Ω,F). (In words, this means that an ergodic system cannot be decomposed

into a nontrivial convex combination of two simpler systems.)

To get a feel for this new concept, let us examine which of the measure preserving systems

discussed in the previous section are ergodic.

1. i.i.d. sequence. Let A be an invariant event in the i.i.d. shift. A is in the product σ-

algebra, in other words, it is measurable with respect to σ(X1, X2, . . .), where X1, X2, . . .

denote the coordinate functions of the product space. Then

S−1(A) = {ω ∈ RN : (ω2, ω3, . . .) ∈ A}

is measurable with respect to σ(X2, X3, . . .), and similarly, for any n ≥ 1,

S−n(A) = {ω ∈ RN : (ωn+1, ωn+2, . . .) ∈ A}

is in σ(Xn+1, Xn+2, . . .). It follows that

A′ =
∞⋂
N=1

∞⋃
n=N

S−n(A) = {S−n(A) i.o.}

is a tail event, and hence has probability 0 or 1 by the Kolmogorov 0-1 law. But we

assumed that A was invariant, which implies that A = S−n(A) almost surely for all

n ≥ 1, and therefore also A = A′ almost surely. It follows that A is also a 0-1 event2. We

have proved:

Lemma 2.24. Any i.i.d. shift map is ergodic.

2. A shift-equivariant function of an ergodic stationary sequence.3 Let (Xn)n be

a stationary sequence whose associated shift system is ergodic (such a sequence is called

simply a stationary ergodic sequence), and let Yn be defined as in (3).

2The above argument shows that I ⊆ T (the σ-algebra of invariant subsets is contained in the tail

σ-algebra), as long as we identify sets which are a.s. equal.
3In more abstract treatments of ergodic theory, this example would be called a factor map or ho-

momorphism. An important family of problems in ergodic theory is concerned with identifying when one

measure preserving system can be obtained as a homomorphism of another (usually simpler) measure preserv-

ing system, and especially when one can find an invertible homomorphism, also known as an isomorphism,

between the two systems.
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Lemma 2.25. The stationary sequence (Yn)n is also ergodic.

Proof. Let A be an invariant event for the (Yn) sequence. We can think of A as “living”

in the original product space RN associated with the shift map for the sequence (Xn)n.

(Formally, the sequence (Yn)n is an infinite-dimensional random vector, i.e., it maps the

RN “of” the (Xn)n sequence into a “different copy” of RN; by pulling back the event

A with respect to this mapping we get a “copy” of A in the original product space.)

The fact that A is invariant under shifting the Yn’s means it is also invariant under the

original shift of the Xn’s, hence is a 0-1 event by the assumption that the (Xn)n sequence

is ergodic.

3. Stationary finite-state Markov chains. A Markov chain is called irreducible if

any state can be reached in a sequence of steps from any other state. It is not hard to

prove (see Example 6.1.6 on page 333 of [4]) that a stationary finite-state Markov chain

is ergodic if and only if it is irreducible.

4. Tossing a randomly chosen coin. In this experiment we have

U = lim
n→∞

1

n

n∑
k=1

Xk

by the strong law of large numbers (conditioned on the value of U). So, the random coin

bias U is an invariant random variable, and thus the sequence (Xn)n is ergodic if and only

if U is a.s. constant (equivalently, if and only if the sequence is i.i.d.).

We should note that this process is in some sense an archetypical example of a non-ergodic

process, in the sense that non-ergodicity is precisely the behavior in which the experi-

ment chooses “at the dawn of time” some random data or information (represented by the

σ-algebra of invariant events), and then performs a stationary ergodic sequence of experi-

ments that depends on this initial data. In other words, a general stationary sequence can

always be represented as a mixture, or a kind of weighted average, of stationary ergodic

sequences, where the weights in the mixture correspond to the probability distribution of

the initial data. (The precise formulation of this statement leads to the concept of the

ergodic decomposition of a measure preserving system, which we will not discuss in

detail since it requires some slightly advanced notions from functional analysis.)
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Exercise 2.26. Show that the σ-algebra I of invariant subsets for this process coincides

with the σ-algebra σ(U) generated by the random coin bias U . That means that, not

only is U an invariant random variable, but any other invariant random variable can be

computed once the value of U is known.

5. Pólya’s urn. Recall that in the Pólya’s urn model discussed in Example 5 on page 13,

it was mentioned in Exercise 2.12(c) (page 15) that the fraction of white balls in the urn

converges almost surely to a limiting random variable Y . It is easy to see that this is

random variable is invariant with respect to the shift map associated with the stationary

sequence (In)∞n=1 described in the discussion of the Pólya’s urn model. By (8), Y is a

beta-distributed random variable, so in particular it is non-constant. This shows that the

measure preserving shift associated with the sequence (In)n is not ergodic.

It is an amusing and rather counter-intuitive fact that the Pólya urn experiment is actually

a special case of the “tossing a randomly chosen coin” family of examples discussed above.

In fact, the “random coin bias” U is equal to the limiting fraction Y of white balls in the

urn. To see this, note that by a short computation (6) can be massaged into the form

P(I1 = x1, . . . , In = xn) =
B(a+ k, b+ n− k)

B(a, b)
,

where B(u, v) =
∫ 1

0
xu−1(1 − x)v−1 dx denotes the Euler beta function, and k =

∑n
j=1 xj

(check!). We can further recognize the quantity on the right hand side as an expectation,

namely

B(a+ k, b+ n− k)

B(a, b)
=

1

B(a, b)

∫ 1

0

xa−1(1− x)b−1xk(1− x)n−k dx = E(Uk(1− U)n−k),

where U ∼ Beta(a, b). Thus, we have the amazing fact that, in effect, Pólya’s urn behaves

as if at the beginning of time, it chooses the random limiting fraction Y of white balls

(without telling the experimenter!), and subsequently tosses an i.i.d. sequence of coin

tosses with bias Y to choose the successive colors of the balls that get added to the urn.

Furthermore, by the exercise above, the σ-algebra of invariant subsets is the one generated

by Y , so intuitively one can say that this random variable measures the precise extent

of non-ergodicity in the process, i.e., the decomposition of the process into its ergodic

components.
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6. Rotation of the circle. The following result has a natural number theoretic interpre-

tation, which we’ll discuss later after proving the Birkhoff pointwise ergodic theorem.

Theorem 2.27. The circle rotation map Rα is ergodic if and only if α is irrational.

Proof. If α = p/q is rational, the set

E =
[
0, 1

2q

]
∪
[

1
q
, 3

2q

]
∪
[

2
q
, 5

2q

]
∪
[

3
q
, 7

2q

]
∪ . . . ∪

[
q−1
q
, 2q−1

2q

]
is an example of a nontrivial invariant set. Conversely, assume that α is irrational. Let

A ⊂ [0, 1] be an invariant event. The indicator variable 1A is a bounded measurable

function, hence an element of L2[0, 1], and can therefore be expanded in the Fourier basis

1A(x) =
∞∑

n=−∞

cne
2πinx.

(The equation represents an equality in L2, i.e., it is true for almost every x ∈ [0, 1].) The

coefficients cn in the expansion are given by cn = 1
2π

∫ 1

0
1A(x)e−2πinx dx. Then we have

1R−1
α (A)(x) = (1A ◦Rα)(x) = 1A(Rα(x)) =

∞∑
n=−∞

cne
2πinRα(x) =

∞∑
n=−∞

cne
2πin(x+α mod 1)

=
∞∑

n=−∞

cne
2πin(x+α) =

∞∑
n=−∞

dne
2πinx,

where we denote dn = cne
2πinα. Since A is invariant, i.e., 1R−1

α (A) = 1A a.s., we get that

cn = dn for all n ∈ Z. But α is irrational, so e2πinα 6= 1 if n 6= 0. It follows that cn = 0

for all n 6= 0, which leaves only the constant Fourier coefficient, i.e., 1A ≡ c0 a.s., which

proves that A is a trivial event.

7. The 2x mod 1 map. As we discussed earlier, this system is equivalent to the (1
2
, 1

2
)

Bernoulli shift, so by Lemma 2.24 above, the doubling map is ergodic.

8. The continued fraction map. The Gauss map is ergodic, a fact which has important

consequences (which we will discuss in the next chapter) for understanding the distribu-

tion of continued fraction quotients of a typical real number. There are many proofs of

this result, see for example [1, 2].
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9. The 3x + 1 map. K. R. Matthews and A. M. Watts [8] studied the extension T̃ of the

3x+ 1 map to the 2-adic integers, and in particular proved that T̃ is ergodic. See also [6].

10. Billiards. In Chapter 5 we described some example of billiard systems which are known

to be ergodic, and some which aren’t (for relatively trivial reasons). In general it is

extremely difficult to prove that a given billiard system is ergodic, but, similarly to the

example of Markov chains described above, there is a kind of philosophical principle (that

applies to billiard and other types of dynamical systems) that says that unless a system is

non-ergodic for a relatively obvious or trivial reason (e.g., because there is some obvious

quantity that is conserved such as the energy of a mechanical system), one would expect

the system to be ergodic, even though in practice one may have no idea how to prove it

in a given situation. As with any philosophical principle, one should take care in deciding

how to apply it4.

11. Hamiltonian flow. The situation is similar to that of billiard systems: most systems are

assumed to be ergodic unless there are obvious reasons why they are not, but as far as I

know this cannot be proved in virtually any example which has any real-world relevance.

12. Geodesic flow. Some geodesic flows are not ergodic (e.g., the sphere), and others are (for

example, hyperbolic space). The main property required to have ergodicity is negative

curvature, but I am not familiar with the specific details. It is also interesting to note

that there is a beautiful theory linking the continued fraction map and other dynamical

systems with a number-theoretic flavor to geodesic flows on compact hyperbolic surfaces

(in the case of the continued fraction map, it can be related to the geodesic flow on the

modular surface H/PSL(2,Z), the quotient of the hyperbolic plane by the modular

group).

13. The logistic map. This map is ergodic, a fact that follows as a consequence of a much

more general result proved in the paper [2].

4Note: a philosophical principle is what mathematicians invent when they can’t say anything rigorous.
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Chapter 3: Ergodic theorems

3.1 Von Neumann’s L2 ergodic theorem

Our first ergodic theorem is von Neumann’s ergodic theorem, which in fact is a result in

operator theory that has a nice interpretation for our problem of the convergence of ergodic

averages in a measure preserving system.

Theorem 3.1 (Von Neumann’s ergodic theorem.). Let H be a Hilbert space, and let U be

a unitary operator on H. Let P be the orthogonal projection operator onto the subspace

Ker(U − I) (the subspace of H consisting of U-invariant vectors). For any vector v ∈ H we

have
1

n

n−1∑
k=0

Ukv → Pv as n→∞. (9)

(Equivalently, the sequence of operators 1
n

∑n−1
k=0 U

k converges to P in the strong operator

topology.)

Proof. Define two subspaces

V = Ker(U − I) = {v ∈ H : Uv = v},

V ′ = Range(U − I) = {Uw − w : w ∈ H}.

Note that (9) holds trivially for v ∈ V . For a different reason, we also show that it holds for

v ∈ V ′: if v = Uw − w then we have

1

n

n−1∑
k=0

Ukv =
1

n
(Unw − w)→ 0 as n→∞.

On the other hand, one can verify that v ∈ V ⊥, and therefore Pv = 0, by observing that if

z ∈ V then

〈w, z〉 = 〈Uw,Uz〉 = 〈Uw, z〉,

hence 〈Uw − w, z〉 = 0.

Combining the above observations we see that (9) holds for v ∈ V + V ′. Next, we claim

that it also holds for v ∈ V + V ′, the norm closure of V + V ′. Indeed, if v ∈ V + V ′ then
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for an arbitrary ε > 0 we can take w ∈ V + V ′ such that ‖v − w‖ < ε and conclude that∥∥∥∥∥
(

1

n

n−1∑
k=0

Uk − P

)
v

∥∥∥∥∥ ≤
∥∥∥∥∥
(

1

n

n−1∑
k=0

Uk − P

)
w

∥∥∥∥∥+

∥∥∥∥∥
(

1

n

n−1∑
k=0

Uk − P

)
(v − w)

∥∥∥∥∥
≤

∥∥∥∥∥
(

1

n

n−1∑
k=0

Uk − P

)
w

∥∥∥∥∥+ ε.

This implies that lim supn→∞
∥∥( 1

n

∑n−1
k=0 U

k − P
)
v
∥∥ < ε, and since ε was an arbitrary positive

number we get (9).

Finally, we claim that H = V + V ′. Since V + V ′ is a closed subspace of H, we have

V + V ′ =
((
V + V ′

)⊥)⊥
,

(in general, the orthogonal complement of the orthogonal complement of a subspace W of

a Hilbert space is equal to W ). So, it suffices to show that
(
V + V ′

)⊥
= {0}, i.e., that the

only vector orthogonal to all of V + V ′ is the zero vector. Assume w is such a vector. Then

w ⊥ Uw − w. But note that we have the identity

‖Uw − w‖2 = 〈Uw − w,Uw − w〉 = ‖Uw‖2 + ‖w‖2 − 2 Re〈Uw,w〉

= 2‖w‖2 − 2 Re〈Uw,w〉 = −2 Re〈Uw − w,w〉

which means that Uw−w = 0, i.e., w ∈ V . Since w ∈
(
V + V ′

)⊥
we get that w is orthogonal

to itself and therefore w = 0, as claimed.

Let (Ω,F ,P, T ) be a measure preserving system. We associate with T an operator UT

on the Hilbert space L2(Ω), defined by

UT (f) = f ◦ T.

The fact that T is measure preserving implies that UT is unitary:

〈UTf, UTg〉 = E((UTf)(UTg)) = E((f ◦ T )(g ◦ T )) = E((fg) ◦ T ) = E(fg) = 〈f, g〉.

Note also that the subspace Ker(U − I) consists exactly of the invariant (square-integrable)

random variables, or equivalently those random variables which are measurable with respect

to the σ-algebra I of invariant events. Recalling some of the standard properties of con-

ditional expectations, we also see that the orthogonal projection operator P is exactly the

conditional expectation operator E (· | I) with respect to the σ-algebra of invariant events!

Thus, Theorem 3.1 applied to this setting gives the following result.
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Theorem 3.2 (The L2 ergodic theorem). Let (Ω,F ,P, T ) be a measure preserving system.

For any random variable X ∈ L2(Ω,F ,P), we have

1

n

n−1∑
k=0

X ◦ T k → E (X | I) in L2 as n→∞.

In particular, if the system is ergodic then

1

n

n−1∑
k=0

X ◦ T k → E(X) in L2 as n→∞.

3.2 Birkhoff’s pointwise ergodic theorem

We will now prove the fundamental result of ergodic theory, known alternately as Birkhoff’s

pointwise ergodic theorem; Birkhoff’s ergodic theorem; the pointwise ergodic

theorem; or just the ergodic theorem5.

Theorem 3.3 (Birkhoff’s ergodic theorem). Let (Ω,F ,P, T ) be a measure preserving system.

Let I denote as usual the σ-algebra of T -invariant sets. For any random variable X ∈
L1(Ω,F ,P), we have

1

n

n−1∑
k=0

X ◦ T k a.s.−−→ E (X | I) as n→∞. (10)

When the system is ergodic, we have

1

n

n−1∑
k=0

X ◦ T k a.s.−−→ E(X) as n→∞. (11)

For the proof, we start by proving a lemma, known as the maximal ergodic inequality.

Lemma 3.4. With the same notation as above, denote also S0 = 0, Sn =
∑n−1

k=0 X ◦T k, and

let Mn = max{Sk : 0 ≤ k ≤ n}. For each n ≥ 1 we have

E(X1{Mn>0}) ≥ 0.
5Incidentally, I’ve always found it strange that ergodic theory — unlike other areas of math — seems

to be the only theory named after an adjective (as opposed to a noun, as in the theory of numbers, or as in

the non-existent name the theory of ergodicity, which would perhaps have been a better name for ergodic

theory). Similarly, the ergodic theorem is, as far as I know, the only theorem in math to be named after an

adjective. (And what does the name mean, anyway? That the theorem has no nontrivial invariant sets...?)

If you think of any counterexamples to this observation, please let me know!
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Proof. For each 0 ≤ k ≤ n we have

Sk+1 = X + Sk ◦ T ≤ X +Mn ◦ T,

or equivalently X ≥ Sk+1 −Mn ◦ T . Since this is true for each 0 ≤ k ≤ n, we get that

X ≥ max(S1, . . . , Sn)−Mn ◦ T,

and therefore, noting that on the event {Mn > 0}, we have Mn = max(S1, . . . , Sn), we get

that

E(X1{Mn>0}) ≥ E
[
(max(S1, . . . , Sn)−Mn ◦ T )1{Mn>0}

]
= E

[
(Mn −Mn ◦ T )1{Mn>0}

]
= E [(Mn −Mn ◦ T )]− E

[
(Mn −Mn ◦ T )1{Mn>0}c

]
= 0− E

[
(Mn −Mn ◦ T )1{Mn=0}

]
= E

[
(Mn ◦ T )1{Mn=0}

]
≥ 0.

Proof of the ergodic theorem. E (X | I) is an invariant random variable, so by replacing X

with X−E (X | I), we can assume without loss of generality that E (X | I) = 0; in this case,

we need to prove that Sn/n → 0 almost surely (where Sn =
∑n−1

k=0 X ◦ T k as in the lemma

above). Denote X = lim supn→∞ Sn/n. X is an invariant random variable, taking values

in R ∪ {±∞}. Fix ε > 0, and consider the invariant event A = {X > ε}. We claim that

P(A) = 0. Once we prove this, since ε is arbitrary it will follow that X ≤ 0 almost surely.

By applying the same result to −X instead of X the reverse inequality that almost surely

lim inf Sn/n ≥ 0 will also follow, and the theorem will be proved.

To prove the claim, define a new random variable X∗ = (X− ε)1A. Applying Lemma 3.4

to X∗ we get that

E
[
X∗1{M∗n>0}

]
≥ 0,

where M∗
n = max(0, S∗1 , . . . , S

∗
n) and

S∗k =
k−1∑
j=0

X∗ ◦ T j =
k−1∑
j=0

(
(X − ε) ◦ T k−1

)
1A = (Sk − kε)1A
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(sinceA is an invariant event). Note that the events {M∗
n > 0} are increasing, soX∗1{M∗n>0} →

X∗1B almost surely as n→∞, where the event B is defined by

B =
∞⋃
n=1

{M∗
n > 0} =

{
sup
n≥1

S∗n > 0

}
=

{
sup
n≥1

S∗n/n > 0

}
.

Furthermore, the convergence is dominated, since E|X∗| ≤ E|X|+ ε <∞, so the dominated

convergence theorem implies that

E(X∗1B) ≥ 0.

Finally, observe that A ⊂ B, because

A = {lim sup
n→∞

Sn/n > ε} ⊆ A ∩ {Sn > nε for some n ≥ 1}

=
∞⋃
n=1

{(Sn − nε)1A > 0} =

{
sup
n≥1

S∗n > 0

}
= B.

So we have shown that

0 ≤ E(X∗1B) = E((X − ε)1A1B) = E((X − ε)1A∩B) = E((X − ε)1A)

= E(X1A)− εP(A) = E(E (X1A | I))− εP(A) = E(E (X | I) 1A)− εP(A) = −εP(A),

which proves our claim that P(A) = 0.

3.3 The L1 ergodic theorem

A trivial addendum to the previous proof shows that we also get L1 convergence of the

ergodic averages.

Theorem 3.5 (L1 ergodic theorem). The convergence in (10), (11) is also in L1.

Proof. Fix M > 0, and write X = YM + ZM where YM = X1{|X|≤M} and ZM = X − YM =

X1{|X|>M}. The pointwise ergodic theorem implies that

1

n

n∑
k=0

YM ◦ T k → E (YM | I) almost surely as n→∞,

and since |YM | ≤M the bounded convergence theorem implies also convergence in L1, i.e.,∣∣∣∣∣ 1n
n∑
k=0

YM ◦ T k − E (YM | I)

∣∣∣∣∣→ 0 as n→∞. (12)
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Next, for ZM we have the trivial estimates

E

∣∣∣∣∣ 1n
n−1∑
k=0

ZM ◦ T k
∣∣∣∣∣ ≤ 1

n

n−1∑
k=0

E|ZM ◦ T k| = E|ZM |,

E |E (ZM | I)| ≤ E
[
E (|ZM | | I)

]
= E|ZM |,

so, combining this with (12), this shows that almost surely

lim sup
n→∞

E

∣∣∣∣∣ 1n
n−1∑
k=0

X ◦ T k − E (X | I)

∣∣∣∣∣ ≤ 2E|ZM |.

Letting M →∞ finishes the proof, since lim supM→∞E|ZM | = 0 by the dominated conver-

gence theorem.

Exercise 3.6. Prove that if X is in Lp for some p > 1 then the convergence in (10) is also

in the Lp norm.

3.4 Consequences of the ergodic theorem

In probability theory and many related fields, the ergodic theorem is an essential tool that

is used frequently in concrete situations. Here are some of its consequences with regards to

some of the examples we discussed before.

1. The strong law of large numbers. If X1, X2, . . . are i.i.d. with E|X1| < ∞, then

if we think of the variables as being defined on the canonical product space RN (i.e.,

Xn = πn(ω) is the nth coordinate function), then we have Xn = X1 ◦ Sn−1, where

S : RN → RN is the shift map. Thus, the ergodic average 1
n

∑n−1
k=0 X1 ◦ Sk is the same

as the familiar empirical average 1
n
Sn = 1

n

∑n
k=1Xk for an i.i.d., sum, and Birkhoff’s

ergodic theorem implies the strong law of large numbers. (In fact, one can think of the

ergodic theorem as a powerful and far-reaching generalization of the SLLN).

2. Equidistribution of the fractional part of nα. A classical question in number

theory concerns the statistical properties of the fractional part of the integer multiples

of a number α, i.e., the sequence {nα} (sometimes written as nα mod 1), where {z} =

z − bzc denotes the fractional part of a real number z. If α is a rational number, it

is easy to see that this sequence is periodic, and its range is the finite set of numbers
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{
k
q

: k = 0, 1, . . . , q − 1
}

(where q is the denominator in the representation of α as a

reduced fraction p/q), so the question is trivial. In the case of irrational α something

nice (though not too surprising, in hindsight) happens:

Theorem 3.7 (Equidistribution theorem). If α ∈ R \Q then the sequence ({nα})∞n=1

is equidistributed in [0, 1]6. More precisely, for any 0 < a < b < 1 we have

1

n
#
{

1 ≤ k ≤ n : {nα} ∈ (a, b)
}
→ b− a as n→∞.

To prove this, note that {nα} is simply Rα(0), where Rα is the circle rotation map

discussed in previous sections. Since we proved that Rα is ergodic when α is irrational,

the ergodic theorem implies that for almost every x ∈ [0, 1]

1

n
#
{

1 ≤ k ≤ n : {x+nα} ∈ (a, b)
}

=
1

n

n−1∑
k=0

(
1(a,b) ◦Rk

α

)
(x)→

∫ 1

0

1(a,b)(u) du = b−a

as n → ∞. This would appear to be a weaker result, since it doesn’t guarantee that

the convergence occurs for the specific initial point x = 0. However, in the particular

example of the irrational circle rotation map (and the particular observable of the form

1(a,b)) a slightly unusual thing happens, which is that the ergodic theorem turns out to

be true not just for almost every initial point x but for all x; in fact, it is easy to see

that convergence for one value of x is equivalent to convergence for any other value of

x (and in particular x = 0). This is left to the reader as an exercise.

Note. Theorem 3.7 was proved in 1909 and 1910 independently by Weyl, Sierpinski

and Bohl. In 1916 Weyl showed that the sequence {n2α} is equidistributed, and

more generally that {p(n)} is equidistributed if p(x) is a polynomial with at least

one irrational coefficient. Vinogradov proved in 1935 that if α is irrational then the

sequence {pnα} is equidistributed, where pn is the nth prime number. Jean Bourgain

(winner of a 1994 Fields Medal) proved similar statements in the more general setting

of the pointwise ergodic theorem (i.e., the ergodic averages of the form 1
n

∑n
k=1 X ◦T k

2

6This is the terminology used in number theory — see for example the Wikipedia article

http://en.wikipedia.org/wiki/Equidistributed sequence. Note that in probability theory the word

equidistributed means equal in distribution rather than uniformly distributed, so one should take care when

using this term for the number theoretic meaning when talking to a probabilist.
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and 1
n

∑n
k=1X ◦T pk in a measure preserving system converge almost surely, under mild

integrability conditions).

3. Benford’s law. A beautiful variant of the circle rotation example above involves

multiplication instead of addition (but one then has the luxury of multiplying by nice

numbers such as rational numbers or integers, instead of adding irrational numbers).

Consider for example the distribution of the first digit in the decimal expansion of

the sequence of powers of 2, (2n)∞n=1. Should we expect all digits to appear equally

frequently? No, a quick empirical test shows that small digits appear with higher

frequency than large digits. To see why, note that this is related to the dynamical

system T : x 7→ 2x mod (10k)∞k=1 on the interval [1, 10) (i.e., multiplication by 2 in

the quotient group of all positive numbers with the multiplication operator quotiented

by the cyclic group generated by the number 10). For example, starting from 1 and

iterating the map we get the sequence

1 7→ 2 7→ 4 7→ 8 7→ 1.6 7→ 3.2 7→ 6.4 7→ 1.28 7→ . . .

It is easy to check that this map has the invariant measure

dµ(x) =
1

log 10

dx

x
(0 < x < 1)

In fact, this is a thinly disguised version of the circle rotation map Rα with α = log10 2;

the two maps are conjugate by the mapping C(x) = log10 x (i.e., C maps [1, 10)

bijectively to [0, 1) and the relation T = C−1 ◦ Rα ◦ C holds), and furthermore the

measure µ defined above is the pull-back of Lebesgue measure on [0, 1) with respect to

the conjugation map C, which is why an experienced ergodicist will know immediately

that µ is an invariant measure for T .7

With this setup, we can answer the question posed at the beginning of the example.

For each 1 ≤ d ≤ 9, the fraction of the first n powers of 2 whose decimal expansions

7We are skirting an important concept in ergodic theory here — in fact, the map C is an example of an

isomorphism between two measure preserving systems. Isomorphisms play a central role in ergodic theory,

and there’s a lot more to say about them, but we will not go further into the subject due to lack of time.
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start with a given digit d is given by

1

n
#{0 ≤ k ≤ n− 1 : T k(1) ∈ [d, d+ 1)} =

1

n

n−1∑
k=0

(
1[d,d+1) ◦ T k

)
(1)

→ 1

log 10

∫ d+1

d

dx

x
= log10

d+ 1

d
,

where the convergence follows by the equidistribution theorem (Theorem 3.7), the

above comments and the exercise below. This probability distribution on the numbers

1, . . . , 9 is known as Benford’s law. Note that the most common digit 1 appears

more than 30% of the time, and the least frequent digit 9 only appears only 4.6% of

the time.

Exercise 3.8. Let n < m be positive integers. Prove that if m is not an integer power

of n then logm n is an irrational number.

Benford’s law is indeed an amusing distribution. From the exercise it is apparent that

the choice of 2 as the factor of multiplication of the dynamical system is not special,

and any other number that is not a power of 10 will work. In fact, even this does

not come close to describing the generality in which Benford’s law holds empirically as

the first-digit distribution of real-life datasets. The reason for this is the fact that the

measure µ is invariant under all scaling transformations. Thus, one should expect to

observe an approximation to Benford’s law in any set of numbers which are more or

less “scale-free”, in the sense that the set contains samples that span a large number of

orders of magnitude, and where the unit of measurement is arbitrary and not inherently

tied to the data being measured. Examples include distances between points on a map,

financial reports, heights of the world’s tallest structures and many more; it has even

been proposed in several studies that Benford’s law can be applied to the problem of

detecting tax evasion and various forms of financial fraud and possibly also election

fraud. (Presumably, this will work under the assumption that the cheaters who fake

financial and tax reports are themselves not aware of the importance of Benford’s law!)

4. Continued fractions. The fact that the continued fraction map on (0, 1) (together

with the Gauss invariant measure) is ergodic has important consequences regarding

the distribution of quotients in the continued fraction expansion of a number chosen
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d PBenford(d) = log10
d+1
d

Graphical illustration

1 30.1%

2 17.6%

3 12.5%

4 9.7%

5 7.9%

6 6.7%

7 5.8%

8 5.1%

9 4.6%

Table 1: The (approximate) digit frequencies in Benford’s law

uniformly at random in (0, 1). In contrast to the much more trivial case of the digits in

a decimal (or base-b) expansion, which are simply i.i.d. random numbers chosen from

0, . . . , 9, the asymptotic distribution of successive continued fraction quotients is that

they are identically distributed, but not quite independent. To see this, note that the

marginal distribution of a single quotient can be computed using ergodic averages, as

follows. For each q ≥ 1, the set of numbers x whose first quotient N(x) = b1/xc is

equal to q is exactly the interval
(

1
q+1

, 1
q

]
. Thus, for a given number x we can recover

the proportion of the first n quotients equal to q as

1

n

n−1∑
k=0

(
1(1/(q+1),1/q] ◦Gk

)
(x),

which by the ergodic theorem converges to

1

log 2

∫ 1/q

1/(q+1)

dx

1 + x
= log2

(
(q + 1)2

q(q + 2)

)
(13)

for a set of x’s that has measure 1 with respect to Gauss measure γ (and hence, also

almost surely with respect to Lebesgue measure, since γ and Lebesgue are mutually

absolutely continuous with respect to each other). Thus, the formula on the right-

hand side of (13) (which is oddly reminiscent of Benford’s law, though they are not

related) represents the limiting distribution of the first quotient of a random number.
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For example, the frequency of occurrence of the quotient 1 is log2(4/3) ≈ 41.5% —

more than 40% of the quotient are equal to 1 ! Note that this is an asymptotic result

that pertains to the statistics of many quotients of a given number x, and not to the

first quotient of x: if x is chosen uniformly in [0, 1], because Lebesgue measure is not

invariant under the Gauss map G, the first quotient of x has a different distribution

(clearly, the probability that the first quotient is q is exactly 1/q−1/(q+1), the length

of the interval (1/(q + 1), 1/q]).

Exercise 3.9. Compute the asymptotic probability that a pair of successive quotients

of a randomly chosen x in [0, 1] is equal to (1, 1) and compare this to the square of the

frequency of 1’s, to see why successive quotients are not independent of each other. Are

two successive 1’s positively or negatively correlated?

What other quantities of interest can one compute for the continued fraction expansion

of random numbers? One can try computing the expected value of a quotient, but that

turns out not to be very interesting — the average 1
log 2

∫ 1

0
N(x) dx

1+x
is infinite. The

Russian probabilist Khinchin (known for his Law of Iterated Logarithm, a beautiful

result on random walks and Brownian motion) derived an interesting limiting law for

the geometric average of the quotients. He proved that for almost every x ∈ [0, 1], the

geometric average (q1 . . . qn)1/n of the first n quotients of x converges to the constant

K =
∞∏
k=1

(
1 +

1

k(k + 2)

)log2 k

≈ 2.68545

(known as Khinchin’s constant).

Exercise 3.10. Prove Khinchin’s result.

We mention one additional and very beautiful limiting result on continued fraction

expansions. If x ∈ (0, 1) has an infinite continued fraction expansion

x =
1

n1 + 1
n2+ 1

n3+
1

n4+
1
...

,
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where n1, n2, . . . are the quotients in the expansion, it is interesting to consider the

truncated expansion
Pk
Qk

=
1

n1 + 1
n2+ 1

n3+
1

...+ 1
nk

,

which are rational numbers that become better and better approximations to x. In

fact, one reason why continued fraction expansions are so important in number theory

is that it can be shown that the best rational approximation to x with denominator

bounded by some bound N will always be the last truncated continued fraction Pk/Qk

for which Qk ≤ N , and furthermore, the inequalities

1

Qk(Qk +Qk+1)
≤
∣∣∣∣x− Pk

Qk

∣∣∣∣ ≤ 1

QkQk+1

(14)

hold. How fast should we expect this sequence of rational approximations to converge?

The answer is given in the following theorem. For the proof (which is surprisingly not

difficult), see [1, Sec. 1.4].

Theorem 3.11. For almost every x ∈ (0, 1) we have

lim
k→∞

1

k
logQk =

π2

12 log 2
, (15)

lim
k→∞

1

k
log

∣∣∣∣x− Pk
Qk

∣∣∣∣ =
π2

6 log 2
, (16)

lim
k→∞

1

k
log Leb(∆k(x)) =

π2

6 log 2
, (17)

where ∆k(x) = {y ∈ (0, 1) : nj(y) = nj(x) for 1 ≤ j ≤ k} (this interval is sometimes

called the kth fundamental interval of x), and Leb(·) denotes Lebesgue measure

(it is easy to see that the same statement is true if Gauss measure is used instead).

Note that (16) and (17) follow easily by combining (15) with (14). The interesting

constant π2

6 log 2
is sometimes referred to as the entropy constant of the continued

fraction map.
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Chapter 4: Entropy and information theory

4.1 Entropy and its basic properties

In this chapter we give an introduction to information theory, a beautiful theory at

the intersection of ergodic theory, probability, statistics, computer science, and branches of

engineering and physics.

Throughout the chapter, X1, X2, X3, . . . will denote a stationary ergodic sequence of

random variables taking values in a finite set A = {α1, . . . , αd}. We think of the sequence as

an information source, emitting successive symbols from the set A, which in this context

will be referred to as the alphabet. Think of a long text in English or some other language8;

a sequence of bits being transmitted from one computer to another over a network; data

sampled by a scientific instrument over time, etc. — all of these are examples of information

sources which in suitable circumstances are well-modeled by a stationary ergodic sequence

over a finite alphabet.

A fundamental problem of information theory is to measure the information content of

the source. This is a numerical quantity which has come to be known as entropy. We will

define it and also try to explain what the number it gives means. E.g., if the entropy of

a source is 3.5, what does that tell us regarding the difficulty of storing or communicating

information coming from the source?

Let us start with the simplest case of an i.i.d. sequence. Denote pk = P(X1 = αk).

The probability vector (p1, . . . , pd) gives the relative frequencies of occurrence of each of

the symbols α1, . . . , αd, and for an i.i.d. sequence completely characterizes the statistical

properties of the sequence, so entropy will simply be a function of the numbers p1, . . . , pd.

We define it as

H(p1, . . . , pd) = −
d∑

k=1

pk log2(pk),

8It may seem unusual to you that language is considered as a statistical source, but spoken and written

language does exhibit very clear statistical characteristics. Note that information theory makes no attempt

to address the meaning (or usefulness) of a string of text. Thus, the word “information” is used in a slightly

different meaning in information theory versus how an ordinary person might use it. For example, a string

of random unbiased binary bits might appear to contain very little information to a layperson, but in the

information theory sense this kind of string has the highest possible information content for a binary string

of given length.
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with the convention that 0 log 0 = 0. The logarithm is traditionally taken to base 2, to reflect

the importance of entropy in computer science and engineering, although in certain fields

(notably thermodynamics and statistical physics) the natural base is used, and any other

base may be used as long as it is used consistently in all formulas. If the base 2 is used, we

say that entropy is measured in units of bits. The letter H used for the entropy function is

actually a capital Greek eta, the first letter of the Greek word entropia9.

Note that entropy can be regarded as the average of the quantity − log2 pk weighted by

the probabilities pk. Thus, sometimes we write

H(p1, . . . , pk) = −E log2 p(X),

where X is a random variable representing a source symbol (i.e., P(X = αk) = pk for each

1 ≤ k ≤ d, and p(αk) = pk represents the probability of each symbol. (It is a distinctive

and somewhat curious feature of information theory that probabilities are often themselves

regarded as random variables.)

Example 4.1. In the case of a 2-symbol alphabet (d = 2), the entropy function is usually

written simply as a function of one variable, i.e.,

H(p) = −p log2 p− (1− p) log2(1− p)

This function is concave, has the symmetry H(p) = H(1− p), equal to 0 at p = 0 and p = 1,

and takes the maximum value H(1/2) = 1 at p = 1/2 (see figure).

Lemma 4.2 (Gibbs’s inequality). If (p1, . . . , pd) is a probability vector and (q1, . . . , qd) is a

sub-probability vector, i.e., we have pk, qk ≥ 0,
∑

k pk = 1 and
∑
qk ≤ 1, then

−
d∑
i=1

pi log pi ≤ −
d∑
i=1

pi log qi,

with equality holding if and only the two vectors are equal.

9See the Wikipedia article http://en.wikipedia.org/wiki/History of entropy#Information theory

for an amusing and often-told story about the origin of the term entropy in information theory.
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Figure 4: The entropy function H(p) for a two-value distribution

Proof. The form of the inequality is unchanged by changing the logarithm basis, so we use

the natural logarithm. Since log x ≤ x− 1 for all x > 0, we have

−
d∑

k=1

pk(log qk − log pk) = −
d∑

k=1

pk log

(
qk
pk

)
≥ −

d∑
k=1

pk

(
qk
pk
− 1

)
= −

∑
k

qk +
∑
k

pk ≥ −1 + 1 = 0.

Lemma 4.3 (Properties of the entropy function). The entropy function of d-dimensional

probability vectors (p1, . . . , pd) satisfies:

1. 0 ≤ H(p1, . . . , pd) ≤ log2 d

2. H(p1, . . . , pd) = 0 if and only if pk = 1 for some k (and all the other pj’s are 0).

3. H(p1, . . . , pd) = log2 d if and only if pk = 1/d for all k.

4. H(p ⊗ q) = H(p) + H(q), where if p = (p1, . . . , pd) and q = (q1, . . . , q`), we use the

notation p⊗ q to denote the probability vector (piqj)i,j on the product of two alphabets

of sizes d and `.

5. H(p1, . . . , pd) is a concave function.
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Exercise 4.4. Prove Lemma 4.3.

Exercise 4.5. (a) Let 0 < p < 1, and let Xp ∼ Geom(p) (a geometric r.v. with parameter p).

Show that the entropy of Xp is given by

H(Xp) =
1

p
H(p) =

1

p
(−p log2 p− (1− p) log2(1− p)) .

Note. The intuition for why we should expect such a formula to be true is that in order

to sample from the Geom(p) distribution, we toss a coin with bias p a random number

of times that is on average E(Xp) = 1/p. Each coin toss produces H(p) bits of entropy,

so the average amount of entropy produced is 1
p
H(p). However, a calculation is still

required to verify that this intuitive reasoning produces the correct answer; alternatively,

as observed in the example on page 223 of [10], this fact can be seen to follow from a

more conceptual result (see Corollary 1 on the preceding page of the same paper).

(b) Let Y be a random variable taking values in the positive integers N. Assume that µ :=

E(Y ) ∈ (1,∞), and write p = 1/µ. Prove that H(Y ) ≤ H(Xp), where Xp is the

geometric random variable defined above, with equality if and only if Y
D
= Xp.

Note. This result gives a characterization of the geometric distribution with mean µ as

the discrete distribution over the positive integers that has the maximal entropy, among

all such distributions with a fixed mean — a conceptually important fact.

4.2 The noiseless coding theorem

Our first interpretation of the entropy function will be in terms of the problem of noise-

less coding. Recall that the information source emits symbols in the finite alphabet

A = {α1, . . . , αd}. To transmit the symbol over a digital communication channel or store it

on a computer storage system (which is the same as transmission, except we’re transmitting

it to ourselves in the future rather than to a different physical location), we need to encode

the symbols as binary bits. We assume that the storage system or communication system

are noiseless, i.e., no corruption of our data is expected to occur.

What is a good way to encode the symbols as binary bits? A naive approach would be to

allocate d distinct binary strings, one for each of the symbols. Since the strings need to be

distinct so that the transmission can be decoded on the other end, obviously it is necessary
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(and sufficient) for the strings to be of length dlog2 de. Thus, in terms of efficiency, this

method uses the channel approximately log2 d times for every symbol encoded.

But perhaps we can do better? For example, it is possible that some of the symbols occur

more frequently than others. A more sophisticated approach would be to assign binary strings

of different lengths to the different symbols, assigning the shorter strings to more frequently

occurring symbols. One must be careful however to make sure that the transmission, which

may consist of the concatenation of several of the strings used to encode a succession of

source symbols, can be faithfully recovered. This leads to the idea of codes.

Definition 4.6. Let {0, 1}∗ = ∪∞n=1{0, 1}n be the set of all finite binary sequences (which

we will call words or strings). A code for the alphabet A = {α1, . . . , αd} is a collection

(wk)
d
k=1 of words in {0, 1}∗. We say the code is uniquely decodable if any word formed as

a concatenation wj1wj2 . . . wjm of words in the code can be decoded in a unique way, i.e., it

is not equal to any other concatenation of words from the same code. We say that the code

is a prefix code if no word wi in the code is a prefix of another word wj.

It is obvious that any prefix code is uniquely decodable, since, when reading a concatena-

tion of words, we know immediately when a word terminates and the next word begins. Not

all uniquely decodable codes are prefix codes, however (the code 0, 01, 011 is an example).

It is however true that uniquely decodable codes that are not prefix codes are in some sense

pointless and for all practical purposes they may be ignored — see Corollary 4.11 at the end

of this section to understand why. Prefix codes, on the other hand, are extremely useful in

both theory and applications, and used by people (e.g., punctuation marks in language, the

telephone directory), computers (innumerable examples) and even nature (the genetic code

encodes amino acids used as building blocks of proteins as triplets of nucleotides in DNA).

For a word w ∈ {0, 1}∗, denote its length by `(w). Given a code w1, . . . , wd associated with

an information source that emits a random symbol α1, . . . , αd with respective probabilities

p1, . . . , pd, denote by L the (random) word length, i.e., L = `(wk) with probability pk for

k = 1, . . . , d. A crucial quantity that we are interested in is the expected word length

E(L) =
d∑

k=1

pk`(wk).

By the law of large numbers, this quantity says how many bits we will need to transmit

over the channel for every source symbol coded when encoding very long strings of source
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symbols. How small can we make L? The following famous result answers this fundamental

question.

Theorem 4.7 (Noiseless coding theorem). Let (p1, . . . , pd) be a probability vector. Then:

1. If (w1, . . . , wd) ∈ {0, 1}∗ is a prefix code for the source, then the expected word length

satisfies

E(L) =
d∑

k=1

pk`(wk) ≥ H(p1, . . . , pd).

2. A prefix code (w1, . . . , wd) ∈ {0, 1}∗ may be found for which the expected word length

satisfies

E(L) =
d∑

k=1

pk`(wk) ≤ H(p1, . . . , pd) + 1.

To prove the theorem, we need an auxiliary result:

Theorem 4.8 (Kraft’s inequality).

1. If w1, . . . , wd is a prefix code then
∑d

k=1 2−`(wk) ≤ 1.

2. Conversely, if `1, . . . , `d are positive integers satisfying
∑d

k=1 2−`k ≤ 1, then there exists

a prefix code w1, . . . , wk with `(wk) = `k.

Proof. For the first claim, for each word wk = a1 . . . a`(wk) define a real number xk by

xk =

`(wk)∑
j=1

aj2
−j = (0.a1a2 . . . a`(wk))binary,

and consider the interval Ik = [xk, xk + 2−`(wk)) (a sub-interval of [0, 1]; this is the set of

numbers in [0, 1] whose binary expansion starts with the word wk). The fact that the code

is a prefix code is equivalent to the statement that the intervals Ik, k = 1, . . . , d are disjoint.

It follows that
∑

k |Ik| =
∑

k 2−`(wk) ≤ 1.

For the other direction, starting with the lengths `1, . . . , `d, first assume without loss

of generality that `1 ≤ `2 ≤ . . . ≤ `k (if not, relabel the indices). It is clear that we can

inductively construct disjoint dyadic intervals I1, . . . , Ik ⊂ [0, 1] such that each Ik is of the

form [xk, xk + 2−`k) where xk has a binary expansion of length `k (take x1 = 0 and let each
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xk for k ≥ 2 be the rightmost endpoint of Ik−1; the construction will work because of the

assumption that
∑d

k=1 2−`k ≤ 1, so the intervals never leave [0, 1], and the assumption that

the lengths are increasing, which implies that the length of the binary expansion of xk is at

most `k−1). The code words w1, . . . , wk are then taken as the respective binary expansions

of x1, . . . , xd, where for each xk, if the binary expansion is shorter than `k (as in the case of

x1 = 0), it is brought to the right length by padding it with zeros.

Proof of the noiseless coding theorem. For the first part of the theorem, observe that since∑d
k=1 2−`(wk) ≤ 1 by Kraft’s inequality, we can apply Gibbs’s inequality to the two vectors

(p1, . . . , pk) and (2−`(w1), . . . , 2−`(wd)), to get that

E(L) =
d∑

k=1

pk`(wk) = −
d∑

k=1

pk log2

(
2−`(wk)

)
≥ −

d∑
k=1

pk log2 pk = H(p1, . . . , pd).

For the second part, for each 1 ≤ k ≤ d let `k = d− log2 pke (where d·e denotes the ceiling

function), so that the inequality 2−`k ≤ pk < 2−`k+1 holds. Then
∑

k 2−`k ≤
∑

k pk = 1, so

by Kraft’s inequality we can find a prefix code w1, . . . , wk with word lengths `1, . . . , `k. For

this code, we have

E(L) =
d∑

k=1

pk`k = −
d∑

k=1

pk log2

(
2−`k

)
≤ −

d∑
k=1

pk log2(pk/2) = H(p1, . . . , pd) + 1.

While the noiseless coding theorem clearly indicates that the entropy H = H(p1, . . . , pd)

is an interesting number, one might argue that the true minimal expected coding word

length, which (by the theorem) lies somewhere in the interval [H,H + 1] (but which in

practice may be hard to compute), is a more meaningful measure of the information content

of a random symbol sampled from the distribution p1, . . . , pd. For example, for a binary

source information source with distribution (p, 1 − p) the “optimal expected word length”

is exactly 1 bit per source symbol. However, in an asymptotic sense the entropy really is

the more meaningful number; the trick is to cluster the source symbols into groups of fixed

length and encode these longer strings, as the following reformulated version of the noiseless

coding theorem explains.

Corollary 4.9 (Noiseless coding theorem, version 2). Let p = (p1, . . . , pd) be a probability

vector. Then:
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1. Any prefix code for a source with distribution p has expected word length ≥ H(p).

2. For any ε > 0, we can find an integer N large enough and a prefix code for a source

with distribution p⊗N = p ⊗ . . . ⊗ p (the distribution of a vector of N independent

samples from p) which has expected word length ≤ N(H(p) + ε); that is, the expected

word length per symbol coded is at most H(p) + ε.

Proof. For part 2, take N = 1/ε and apply the first version of the noiseless coding theorem

to the distribution p⊗N , making use of property 4 in Lemma 4.3.

To summarize, this last formulation of the noiseless coding theorem gives a meaning to

the entropy function as measuring precisely the difficulty of (noiselessly) coding the source,

in an asymptotic sense: first, any code will require sending at least H(p) binary bits over

the communication channel; conversely, one can approach this lower bound asymptotically

by coding for multiple symbols simultaneously.

The noiseless coding theorem solves the problem of the efficiency of coding over a noiseless

channel using prefix codes. What about the more general class of uniquely decodable codes?

The next lemma and the corollary that follows it show that the result is the same, and there

is no real loss of generality in assuming that the codes we will be using are prefix codes.

Lemma 4.10 (Kraft’s inequality, stronger version). If w1, . . . , wd is a uniquely decodable

code then
∑d

k=1 2−`(wk) ≤ 1.

Proof. For integers k,m ≥ 1, let Ak,m denote the number of ways in which m of the code

words w1, . . . , wd can be concatenated to obtain a binary string of length k. Note that

Ak,m can be nonzero only if k ≤ Λm, where Λ denotes the maximal length of a code word.

Moreover, the fact that the code is uniquely decodable implies that Ak,m ≤ 2k. Now observe

that the definition of the numbers Ak,m’s can be expressed in an equaivalent algebraic form

as an equality of generating functions. Specifically, we have the relation(
d∑
j=1

x`(wj)

)m

=
∑
k≤Λm

Ak,mx
k.

In particular, setting x = 1/2 in this identity gives(
d∑
j=1

2−`(wj)

)m

=
∑
k≤Λm

Ak,m2−k ≤
∑
k≤Λm

2k2−k = Λm.
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Taking mth roots, we obtain the inequality

d∑
j=1

2−`(wj) ≤ (Λm)1/m .

Now take the limit as m→∞ to conclude that
∑d

j=1 2−`(wj) ≤ 1, as claimed.

Corollary 4.11. Any uniquely decodable code can be replaced by a prefix code with the same

word lengths.

4.3 The asymptotic equipartition property

A related way of thinking about entropy is in terms of data compression: given a string of

source symbols of length n (which could itself be a binary string in the case of a 2-symbol

alphabet), how much can we compress it, i.e., what is the typical length of a binary string

we’ll need to represent it? The noiseless coding theorem says that on the average we’ll need

around nH(p1, . . . , pd) bits; however, the theorem doesn’t address the question of how many

bits we’ll need typically (that is, with probability close to 1)? Of course, these questions are

in general not equivalent: for example, it may seem conceivable that the reason the average

number of bits is around nH(p1, . . . , pd) is that around half the time we need a much smaller

number of bits, and the other half of the time we need approximately twice as many. The

following result, known as the asymptotic equipartition property, demonstrates that in

fact in this case the typical behavior is the same as the average one.

Theorem 4.12 (Asymptotic equipartition property for an i.i.d. source). Let X1, X2, . . . be

an i.i.d. information source over the alphabet A = {α1, . . . , αd}, distributed according to the

probability vector p = (p1, . . . , pd) as before. Fix ε > 0. There exists a large enough integer

N such that the sequences AN can be partitioned into a disjoint union of sequences of two

types, namely,

AN = T t E,

where the sequences in T and E are called the typical and exceptional sequences, respec-

tively, such that the following properties hold:

1. P((X1, . . . , XN) ∈ E) < ε, (i.e., the exceptional sequences are indeed exceptional).
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2. The probability of observing each typical sequence (x1, . . . , xN) ∈ T satisfies

2−N(H(p)+ε) ≤ P((X1, . . . , XN) = (x1, . . . , xN)) ≤ 2−N(H(p)−ε). (18)

3. Consequently, assuming ε < 1/2, the number of typical sequences satisfies

2N(H(p)−ε)+1 ≤ |T | ≤ 2N(H(p)+ε). (19)

Proof. Define a sequence Z1, Z2, . . . of i.i.d. random variables by

Zn = −
d∑

k=1

log2 pk1{Xn=αk},

and denote Sn =
∑n

j=1 Zj. By the weak law of large numbers we have that

1

n
Sn

P−−−→
n→∞

E(Z1) = H(p),

and therefore for large enough N , we have

P

(∣∣∣∣ 1

N
SN −H(p)

∣∣∣∣ ≤ ε

)
≥ 1− ε. (20)

Call the event on the left-hand side B. This is an event that depends on the r.v.’s X1, . . . , XN ,

so it can be represented as a disjoint union of events of the form

B =
⊔

(x1,...,xn)∈T

{(X1, . . . , XN) = (x1, . . . , xn)}

for some set T ⊂ AN of sequences. This will be our set of typical sequences; the exceptional

sequences are defined as the complementary set E = AN \ T .

We now claim that T and E satisfy the properties in the theorem. Property 1 holds

automatically by (20). For property 2, observe that if (x1, . . . , xN) = (αj1 , . . . , αjN ) ∈ T

then by the definition of the event B we have

N (H(p)− ε) ≤ −
N∑
n=1

log2 pjn ≤ N (H(p) + ε) ,

or equivalently

2−N(H(p)+ε) ≤
N∏
n=1

pjn ≤ 2−N(H(p)−ε).
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But
∏N

n=1 pjn is exactly P((X1, . . . , XN) = (x1, . . . , xN)), so we get (18). On the other hand,

the total probability of observing any typical sequence is P(B), which is bounded between

1− ε and 1 (hence, between 1/2 and 1, if we assume ε < 1/2). This implies (19).

The implication of the theorem is that since the number of typical sequences is around

2n(H(p)±ε), we can encode them using a binary string of length ≈ nH(p). How easy this

is to do in practice is a different question (some very practical techniques exist that are

not difficult to implement — for example, two well-known methods are known as Huffman

coding and Lempel-Ziv coding).

Exercise 4.13. Use the asymptotic equipartition property to give an alternate proof of the

reformulated version of the noiseless coding theorem.

4.4 Ergodic sources and the Shannon-McMillan-Breiman theorem

We are now ready to discuss the situation for a general stationary ergodic source X1, X2, . . ..

It turns out that a version of the asymptotic equipartition property is valid for such a

source. To prove it, we first need to correctly define the entropy of the source, and to prove

an important convergence result that replaces the (trivial) use of the law of large numbers

in the case of an i.i.d. source.

For a sequence (x1, . . . , xn) ∈ An, denote

p(x1, . . . , xn) = P((X1, . . . , Xn) = (x1, . . . , xn)), (21)

p(xn |x1, . . . , xn−1) = P(Xn = xn | (X1, . . . , Xn−1) = (x1, . . . , xn−1)), (22)

Hn = −E(log2 p(Xn |X1, . . . , Xn−1)). (23)

In information theory the quantity Hn is often denoted by H(Xn |X1, . . . , Xn−1); it is a

special case of a conditional entropy.

Lemma 4.14. (Hn)∞n=1 is a weakly monotone decreasing sequence, hence converges to a limit

H ≡ lim
n→∞

Hn ≥ 0. (24)

The proof follows by induction by applying the result of the following exercise.
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Exercise 4.15. Let A = {α1, . . . , αd} and B = {β1, . . . , βm} be two finite sets. If X, Y are

two random variables such that P(X ∈ A, Y ∈ B) = 1, the conditional entropy H(X |Y ) is

defined by

H(X |Y ) = −
m∑
j=1

d∑
k=1

P(X = αk, Y = βj) log2 P(X = αk |Y = βj)

=
m∑
j=1

P(Y = βj)H(X |Y = βj).

I.e., H(X |Y ) is the average of the entropies of the conditional distributions of X given the

outcome of Y . Prove that H(X |Y ) ≤ H(X), with equality if and only if X and Y are

independent. Deduce also that H(X |Y, Z) ≤ H(X |Z) if Z is another random variable, and

explain why this implies Lemma 4.14.

We refer to H in (24) as the entropy of the source (Xn)∞n=1. There is an equivalent

way to define it which is also interesting. Since Hn → H, the Cesàro averages of (Hn)n also

converge to H, i.e.,
1

n
(H1 + . . .+Hn)→ H as n→∞.

The average on the left-hand side can be written as

− 1

n
E
[

log2 p(X1) + log2 p(X2 |X1) + log2 p(X3 |X1, X2) + . . .+ p(Xn |X1, . . . , Xn−1)
]

= − 1

n
E [log2 p(X1, . . . , Xn)] =

1

n
H(X1, . . . , Xn).

(Here, H(X1, . . . , Xn) refers to the entropy of the discrete vector random variable (X1, . . . , Xn),

which takes values in the finite set An.) Thus, H may be interpreted as the limit of
1
n
H(X1, . . . , Xn), i.e., the asymptotic entropy per symbol in a long string of symbols sampled

from the source.

The importance of H is explained by the following fundamental result, sometimes referred

to as “the individual ergodic theorem of information theory”.

Theorem 4.16 (Shannon-McMillan-Breiman theorem). We have the almost sure conver-

gence

− 1

n
log2(p(X1, . . . , Xn))

a.s.−−−→
n→∞

H (25)
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Lemma 4.17. If (Zn)n is a sequence of nonnegative random variables such that E(Zn) ≤ 1

for all n, then

P

(
lim sup
n→∞

1

n
logZn ≤ 0

)
= 1. (26)

Proof. Fix ε > 0. By Markov’s inequality, we have

P(n−1 logZn ≥ ε) = P(Zn ≥ enε) ≤ e−nε.

Since
∑

n e
−nε <∞, the first Borel-Cantelli implies that P(n−1 logZn ≥ ε i.o.) = 0. This is

true for any ε > 0, so taking a union of these events over ε = 1/k, k = 1, 2, . . . gives (26).

Proof of Theorem 4.16. As explained in Section 2.2, we may assume without loss of gener-

ality that the sequence (Xn)n is actually a two-sided ergodic stationary sequence (Xn)∞n=−∞.

We start by giving yet another, more subtle, interpretation of the source entropy H. By

stationarity, we may rewrite Hn as

Hn = −E(log2 p(X0 |X−n+1, . . . , X−1)) = −
d∑
j=1

E
[
L
(
E
(
1{X0=αj} | G−1

−n+1

) )]
,

where we denote L(p) = p log2 p and Gts = σ(Xm ; s ≤ m ≤ t). Note that for each j, the

expression E
(
1{X0=αj} | G−1

−n+1

) )
inside the conditional expectation above forms a martingale

(as a function of n) taking values in [0, 1]. By Lévy’s martingale convergence theorem

(Theorem 3.27 in [11]), we have

E
(
1{X0=αj} | G−1

−n+1

) )
→ E

(
1{X0=αj} | G−1

−∞
)

a.s. as n→∞.

Since L(·) is a bounded continuous function on [0, 1], using the bounded convergence theorem

we therefore get also that

Hn −−−→
n→∞

E

[
−

d∑
j=1

E
(
1{X0=αj} | G−1

−∞
)

log2 E
(
1{X0=αj} | G−1

−∞
)]

Of course, the limit of Hn is H, so we have derived another formula

H = E

[
−

d∑
j=1

E
(
1{X0=αj} | G−1

−∞
)

log2 E
(
1{X0=αj} | G−1

−∞
)]

(27)
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for the source entropy. Furthermore, this expression can be rewritten in the simpler form

H = −E log2 p(X0 | G−1
−∞), (28)

where we adopt the notation (in the same vein as (21) and (22))

p(x | Gts) = P
(
Xt+1 = x | Gts

)
. (29)

To see why, note that

p(X0 | G−1
−∞) =

d∑
j=1

1{X0=αj}p(αj | G−1
−∞),

and use this to write the right-hand side of (28) as

−E log2 p(X0 | G−1
−∞) = −

d∑
j=1

E
[
E
(
1{X0=αj} log2 p(αj | G−1

−∞) | G−1
−∞
) ]

= −
d∑
j=1

E
[

log2 p(αj | G−1
−∞)E

(
1{X0=αj} | G−1

−∞
) ]

= −
d∑
j=1

E
[
p(αj | G−1

−∞) log2 p(αj | G−1
−∞)

]
,

which is the same as the right-hand side of (27).

Having derived the representation (28) for the source entropy, we now apply another

piece of heavy machinery, the ergodic theorem, which implies that

− 1

n

n−1∑
k=0

log2 p(Xk | Gk−1
−∞ )

a.s.−−−→
n→∞

H.

Furthermore, one may verify without much difficulty that this ergodic average can be rewrit-

ten in the form

− 1

n

n−1∑
k=0

log2 p(Xk | Gk−1
−∞ ) = − 1

n
log2 p(X0, . . . , Xn−1 | G−1

−∞). (30)

(where the notation p(x0, . . . , xn−1 | Gts) is defined as an obvious generalization of (29)). So

we conclude that

− 1

n
log2 p(X0, . . . , Xn−1 | G−1

−∞)→ H a.s. as n→∞.
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This fact bears some resemblance to the claim (25) that we are trying to prove, and indeed, we

can deduce “half” of our result from it — a one-sided asymptotic bound — using Lemma 4.17,

as follows. Define a sequence of random variables (Zn)∞n=1 by Zn = p(X0,...,Xn−1)

p(X0,...,Xn−1 | G−1
−∞)

. We

have

E(Zn) = E
[
E
(
Zn | G−1

−∞
)]

= E

 ∑
x0,...,xn−1∈A

E

(
p(x0, . . . , xn−1)

p(x0, . . . , xn−1 | G−1
−∞)

p(x0, . . . , xn−1 | G−1
−∞) | G−1

−∞

)
=

∑
x0,...,xn−1∈A

p(x0, . . . , xn−1) = 1. (31)

So, we are in the situation described in Lemma 4.17, and we conclude that almost surely we

have the inequality

0 ≤ − lim sup
n→∞

1

n
log2 Zn = lim inf

n→∞

(
− 1

n
log2 Zn

)
= lim inf

n→∞

[
− 1

n
log2 p(X0, . . . , Xn−1) +

1

n
log2 p(X0, . . . , Xn−1 | G−1

−∞)

]
= lim inf

n→∞

[
− 1

n
log2 p(X0, . . . , Xn−1)

]
+ lim

n→∞

1

n
log2 p(X0, . . . , Xn−1 | G−1

−∞)

= lim inf
n→∞

[
− 1

n
log2 p(X0, . . . , Xn−1)

]
−H.

That is, we have proved that the inequality

lim inf
n→∞

[
− 1

n
log2 p(X0, . . . , Xn−1)

]
≥ H. (32)

holds with probability 1.

To finish the proof, we will now prove an asymptotically matching upper bound; more

precisely, we claim that for each fixed k ≥ 1, almost surely the inequality

− lim sup
n→∞

1

n
log2 p(X0, . . . , Xn−1) ≤ Hk (33)

holds. Since Hk ↘ H, the inequalities (32) and (33) together imply (25). To this end, for

each k ≥ 1 we define the “kth order Markov approximation” to the function p(x1 . . . , xn) by

pk(x1, . . . , xn) = p(x1, . . . , xk)p(xk+1 |x1, . . . , xk)p(xk+2 |x2, . . . , xk+1) · · · p(xn |xn−k, . . . , xn−1)

= p(x1, . . . , xk)
n∏

j=k+1

p(xj |xj−k, . . . , xj−1) (n ≥ k).
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The idea in this definition is that pk(x1, . . . , xk) is the symbol distribution of a modified

source process (X
(k)
n )∞n=1 in which the conditional distribution of observing a symbol xn

given the past symbols x1, . . . , xn−1 is computed from the symbol distribution of the original

process by “forgetting” all the symbols before xn−k, i.e., using only the information in the

past k symbols. This modified source is a generalized type of Markov chain known as a

Markov chain of order k or Markov chain with memory k.

Now observe that we have an expansion analogous to (30), namely

− 1

n
log2 pk(X0, . . . , Xn−1) = − 1

n
log2 p(X0, . . . , Xk−1)− 1

n

n−1∑
j=k

log2 p(Xj |Xj−k, . . . , Xj−1).

Combining it with an application of the ergodic theorem, we deduce that

− 1

n
log2 pk(X0, . . . , Xn−1)

a.s.−−−→
n→∞

−E
(

log2 p(Xk |X0, . . . , Xk−1)
)

= Hk.

This again bears a resemblance to (25), and we can relate the two using the lemma. Define

a sequence (Yn)∞n=k of random variables by Yn = pk(X0,...,Xn−1)
p(X0,...,Xn−1)

. A short computation similar

to (31), which we leave to the reader to verify, shows that E(Yn) ≤ 1 for all n ≥ k, so from

Lemma 4.17 we get that almost surely,

0 ≥ lim sup
n→∞

1

n
log2 Yn

= lim sup
n→∞

[
1

n
log2 pk(X0, . . . , Xn−1)− 1

n
log2 p(X0, . . . , Xn−1)

]
= −Hk + lim sup

n→∞

(
− 1

n
log2 p(X0, . . . , Xn−1)

)
,

which proves (33) and thus finishes the proof.

Theorem 4.18 (Asymptotic equipartition property for an ergodic source). Let X1, X2, . . .

be a stationary ergodic information source over the alphabet A = {α1, . . . , αd}. Fix ε > 0.

There exists a large enough integer N such that the sequences AN can be partitioned into a

disjoint union of typical and exceptional sequences, namely, AN = T tE, such that we have:

1. P((X1, . . . , XN) ∈ E) < ε.

2. 2−N(H+ε) ≤ P((X1, . . . , XN) = (x1, . . . , xN)) ≤ 2−N(H−ε) for each typical sequence

(x1, . . . , xN) ∈ T .
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3. Consequently, assuming ε < 1/2, the number of typical sequences satisfies

2N(H−ε)+1 ≤ |T | ≤ 2N(H+ε).

Proof. The proof is completely analogous to the proof of the i.i.d. case from the previous

section; the random variable Sn is redefined as − log p(X1, . . . , Xn), and the use of the weak

law of large numbers is replaced by the Shannon-McMillan-Breiman theorem.

We conclude this chapter with some examples of stationary ergodic sequences and their

entropies.

1. i.i.d. source. If X1, X2, . . . is an i.i.d. source whose distribution is described by the

probability vector (p1, . . . , pd) then Hn = H(Xn |X1, . . . , Xn−1) = H(p1, . . . , pd), so the

entropy is the usual entropy we discussed before. For example, if X is a Bernoulli random

variable satisfying P(X = 1) = 1/3 = 1 − P(X = 0) then H = −1
3

log2
1
3
− 2

3
log2

2
3

=

0.91829 . . . bits.

2. Markov source. If X1, X2, . . . is a stationary Markov chain, then the “n-step” condi-

tional entropy Hn is given by Hn = H(Xn |X1, . . . , Xn−1) = H(Xn |Xn−1) = H(X2 |X1)

by the Markov property, so it is enough to compute this “1-step” conditional entropy.

It is easy to see that this is simply an average with respect to the stationary probabil-

ities of the entropies of each of the rows of the transition matrix. For example, if the

Markov chain has the transition matrix

(
1
2

1
2

1 0

)
, then it is easy to check that (2

3
, 1

3
) is

a stationary probability vector for the chain. The entropy is therefore given by

H = H(X2 |X1) = 2
3
H(1

2
, 1

2
) + 1

3
H(1, 0) = 2

3
· 1 = 2

3
= 0.6666 . . . bits.

Note that this stationary Markov chain has the same one-dimensional marginals as the

i.i.d. source discussed above. Nonetheless, the entropy is lower, since it measures the

incremental amount of information gained by examining a symbol once all the previous

symbols are known, which is lower in the case where there is dependence.

3. Continued fractions. From the results discussed in the previous chapter, the entropy

of the sequence of quotients (N ◦Gk)∞k=0 in the continued fraction expansion of a number

chosen according to Gauss measure γ is equal to π2/6 log 2, when measured in the natural
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base. If we want to adhere to the information theory convention and measure this entropy

in bits, we must divide by a further factor of log 2, giving an entropy of

π2

6(log 2)2
= 3.423714 . . . bits.

One way of interpreting this fact is that, as we examine more and more of the continued

fraction quotients of a number x chosen uniformly at random from (0, 1), on the average

each additional quotients will increase our knowledge of the binary expansion of x by

about 3.42 additional digits. Incidentally, while preparing these notes I discovered the

curious fact (which I have not seen mentioned anywhere) that if we measure the entropy

in base 10, we get
π2

6 log(2) log(10)
= 1.03064 . . . ,

i.e., on the average each continued fraction quotient adds an amount of information almost

precisely equal to one decimal expansion digit.

4. Rotations of the circle. Let α ∈ (0, 1) be irrational, let X be a random variable

taking finitely many values on ((0, 1),B,Leb), and let Xn = X ◦ Rn−1
α . Then (Xn)∞n=1 is

a stationary ergodic sequence.

Exercise 4.19. Prove that the entropy of this sequence is 0.
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Chapter 5: Brownian motion

Brownian motion started its life as a topic of scientific study as the physical phenomenon of

the random motion of particles suspended in a fluid, famously observed through a microscope

in 1827 by the botanist Robert Brown. Albert Einstein in 1905 showed through a brilliant

analysis that this behavior can be explained as arising out of random collisions of the particle

with molecules of the surrounding fluid. This explanation is considered an important early

source of support for the atomic theory of matter.

Separately from the study of “physical” Brownian motion, mathematicians starting with

Thiele in 1880 studied a continuous-time stochastic process that we today also call Brownian

motion (or, in certain contexts, the Wiener process, in honor of Norbert Wiener, an early

pioneer of the subject), and that is now understood to be a ubiquituous and stunningly

successful model for many phenomena in nature, economics, science and engineering, and

more. Our goal in this chapter is to develop the rigorous mathematical theory of this process;

physics will not play any role in the discussion.

5.1 Preliminaries (1): multivariate normal distribution

Definition 5.1. Let µ = (µ1, . . . , µd) ∈ Rd, and let Σ = (σj,k)
d
j,k=1 be a symmetric, non-

negative definite matrix of real numbers. We say that a random vector X = (X1, . . . , Xd)

has the d-dimensional multivariate Gaussian (or multinormal) distribution with mean µ and

covariance matrix Σ, and denote this as X ∼ N(µ,Σ), if any of the following equivalent

conditions are satisfied:

1. E(Xj) = µj, Cov(Xj, Xk) = Σj,k for all 1 ≤ j, k ≤ d, and every linear combination∑d
j=1 ajXj is a normal r.v. with distribution N

(∑
j ajµj,

∑
j,k σj,kajak

)
.

2. The vector X can be represented in the form

X> = AZ> + µ>,

where Z = (Z1, . . . , Zm) is a vector of i.i.d. N(0, 1) random variables, m = rank(Σ),

and A is a d×m matrix. (In this case it also necessarily follows easily that Σ = AA>.)

59



3. The characteristic function ϕX(u) = E
[

exp (i〈u,X〉)
]

= E
[

exp
(
i
∑d

j=1 ujXj

) ]
is

given by the formula

ϕX(u) = exp

(
i〈u,µ〉 − 1

2
〈Σu>,u〉

)
= exp

(
i

d∑
j=1

µjuj −
1

2

d∑
j,k=1

σj,kujuk

)

In the case when Σ is not just nonnegative-definite but actually positive-definite, another

condition that is equivalent to the above conditions is:

4. X is an absolutely continuous random vector with d-dimensional p.d.f. given by

fX(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)>Σ−1 (x− µ)

)
.

In the case when µ = (0, . . . , 0) and Σ = Id is the identity matrix of dimension d, we say

that X ∼ N(0, Id) has the standard d-dimensional Gaussian distribution. This just means

that the coordinates of X are i.i.d. N(0, 1) random variables.

Note that this definition is actually a theorem in disguise, since it needs to be proved

that the above conditions are equivalent. The details are standard; see Wikipedia.

5.2 Preliminaries (2): Gaussian processes

Definition 5.2. A stochastic process (Xi)i∈I , indexed by elements of a set I, is called a

Gaussian process if for any finite set of indices i1, . . . , id ∈ I, the finite-dimensional

vector (Xi1 , . . . , Xid), is a multivariate normal vector.

Given a Gaussian process (Xi)i∈I , we denote functions µ : I → R and Σ : I × I → R by

µ(i) = E(Xi),

Σ(i, j) = Cov(Xi, Xj).

The function µ(·) is the mean of the process, and the function Σ(·, ·) is called the covariance

kernel of the process. Because the distribution of a stochastic process is determined uniquely

by its finite-dimensional marginals, and because multivariate normal vectors are determined

uniquely by their mean and covariance matrix, if follows that the distribution of the process

is determined uniquely by those two functions.
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It is also immediate that the covariance kernel is symmetric, that is, satisfies Σ(i, j) =

Σ(j, i), and is a positive-semidefinite kernel; that is, for any a1, . . . , ad ∈ R and i1, . . . , id ∈
I, we have

d∑
j,k=1

ajakΣ(ij, ik) ≥ 0,

since the quantity on the left-hand side is the variance V
(∑d

j=1 ajXij

)
.

Conversely, given a mean function µ : I → R and a kernel Σ : I → I → R satisfying the

symmetry and positive-definiteness conditions, one can construct a Gaussian process having

µ and Σ as its respective mean and covariance kernel. This involves the standard approach

of constructing a stochastic process with given finite-dimensional marginals on the product

space RI using the Kolmogorov extension theorem. These finite-dimensional marginals are,

of course, multivariate normal random vectors.

In the next section we’ll define Brownian motion, which is undoubtedly the most

important of all Gaussian processes. However, the topic of Gaussian processes is quite

extensive and involves many other interesting stochastic processes that one encounters in

applied probability and statistics, such as the Brownian bridge; Ornstein-Uhlenbeck

process; white noise; and many others.

5.3 Definition and basic properties of Brownian motion

Definition 5.3. A stochastic process (Bt)t≥0 is called a Brownian motion (abbrev. BM)

if it has the following properties:

(a) If 0 ≤ t0 < t1 < . . . < tn then Bt0 , Bt1 − Bt0 , Bt2 − Bt1 , . . . , Btn − Btn−1 are independent

r.v.’s.10

(b) For all s, t ≥ 0, Bs+t −Bs ∼ N(0, t).

(c) There is an event E such that P(E) = 1 and{
ω ∈ Ω : the function (t 7→ Bt(ω))t≥0 is a continuous function

}
⊇ E.

If (Bt)t≥0 is a Brownian motion and in addition we have

10A continuous-time stochastic process with this property is said to have independent increments.
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(d) B0 ≡ 0

then we say that (Bt)t≥0 is a standard Brownian motion.

If (Bt)t≥0 is a standard Brownian motion, it is easy to see that it is a Gaussian process,

with a covariance kernel that can be easily computed: for 0 ≤ s ≤ t we have

Cov(Bs, Bt) = Cov
(
Bs, Bs+(Bt−Bs)

)
= Cov(Bs, Bs)+0 = s (the variance of a N(0, s) r.v.).

Therefore for general s, t ≥ 0 the covariance kernel is given by the formula

Cov(Bs, Bt) = min(s, t).

As always when defining any nontrivial mathematical object, the first important goal is

to convince ourselves that the object actually exists. In the next section we will prove:

Theorem 5.4. A standard Brownian motion exists. Moreover, for any distribution F , a

Brownian motion exists with B0 ∼ F .

We conclude this section with a few easy lemmas.

Lemma 5.5. The kernel Σ : R+ × R+ → R defined by

Σ(t, s) := min(t, s) (t, s ≥ 0)

is symmetric and positive-definite.

Exercise 5.6. Prove Lemma 5.5

Lemma 5.7 (standardization). If (Bt)t≥0 is a BM then (Bt−B0)t≥0 is a standard Brownian

motion that is independent of B0.

Proof. Denote Ct = Bt − B0, and let (Dt)t≥0 denote a standard BM that is independent

of the process (Bt)t≥0. Clearly C0 ≡ 0. For any 0 ≤ t0 < t1 < . . . < tn and Borel sets

A,E0, E2, . . . , En ⊂ R, we have

P
(
B0 ∈ A,Ct0 ∈ E0, Ct1 − Ct0 ∈ E1, . . . , Ctn − Ctn−1 ∈ En

)
= P

(
B0 ∈ A,Bt0 −B0 ∈ E0, Bt1 −Bt0 ∈ E1, . . . , Btn −Btn−1 ∈ En

)
= P(B0 ∈ A)P(Bt0 −B0 ∈ E0)P(Bt1 −Bt0 ∈ E1) · · ·P(Btn −Btn−1 ∈ En)

= P(B0 ∈ A)P(Dt0 −D0 ∈ E0)P(Dt1 −Dt0 ∈ E1) · · ·P(Dtn −Dtn−1 ∈ En)

= P
(
B0 ∈ A,Dt0 ∈ E0, Dt1 −Dt0 ∈ E1, . . . , Dtn −Dtn−1 ∈ En

)
.
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This implies that the family of random variables {B0} ∪ {Ct : t ≥ 0} has the same joint

distribution as the the family {B0} ∪ {Dt : t ≥ 0}.

Lemma 5.8 (scaling). If (Bt)t≥0 is a standard BM, then we have the equalities in distribu-

tion:

{Bat : t ≥ 0} D= {a1/2Bt : t ≥ 0} (for any a > 0),

{tB1/t : t > 0} D= {Bt : t > 0}.

Proof. The first equality is immediate from standard scaling properties of Gaussian random

variables. For the second equality, note that {tB1/t : t > 0} is clearly a Gaussian process

with mean 0. Its covariance kernel is given by

Cov
(
sB1/s, tB1/t

)
= st · Cov

(
B1/s, B1/t

)
= st ·min

(
1

s
,
1

t

)
=

st

max(1/s, 1/t)
= min(s, t),

which coincides with the covariance kernel of the original standard BM (Bt)t≥0.

5.4 Construction of Brownian motion

Our goal in this section is to prove Theorem 5.4. We start by constructing a process that

satisfies conditions (a), (b), and (d) in the definition. To this end, let (Bt)t≥0 be a Gaussian

process with mean µ(t) = 0 and

Cov(Bt, Bs) = Σ(t, s) := min(t, s) (t, s ≥ 0).

That such a process exists is ensured by the Lemma 5.5.

The most nontrivial part about the construction is the proof that the paths of our Gaus-

sian process are almost surely continuous. One technical difficulty that is a common difficulty

in probability theory when dealing with continuous-time stochastic processes, comes from

the fact that path properties such as continuity involve looking at the value of the process

at all times t ≥ 0. This is an uncountably infinite number of times; this means that a set

of points of our sample space Ω such as “(t 7→ Bt : t ≥ 0) is a continuous function”, which
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naively would be written as{
ω ∈ Ω : for all s ≥ 0 and ε > 0, there exists δ > 0 such that for all t ≥ 0, if |t− s| < δ

then |Bs(ω)−Bt(ω)| < ε
}

=
⋂
s≥0

⋂
ε>0

⋃
δ>0

⋂
t≥0

{
|Bt −Bs| < ε

}
is not obviously an event (that is, it does not immediately follow from the axioms of a σ-

algebra that this set is in the σ-algebra F of events in our probability space). And even if it

is an event, how does one go about showing that it has probability 1?

The answer is to try as much as possible to restrict our attention to a countably infi-

nite set of times such that the properties of the process at that set of times give sufficient

insight into the behavior of the process at all times. Fortunately, in the case of Brownian

motion this is not terribly difficult to do. Let Q2 =
{
m
2n

: n,m ∈ Z, m, n ≥ 0
}

be the set

of dyadic rationals. Below we prove a number of estimates involving the restriction of the

path functions (t 7→ Bt : t ≥ 0) to Q2, and then use them to prove the continuity property.

The first theorem involves a general continuous-time stochastic process satisfying certain

continuity-in-the-mean bounds; Brownian motion is the obvious example, but the result has

broader applicability (see also the next section) and the proof in the general case is no more

difficult than the special case.

Theorem 5.9. Let (Xt)t≥0 be a stochastic process such that for some constants K,α, β > 0,

the inequality

E|Xs −Xt|β ≤ K|s− t|1+α for all s, t ∈ Q2 ∩ [0, 1].

Then for any γ < α/β, the event{
ω ∈ Ω : there exists C = C(ω) > 0 s.t. for all q, r ∈ Q2 ∩ [0, 1], |Xq −Xr| ≤ C|q − r|γ

}
has probability 1.

Proof. In the proof below, we use the notation X(t) instead of Xt for convenience (since

the indices we will be evaluating Xt at get a bit messy). Fix some small δ > 0 that will be

specified below. Denote

In =
{

(i, j) : 0 ≤ i < j ≤ 2n, j − i ≤ 2δn
}
.
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Consider the event

Gn =
{ ∣∣∣∣X ( j

2n

)
−X

(
i

2n

)∣∣∣∣ ≤ (j − i2n

)γ
for all (i, j) ∈ In

}
We have

P(Gc
n) ≤

∑
(i,j)∈In

P

(∣∣∣∣X ( j

2n

)
−X

(
i

2n

)∣∣∣∣ > (j − i2n

)γ)

=
∑

(i,j)∈In

P

(∣∣∣∣X ( j

2n

)
−X

(
i

2n

)∣∣∣∣β > (j − i2n

)γβ)
≤

∑
(i,j)∈In

E
∣∣X ( j

2n

)
−X

(
i

2n

)∣∣β(
j−i
2n

)γβ ,

by Markov’s inequality. Using the inequality the process was assumed to satisfy, this last

sum is

≤ K
∑

(i,j)∈In

(
j − i
2n

)1+α−γβ

≤ K · 2n · 2δn
(
2δn2−n

)1+α−γβ
= K · 2−nλ,

where we define

λ = (1− δ)(1 + α− βγ)− (1 + δ) = (1− δ)(α− βγ)− 2δ.

Note that α − βγ > 0. Now remembering that we left ourselves the freedom to choose the

value of δ > 0, we see that if we take δ positive but small enough we can guarantee that

λ > 0. From now on, fix δ to be such a value. (We also want the condition 1 − δ > 0 to

hold; note that this happens automatically with the requirement we imposed on δ.)

Next, denote A = 3 · 2(1−δ)γ/(1 − 2−λ) (a positive number), and HN = ∩∞n=NGn. Since

P(Gc
n)→ 0 as n→∞ exponentially fast by the above estimate, the same is true for P(Hc

N),

since

P(Hc
N) ≤

∞∑
n=N

P(Gc
n) ≤ K

∞∑
n=N

2−λn =
K

1− 2−λ
2−λN −−−→

N→∞
0.

We claim that on the event HN , the inequality

|X(q)−X(r)| ≤ A|q − r|γ

holds for all q, r ∈ Q2 ∩ [0, 1] satisfying |q − r| < 2−(1−δ)N . Before proving this, let us check

that this is enough ti imply the claim of the theorem. Indeed, assuming the claim, the event

H = {HN eventually} =
∞⋃

M=1

∞⋂
N=M

HN = {Hc
N infinitely often}c
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has probability 1 by the Borel-Cantelli lemma. Define a random variable L0 as the minimal

integer ` for which Hn occurred for all n ≥ `. This r.v. is finite on the event H, that is, it

is almost surely finite. Fix ` ≥ 1. On the event {L0 = `}, the inequality |X(q) − X(r)| ≤
A|q − r|γ holds for all q, r ∈ Q2 ∩ [0, 1] satisfying |q − r| < 2−(1−δ)`, and for the pairs

q, r ∈ Q2 ∩ [0, 1] satisfying the reverse inequality |q − r| ≥ 2−(1−δ)`, we have instead that

|X(q)−X(r)| ≤ R`|q − r|γ,

where R` is a random variable defined as

R` = 2(1−δ)γ` sup
{
|X(q)−X(r)| : q, r ∈ [0, 1] ∩Q2, |q − r| ≥ 2−(1−δ)`

}
.

on the event {L0 = `}, and as 0 elsewhere. It is not hard to see that R` is finite. Thus, we

can conclude that the inequality |X(q)−X(r)| ≤ D`|q− r|γ is satisfied for all q ∈ [0, 1]∩Q2,

where D` = max(A,R`), on the event {L0 = `}. Now gluing the D`’s together for the

different values of ` ≥ 1, we obtain a single, a.s. finite random variable D for which the

inequality |X(q)−X(r)| ≤ D`|q− r|γ is satisfied for all q ∈ [0, 1]∩Q2, which was the result

to prove.

Now to prove the claim about HN , take some q, r ∈ Q2 ∩ [0, 1] satisfying q < r and

|q−r| < 2−(1−δ)N . There is anm ≥ N such that 2−(m+1)(1−δ) ≤ r−q < 2−m(1−δ). Furthermore,

we can write

r =
j

2m
+ 2−r1 + . . .+ 2−r` , q =

i

2m
− 2−q1 − . . .− 2−qk ,

for some integers i, j and exponents m < r1 < r2 < . . . < r`, m < q1 < q2 < . . . < qk. It

follows that j − i ≤ 2m(r − q) < 2δm. By the definition of the event HN , on that event we

have ∣∣∣∣X ( i

2m

)
−X

(
j

2m

)∣∣∣∣ ≤ (j − i2m

)γ
≤
(
2δm2−m

)γ
.

We also get on HN that∣∣∣∣X(q)−X
(
i

2m

)∣∣∣∣ ≤ k∑
h=1

2−qhγ ≤
∞∑
d=m

2−γd =
1

1− 2−γ
2−γm, and, similarly,∣∣∣∣X(r)−X

(
j

2m

)∣∣∣∣ ≤ 1

1− 2−γ
2−γm.
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Combining these bounds gives

|X(q)−X(r)| ≤ 2−γm(1−δ) + 2
1

1− 2−γ
2−γm ≤ 3

1

1− 2−γ
· 2−γm(1−δ).

Moreover, observe that 2−(1−δ)γ2−m(1−δ)γ ≤ |r − q|γ, so that we obtain the bound

|X(q)−X(r)| ≤ 3

1− 2−γ
2(1−δ)γ|r − q|γ,

as was to be shown.

Theorem 5.10. Let Q2 be as before the set of dyadic rationals, and let (Bt)t≥0 be the

Gaussian process we were working with earlier. For any T > 0 there is an event E = ET

such that P(E) = 1 and

E ⊆
{
ω ∈ Ω :

(
ω 7→ Bt(ω)

)
t∈Q2∩[0,T ]

is a uniformly continuous function
}
.

Proof. By Lemma 5.8, it is enough to prove this with T = 1. The idea now is to apply

Theorem 5.9, where in our particular case we have Xt = Bt, β = 4, α = 1, γ ∈ (0, 1/4).

Such a choice of parameters works (that is, satisfies the assumptions of Theorem 5.9), since

E|Bt −Bs|4 = κ4(t− s)2, where κ4 = the fourth moment of a N(0, 1) r.v.

The conclusion is that on the probability-1 event guaranteed to exist by Theorem 5.9, there

exists a constant C > 0 such that |Bt − Bs| ≤ C|t − s|γ for all s, t ∈ Q2 ∩ [0, 1], which

immediately implies uniform continuity.

Exercise 5.11. Let D ⊆ [a, b] be a dense subset of [a, b]. Prove that if f : D → R is

uniformly continuous then it has a unique extension f : [a, b]→ R.

Proof of Theorem 5.4. Let (Bt)t≥0 be the Gaussian process we constructed earlier, defined

on a probability space (Ω,F ,P), where we now interpret the probability space to be the

canonical product space R[0,∞), with the random variable Bt being defined as the coordinate

function mapping ω ∈ R[0,∞) to its t-coordinate Bt(ω) = ω(t).

We modify the construction of this Gaussian process as follows. Instead of the canonical

product space R[0,∞), we use only the part RQ2 — call this space Ω, with the associated

product σ-algebra F and measure P; in other words, we discard from our earlier process the

random variables Bt for t /∈ Q2. Theorem 5.10 can still be applied to this reduced process,
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since it (and Theorem 5.9 that it relies on) only make reference to the values of the stochastic

process on dyadic rationals. Let E∞ = ∪∞T=1ET , where ET are the events from Theorem 5.10.

The event E is a probability 1 event on which Brownian paths (t 7→ Bt)t≥0,t∈Q2 are defined

and are uniformly continuous on Q2 ∩ [0, T ] for any T > 0.

Define a new probability space (Ω′,F ′,P′) by setting

Ω′ = C[0,∞) = continuous functions on [0,∞),

F ′ = the σ-algebra generated by the coordinate functions ω 7→ ω(t), t ≥ 0,

P′ = P ◦ T−1,

where T : Ω → Ω′ is the mapping that takes a function f ∈ Ω and returns its unique

continuous extension f : [0,∞)→ R. (Exercise: check that T is measurable.)

Finally, we have constructed a probability space (Ω′,F ′,P′) where the sample space

is the space of continuous functions on [0,∞), so property (c) in the definition of BM is

automatically satisfied. Since the mapping T might have modified the paths on [0,∞) \
Q2, now we only know that properties (a) and (b) of the definition are satisfied for values

s, t, t0, t1, . . . , tn that are in Q2; but since we are now working with continuous paths, it is easy

to check by a limiting argument that they must hold also for arbitrary values in [0,∞).

Note. The probability space (Ω′,F ′,P′) is the natural probability space on which Brownian

motion is defined. It is sometimes called Wiener space, after Norbert Wiener.

The construction used in the proof above was somewhat messy, and it is easy to get

lost in the technical details. Conceptually, a key high-level idea to take away is that it is

beneficial to have a realization of Brownian motion (that is, a concrete probability space on

which we define a stochastic process that is shown to satisfy the axioms of Brownian motion)

that uses only countably many random variables as its “source of randomness”. This allows

getting a handle on many subtle events whose definition seems to require inspecting the

values of Bt for a continuum range of values of t. (The meta-principle here is that working

with continuum-sized families of random variables is something we try as to avoid as much

as possible in the theory of stochastic processes, so as to avoid having to deal with delicate

issues of measurability.) The specific countable family of random variables that we chose to

work with in the current construction are the variables Bt for t ∈ Q2, but that is a technical

detail and by no means a unique or canonical choice.
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As it turns out, there are other ways to construct Brownian motion using a countable

family of random variables, including some that are in many ways more natural than the

representation in terms of the values of Bt on dyadic rationals. The Fourier series repre-

sentation considered in the following exercise, discovered by Wiener, is perhaps the most

elegant representation of this type.

Exercise 5.12 (Fourier series representation of Brownian motion on an interval). Let Z0, Z1, Z2, . . .

be an i.i.d. sequence of N(0, 1) random variable. Define a stochastic process (Xt)0≤t≤1 by the

random series

Xt = Z0t+
√

2
∞∑
n=1

Zn
sin(πnt)

πn
.

1. Prove that this infinite series converges absolutely almost surely for all 0 ≤ t ≤ 1,

hence (Xt)0≤t≤1 is a well-defined stochastic process. (Hint: Kolmogorov three-series

theorem.)

2. Prove that the process (Xt)0≤t≤1 is (the restriction to [0, 1] of) a standard Brownian

motion. That is, if (Bt)t≥0 a standard BM then we have the equality in distribution

(Xt)0≤t≤1
D
= (Bt)0≤t≤1.

5.5 Hölder-continuity, nondifferentiability of BM

One of the fascinating aspects of Brownian motion is that it is a naturally occurring random

fractal, that is, a set with fractional dimension. This is intuitively rather obvious when

looking at simulated Brownian motion paths (Fig. 5(a)–(b)). Mathematically it is quite a

subtle phenomenon however, discussed extensively in the literature (see for example [9, Ch. 4]

for the proof that the graph of a 1-dimensional Brownian motion almost surely has Hausdorff

dimension 3/2, and [7] for the proof of the much more difficult result that the boundary of

planar Brownian motion is 4/3). Here, we give a small taste of some of fractal-like properties

of the Brownian motion paths by discussing the Lipschitz continuity, differentiability, and

Hölder continuity of the BM paths. (Recall that a real-valued function f defined on some real

interval is called Lipschitz-continuous if it satisfies an inequality of the form |f(x)−f(y)| ≤
C|x − y| for some constant C and all x, y; more generally, f is called Hölder-continuous

with exponent α if satisfies the inequality |f(x)− f(y)| ≤ C|x− y|α for some C and all x, y.)

We will prove the following two results.

69



2 4 6 8 10

-4

-3

-2

-1

1

2

(a) (b)

Figure 5: (a) the simulated graph of a 1-dimensional Brownian motion; (b) a planar BM

sample path

Theorem 5.13. The Brownian motion paths are almost surely Hölder-continuous with ex-

ponent γ, for any γ < 1/2.

Theorem 5.14. Almost surely, Brownian motion is not Lipschitz-continuous at any point,

and in particular it is not differentiable at any point.

Proof of Theorem 5.13. In the previous section, we applied Theorem 5.9 to deduce that for

any γ < 1/4, almost surely the inequality |Bt − Bs| ≤ C|t − s|γ is satisfed uniformly on

any compact interval. That is, BM is almost surely Hölder-continuous with exponent γ for

any γ < 1/4. Now note the following way in which this estimate can be improved: for any

m ≥ 1, if we denote Z ∼ N(0, 1), then

E|Bt −Bs|2m = E
(√
|t− s|Z

)2m

= |t− s|mE(Z2m) = Cm|t− s|m.

So in fact we can also apply Theorem 5.9 with α = m − 1, β = 2m, and any γ satisfying

γ < α/β = 1
2
− 1

2m
, to get that Brownian motion is almost surely Hölder-continuous with

exponent γ. Since this is true for any m ≥ 1, it follows that in fact for any γ < 1/2 we have

a.s. Hölder-continuity with exponent γ, as claimed.
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Proof of Theorem 5.14. Fix an arbitrary constant C > 0, and define a sequence of events

An =

{
ω ∈ Ω : there exists s ∈ [0, 1] s.t. |Bs(ω)−Bt(ω)| ≤ C|t− s|

for any t ∈ [0, 1] satisfying |t− s| ≤ 3

n

}
If we can show that P(An) = 0 for any n ≥ 1 and any C > 0, that would imply the result.

Define random variables

Yk,n = max

{∣∣∣∣B(k + j

n

)
−B

(
k + j − 1

n

)∣∣∣∣ : j = 0, 1, 2

}
, 1 ≤ k ≤ n− 2,

and events

En =

{
at least one Yk,n for some 1 ≤ k ≤ n− 2 is ≤ 6C

n

}
.

It is not difficult to see that An ⊆ En: indeed if s ∈ [0, 1] is such that |Bt − Bs| ≤ C|t − s|
for t satisfying |t− s| ≤ 3

n
, take 1 ≤ k ≤ n− 2 such that k−1

n
≤ s ≤ k+2

n
, and note that, for

any j = 0, 1, 2,∣∣∣∣B(k + j

n

)
−B

(
k + j − 1

n

)∣∣∣∣ ≤ ∣∣∣∣B(k + j

n

)
−B(s)

∣∣∣∣+

∣∣∣∣B(s)−B
(
k + j − 1

n

)∣∣∣∣
≤
(

3

n
+

3

n

)
C =

6C

n
.

It follows that

P(An) ≤ P(En) ≤ nP

(
|B(1/n)| ≤ 6C

n

)3

≤ nP

(
|B1| ≤

6C√
n

)3

≤ n

(
1√
2π
· 12C√

n

)3

≤ const√
n
−−−→
n→∞

0.

Since An ⊆ An+1, this implies that P(An) = 0 for all n, as claimed, and the proof is

complete.

5.6 The Markov property and its consequences

Let us fix some notation. The measure space on which BM lives is (C,Σ), where

C = C[0,∞),

Σ = σ
(
ω 7→ ωt : t ≥ 0

)
(the σ-algebra generated by the coordinate functions).
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For a probability measure, we equip this space with a family of probability measures Px,

where x ∈ R, and for each x ∈ R the measure Px is the probability measure under which

the coordinate functions
(
Bt(ω) = ω(t)

)
t≥0

become a Brownian motion started at x (that

is, we have Px(B0 = x) = 1). The notation Ex will denote the expectation operator relative

to the measure Px.

For s ≥ 0, define also σ-algebras

F◦s = σ
(
Bs : t ≤ s

)
,

F+
s =

⋂
t>s

F◦t .

Each of the families of σ-algebras (F◦s )s≥0 and (F+
s )s≥0 is a filtration (that is, an increasing

family of σ-algebras indexed by an integer- or real-valued parameter). Conceptually speak-

ing, F◦s represents the information known about the behavior of our BM up to time s, and F◦s
represents the information known about the behavior of the BM up to time “s+”. Both filtra-

tions are interesting and natural. The F+
s are right-continuous, i.e., satisfy F+

s =
⋂
t>sF

+
t .

The filtrations are not identical, e.g., in the sense that, one can define r.v.s that are measur-

able w.r.t. F+
s but not F◦s (for example: Xs = lim supt↘s

Bt−Bs
f(t−s) is such a random variable

for any measurable function f : [0,∞) → [0,∞)). But it turns out that such r.v.s are a.s.

constant, in other words, F◦s and F+
s differ only in sets that have measure 0 with respect to

any of the measures Px.

For s ≥ 0, let θs : C → C denote the shift transformation

(θsω)(t) = ω(s+ t).

For t ≥ 0 and x, y ∈ R, denote

pt(x, y) =
1√
2πt

exp

(
−(y − x)2

2t

)
.

The function pt(x, y) is called the transition kernel of Brownian motion,11 and plays a

role in the theory analogous to the matrix powers An, where A is the transition matrix

11In a mathematical analysis context this function is called the heat kernel, and plays a fundamental

role in the theory of the heat equation (aka the diffusion equation). Indeed, there are many connections

between Brownian motion and the heat equation, and more generally partial differential equations, which

have been exploited to great effect.
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of a discrete-time, discrete-space Markov chain. Intuitively, pt(x, y) can be thought of as

“the probability density at y of Bt conditioned on B0 = x”. With this interpretation, the

following lemma seems like a fairly intuitive statement, especially when considering it again

as an analogue to a statement about discrete-time, discrete-space Markov chains.

Lemma 5.15. If 0 < u1 < . . . < un are real numbers and g1, . . . , gn : R → R are bounded

measurable functions, then

Ex

(
n∏
j=1

gj(Buj)

)
=

∫
R
pu1(x, z1)g1(z1) dz1

∫
R
pu2−u1(z1, z2)g2(z2) dz2

· · ·
∫
R
pun−un−1(zn−1, zn)gn(zn) dzn

Proof. Let X1, . . . , Xn denote independent random variables distributed as follows: X1 ∼
N(x, u1), Xj ∼ N(0, uj − uj−1) for 2 ≤ j ≤ n. Define random variables Y1, . . . , Yn by

Yk =
k∑
j=1

Xj.

By the definition of BM, the random vector (Y1, . . . , Yn) is equal in distribution to the random

vector (Bu1 , . . . , Bun) under the measure Px.

Moreover, by the standard formula for the transformation of a vector r.v., the joint

density of (Y1, . . . , Yn) can be expressed in terms of the joint density of (X1, . . . , Xn) as

fY1,...,Yn(y1, . . . , yn) = fX1,...,Xn(y1, y2 − y1, . . . , yn − yn−1) = fX1(y1)
n∏
j=2

fXj(yj − yj−1)

= pu1(x, y1)
n∏
j=2

puj−uj−1
(yj−1, yj).

Therefore we get that

Ex

(
n∏
j=1

gj(Buj)

)
=

∫
. . .

∫
Rn

n∏
j=1

gj(zj) · pu1(x, z1) ·
n∏
j=2

puj−uj−1
(zj−1, zj) dz1 . . . dzn,

which is the same as the identity in the lemma.

Theorem 5.16 (The Markov property). If s ≥ 0 and Y is a r.v. on (C,Σ), then for any

x ∈ R, we have the identity

Ex

(
Y ◦ θs

∣∣∣F+
s

)
= EBsY,

where EBsY = Ez(Y )∣∣
z=Bs

, and (Bt)t≥0 is the BM defined on the space (C,Σ) as above.
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Proof. The random variable EBsY is F+
s -measurable (being a function of Bs). We need to

prove that for any A ∈ F+
s , the relation

Ex

(
(Y ◦ θs)1A

)
= Ex

(
(EBsY )1A

)
holds. First, we consider Y and A of a special form. Fix numbers

0 < t1 < . . . < tn, 0 < h < t1, 0 < s1 < . . . < sk ≤ s+ h.

Let Y =
∏n

m=1 fm(Btm), where f1, . . . , fn : R→ R are bounded measurable functions. Let

A =
{
Bsj ∈ Aj for j = 1, . . . , k

}
,

where A1, . . . , Ak are Borel sets in R. In this case, clearly 1A =
∏k

j=1 1{Bsj∈Aj}. So, by

applying Lemma 5.15 with a carefully chosen set of parameters, we can write

Ex

(
(Y ◦ θs)1A

)
= Ex

(
k∏
j=1

1{Bsj∈Aj}

n∏
m=1

fm(Btm+s)

)

= Ex

(
k∏
j=1

1{Bsj∈Aj}

n∏
m=1

fm(Btm+s) · 1{Bs+h∈R}

)

=

∫
A1

ps1(x, x1) dx1

∫
A2

ps2−s1(x1, x2) dx2 · · ·
∫
Ak

psk−sk−1
(xk−1, xk) dxk

×
∫
R
ps+h−sk(y) · 1 dy

×
∫
R
pt1−h(y, y1)f1(y1) dy1

∫
R
pt2−t1(y1, y2)f2(y2) dy2 · · ·

∫
R
ptn−tn−1(yn−1, yn)fn(yn) dyn

=

∫
A1

ps1(x, x1) dx1

∫
A2

ps2−s1(x1, x2) dx2 · · ·
∫
Ak

psk−sk−1
(xk−1, xk) dxk

×
∫
R
ps+h−sk(y) · ϕ(y, h) dy,

where we denote

ϕ(y, h) =

∫
R
pt1−h(y, y1)f1(y1) dy1

∫
R
pt2−t1(y1, y2)f2(y2) dy2 · · ·

∫
R
ptn−tn−1(yn−1, yn)fn(yn) dyn.

By another application of Lemma 5.15, this is equal to Ex

(
ϕ(Bs+h, h)1A

)
. This equality

holds for all finite-dimensional cylinder sets A ∈ F◦s+h. By the π-λ theorem, it must therefore

hold for all A ∈ F◦s+h, and in particular for A ∈ F+
s ⊂ F◦s+h.
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Now, we want to justify the idea of setting h = 0 in this equation. Note that ϕ(y, h) can

be written in the form

ϕ(y, h) =

∫
pt1−h(y, y1)ψ(y1) dy1,

where

ψ(y1) = f1(y1)

∫
pt2−t1(y1, y2)f2(y2) dy2 · · ·

∫
ptn−tn−1(yn−1, yn)fn(yn) dyn.

It is easy to check that ψ is bounded and measurable. It follows by the dominated convergence

theorem that if h ↘ 0 and y = y(h) → y(0) then ϕ(y(h), h) → ϕ(y(0), 0). Taking y(h) =

Bs+h, we get that

ϕ(Bs+h, h) −−→
h↘0

ϕ(Bs, 0) a.s..

Applying the bounded convergence theorem, we get that

Ex

(
(Y ◦ θs)1A

)
= Ex

(
ϕ(Bs+h, h)1A

)
−−→
h↘0

Ex

(
ϕ(Bs, 0)1A

)
.

Note that ϕ(y, 0) can be interpreted, again by Lemma 5.15, as Ey(Y ). So we have shown

that

Ex

(
Y ◦ θs1A

)
= ExEBs(Y ) · 1A

)
,

which was the claim. We proved this for all A ∈ F+
s and Y of the special form

∏n
j=1 fj(Btj).

The extension to general Y now follows from the Monotone Class Theorem (Theorem 5.2.2

on page 275 of [4]).

The Markov property allows us to prove “obvious” statements, such as the following:

Exercise 5.17. Define random variables

T0 = inf
{
s > 0 : Bs = 0

}
,

R = inf
{
t > 1 : Bt = 0

}
,

L = sup
{
t ≤ 1 : Bt = 0

}
.

Prove that the following relations hold:

Px(R > 1 + t) =

∫
R
p1(x, y)Py(T0 > t) dy,

P0(L ≤ t) =

∫
R
pt(0, y)Py(T0 > 1− t) dy.
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Note that Ex(Y ◦ θs | F+
s ) = EBsY ends up being F◦s -measurable (being a function of

Bs). It follows that Ex(Y ◦ θs | F+
s ) = Ex(Y ◦ θs | F◦s ). Therefore also Ex(X · (Y ◦ θs) | F+

s ) =

Ex(X · (Y ◦ θs) | F◦s ) for any r.v. X that is integrable and F◦s -measurable. This shows that

Ex(Z | F+
s ) = Ex(Z | F◦s ) whenever Z is of the form Z =

∏n
j=1 fj(Btj) for some real numbers

0 < t1 < . . . < tn and bounded and measurable functions f1, . . . , fn : R → R. By the

monotone class theorem, this extends to arbitrary bounded random variables Z. We have

proved:

Theorem 5.18. For any bounded r.v. Z on (C,Σ), any s ≥ 0 and any x ∈ R, we have

Ex

(
Z | F◦s

)
= Ex

(
Z | F+

s

)
a.s.

Theorem 5.19 (Blumenthal’s 0-1 law). If A ∈ F+
0 then for any x ∈ R, Px(A) = 0 or 1.

That is, the field F+
0 , known as the germ field, is trivial w.r.t. any of the measures Px.

Proof.

1A = Ex

(
1A | F+

0

)
a.s.
= Ex

(
1A | F◦0

)
= Ex

(
1A |B0

)
= Px(A) Px-a.s.

So Px(A) = 0 or 1.

Theorem 5.20. Let τ = inf
{
t ≥ 0 : Bt > 0

}
. Then P0(τ = 0) = 1.

Proof. The event {τ = 0} is in F+
0 , so by Theorem 5.19, P0(τ = 0) is 0 or 1. Furthermore,

P0(τ = 0) = lim
t↓0

P0(τ ≤ t) ≥ lim sup
t↓0

P0(Bt > 0) =
1

2
.

So P0(τ = 0) must be 1.

Corollary 5.21. If T0 = inf
{
t > 0 : Bt = 0

}
, then P0(T0 = 0) = 1.

Exercise 5.22. Use Corollary 5.21 to prove that for any a < b, BM a.s. has a local maximum

in (a, b). That is, the set of local maxima is a.s. dense.

Theorem 5.23. If (Bt)t≥0 is the standard BM, then the process (Xt)t≥0 defined by X0 = 0,

Xt = tB1/t, is also a standard BM.
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Proof. We already proved this for t > 0 in the scaling lemma (Lemma 5.8), so it remains

to verify that (Xt)t≥0 is a.s. continuous at t = 0. To this end, note first that 1
n
Bn −−−→

n→∞
0

a.s. by the strong law of large numbers. Furthermore, by Kolmogorov’s maximal inequality

(Theorem 2.5.5 on page 84 of [4]) we can write for each n,m ≥ 1 that

P

(
max

0≤k≤2m

∣∣∣∣B(n+
k

2m

)
−Bn

∣∣∣∣ > n2/3

)
≤ n−4/3E(Bn+1 −Bn)2 = n−4/3.

Since the bound is independent of m, we then get that

P

(
sup

n≤u≤n+1
|Bu −Bn| > n2/3

)
= P

(
max

m≥1, 0≤k≤2m

∣∣∣∣B(n+
k

2m

)
−Bn

∣∣∣∣ > n2/3

)
= lim

m→∞
P

(
max

0≤k≤2m

∣∣∣∣B(n+
k

2m

)
−Bn

∣∣∣∣ > n2/3

)
≤ n−4/3.

Since
∑

n n
−4/3 <∞, we get using the Borel-Cantelli lemma that

P
(

lim
t→∞

Xt = 0
)

= P

(
lim
u→∞

Bu

u
= 0

)
≥ P

({
lim
n→∞

1

n
Bn = 0

}⋂{
sup

n≤u≤n+1
|Bu −Bn| > n2/3 i.o.

}c)
= 1.

Define the family of future σ-algebras for BM by F ′t = σ(Bs : s ≥ t). The tail

σ-algebra is T = ∩t≥0F ′s.

Theorem 5.24. If A ∈ T then Px(A) is either 0 or 1, and has the same value for all values

of x ∈ R.

Proof. The tail σ-algebra of Bt is exactly the same as the germ σ-algebra of Xt = tB1/t. So

P0(A) ∈ {0, 1}. Next, since A ∈ F ′1, we can write A = θ−1
1 (D), i.e., 1A = 1D ◦ θ1, for some

D ∈ Σ. From the Markov property we therefore get that

Px(A) = Ex(1D ◦ θ1) = Ex

[
Ex(1D ◦ θ1 | F◦1 )

]
= Ex

[
EB1(1D)

]
= Ex

[
Py(D)∣∣

y=B1

]
=

∫
R
p1(x, y)Py(D) dy =

1√
2π

∫ ∞
−∞

e−(y−x)2/2Py(D) dy.

From this representation we see that if P0(A) = 0 then necessarily Py(D) = 0 for Lebesgue-

almost every y ∈ R, and therefore Px(A) = 0 for all x ∈ R. Similarly, if P0(A) = 1 then

the same argument applied to Ac instead of A leads to the conclusion that Px(A) = 1 for

all x ∈ R.
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Theorem 5.25. Brownian motion is recurrent. That is, for any x ∈ R, we have

Px

(⋂
n≥1

{Bt = 0 for some t ≥ n}

)
= 1.

Proof. Fix K > 0. We have

P0

(
Bn√
n
≥ K infinitely often

)
≥ lim sup

n→∞
P0

(
Bn ≥ K

√
n
)

= P0(B1 ≥ K) > 0.

By Theorem 5.24, it follows that actually P0

(
Bn√
n
≥ K infinitely often

)
= 1, since this is a

tail event. Symmetrically, we also have P0

(
Bn√
n
≤ −K infinitely often

)
= 1. Since this is

true for arbitrary K > 0, we conclude that

P0

(
lim sup
t→∞

Bt√
t

=∞, lim inf
t→∞

Bt√
t

= −∞
)

= 1.

The event A :=
⋂
n≥1 {Bt = 0 for some t ≥ n} is an even bigger event, so P0(A) = 1. More-

over, A is a tail event, so, again from Theorem 5.24 we see that Px(A) = 1 for all x.

5.7 Stopping times and the strong Markov property

Some more notation. We replace the σ-algebras F+
s and F◦s with σ-algebras that reflect

our new understanding from the 0-1 law. Define

Nx = {A ⊂ C : ∃D ∈ Σ s.t. A ⊆ D and Px(D) = 0}

Fxs = σ(F+
s ∨Nx)

Fs =
⋂
x∈R

Fxs .

Exercise 5.26. Check that (Fs)s≥0 is a right-continuous filtration.

We now define the important concept of a stopping time. A r.v. S : C → [0,∞] (note:

the value ∞ is allowed!) is called a stopping time for BM if for all t ≥ 0, the event {S < t}
is in the σ-algebra Ft. An equivalent condition is that for all t ≥ 0, the event {S ≤ t} ∈ Ft.

Lemma 5.27. The above two conditions are indeed equivalent.
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Proof. This follows immediately from the relations

{S < t} =
∞⋃
n=1

{
S ≤ t− 1

n

}
,

{S ≤ t} =
∞⋂
n=1

{
S < t+

1

n

}
,

(where we also use the fact that the family of σ-algebras {Ft : t ≥ 0} is increasing and

right-continuous).

Theorem 5.28. 1. If G ⊂ R is an open set, then T = inf{t ≥ 0 : Bt ∈ G} is a stopping

time.

2. If (Tn)n≥1 is a sequence of stopping times and Tn ↓ T a.s., then T is a stopping time.

3. If (Tn)n≥1 is a sequence of stopping times and Tn ↑ T a.s., then T is a stopping time.

4. If K ⊂ R is a closed set, then T = inf{t ≥ 0 : Bt ∈ K} is a stopping time.

5. If S, T are stopping times, then so are S ∨ T , S ∧ T , S + T .

6. If S is a stopping time and t ≥ 0, then S ∨ t, S ∧ t, S + t are also stopping times.

If (Tn)n≥1 is a sequence of stopping times, then supn Tn, infn Tn, lim supn Tn and lim infn Tn

are all stopping times.

Proof. Proof of 1. By a.s. continuity of (Bt)t≥0, we have {T < t} =
⋃
q<t,q∈Q{Bq ∈ G}.

Proof of 2. {T < t} =
⋃
n≥1{Tn < t}.

Proof of 3. {T ≤ t} =
⋂
n≥1{Tn < t}.

Proof of 4. Define sets Gn, n = 1, 2, . . ., by

Gn =

{
y ∈ R : |y − x| < 1

n
for some x ∈ K

}
(the 1/n-dilation of K). Gn is an open set It is easy to check that Tn ↑ T , where T = inf{t ≥
0 : Bt ∈ Gn}, so the claim follows from part 3 of the theorem.

Proof of 5, 6, 7. Left as an exercise.
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Given a stopping time S, we can associate with it a “shift by the random amount S”

operator θS : C → C ∪ {∆}, defined by

θS(ω)(t) =

ω(S(ω) + t) if S(ω) <∞,

∆ if S(ω) =∞.

Here, ∆ is an extra symbol we add to the sample space C, corresponding to a kind of

“undefined” value. We also define a σ-algebra FS of “information about BM available at

time S”, by

FS = {A ∈ Σ : A ∩ {S ≤ t} ∈ Ft for all t ≥ 0} .

Theorem 5.29. 1. FS is a σ-algebra, and in its definition it does not matter if we write

{S ≤ t} or {S < t}.

2. The stopping time S is FS-measurable.

3. If S, T are stopping times then the events {S < t}, {S > t}, {S = t} are in FS, and

the events {S < T}, {S > T}, {S = T} are in FS ∩ FT .

4. If S, T are stopping times and S ≤ T , then FS ⊆ FT .

5. If (Tn)n≥1 are stopping times and Tn ↓ T a.s., then FT =
⋂
n≥1FTn.

6. If S is a stopping time, then BS is FS-measurable.

Proof. Parts 1 and 2 are left as an exercise.

Proof of 3. If A ∈ FS then for any t ≥ 0,

A ∩ {T ≤ t} = (A ∩ {S ≤ t}) ∩ {T ≤ t} ∈ Ft.

(A∩{S ≤ t}) ∈ Ft since A ∈ FS, and {T ≤ t} ∈ Ft since T is a stopping time.) So A ∈ FT .

Proof of 4. Since T ≤ Tn, by part 3 above we have FT ⊂ FTn for all n ≥ 1, so

FT ⊆
⋂
n≥1FTn . On the other hand, if A ∈

⋂
n≥1FTn , then A∩{Tn < t} ∈ Ft for any n ≥ 1,

so also A ∩ {T < t} =
⋂
n≥1(A ∩ {Tn < t}) ∈ Ft. So A ∈ FT .

Proof of 5. Define discrete approximations (Sn)∞n=1 to S by Sn = 1
2n

(b2nSc + 1). Then

Sn are stopping times, and Sn ↓ S a.s. Now we leave it as an exercise to show that BSn is

FSn-measurable for all n. This is enough, since then BS = limn→∞BSn is measurable with

respect to
⋂
n≥1FSn , which (by part 4 above) is equal to FS.
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Theorem 5.30 (The strong Markov property). Let (s, ω) → Ys(ω) be a function from

[0,∞)×CtoR which is bounded and measurable (with respect to the product σ-algebra B×Σ,

where B is the Borel σ-algebra on R). Let S be a stopping time. For any x ∈ R we have

Ex

(
TS ◦ θS

∣∣∣FS) = EBS(YS) a.s. on {S <∞}.

Here, the quantity on the right-hand side is to be interpreted as the function ϕ(x, t) = ExYt

evaluated at x = BS, t = S.

Proof. The random variable ϕ(BS, S) = EBSYS is FS-measurable. So what we need to show

is that for any A ∈ FS and x ∈ R, the equation

Ex

(
YS ◦ θS · 1A∩{S<∞}

)
= Ex

(
(EBSYS) 1A∩{S<∞}

)
holds. We first prove the result in the case when S is a discrete r.v. taking values in some

discrete set {t1, t2, . . .} ∪ {∞}. Denote Zn = Ytn . If A ∈ FS, then

Ex

(
YS ◦ θS · 1A∩{S<∞}

)
=
∞∑
n=1

Ex

(
Zn ◦ θtn · 1A∩{S=tn}

)
Note that A ∩ {T = tn} ∈ Ftn . Therefore by the Markov property (Theorem 5.16), this is

equal to
∞∑
n=1

Ex

( (
EBtnZn

)
1A∩{S=tn}

)
= Ex

(
(EBSYS) 1A∩{S<∞}

)
,

which is what we wanted.

Next, for the case of a general stopping time S, define discrete approximations Sn to S

by

S =
1

2n
(b2nSc+ 1) .

We then have that Sn ↓ S almost surely as n → ∞. Consider functions Ys(ω) which are of

the form

Ys(ω) = f0(s)
n∏

m=1

fm(ω(tm)),

where 0 < t1 < . . . < tn and f0, . . . , fm : R → R are bounded continuous functions. In this

case, we have by Lemma 5.15 that

ϕ(x, s) = ExYs = f0(s)

∫
R
pt1(x, y1)f1(y1) dy1

∫
R
pt2−t1(t1, y2)f2(y2) dy2

· · ·
∫
R
ptn−tn−1(yn−1, yn)fn(yn) dyn.
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Clearly ϕ(x, s) is bounded and continuous. Let A ∈ FS. Since S ≤ Sn, the event A is also

in FSn . Applying the special case of discrete stopping times proved above, we have

Ex

(
YSn ◦ θSn · 1A∩{S<∞}

)
= Ex

(
ϕ(BSn , Sn) · 1A∩{S<∞}

)
.

(Note that S <∞ if and only if Sn <∞.) Letting n→∞, we have that BSn → BS, Sn ↓ S,

ϕ(BSn , Sn)→ ϕ(BS, S), and YSn ◦ θSn → YS ◦ θS on the event {S <∞}. So, by the bounded

convergence theorem, we get that

Ex

(
YS ◦ θS · 1A∩{S<∞}

)
= Ex

(
ϕ(BS, S) · 1A∩{S<∞}

)
,

as claimed.

It remains to extend the validity of the result to general measurable bounded functions

Ys(ω). This follows from an application of the monotone class theorem (see [4, p. ?] for the

details).

5.8 Applications of the strong Markov property

Corollary 5.31. Let S be a stopping time with PX(S < ∞) = 1. Under the measure Px,

the process (Dt)t≥0 := (BS+t −BS)t≥0 is a standard BM which is independent of FS.

Proof. Let g : Rn → R be bounded and measurable, and let 0 < t1 < . . . < tn. Then we

have

g(Dt1 , . . . , Dtn) = g(Bt1 −B0, Bt2 −B0, . . . , Btn −B0) ◦ θS =: Y ◦ θS.

By the strong Markov property, for any A ∈ FS,

Ex

(
g(Dt1 , . . . , Dtn)1A

)
= Ex

[
Ez

(
g(Bt1 −B0, . . . , Btn −B0)∣∣

z=BS
· 1A

)]
.

But Ez

(
g(Bt1 −B0, . . . , Btn −B0) is independent of z, since under |probz, (Bt −B0)t≥0 is a

standard BM (Lemma 5.7). Thus, we have

Ex

(
g(Dt1 , . . . , Dtn)1A

)
= E0

(
g(Dt1 , . . . , Dtn)1A

)
= E0

(
g(Dt1 , . . . , Dtn)

)
Px(B0 ∈ A).

The claims follow.
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Next, we consider the hitting times

Ta = inf{t ≥ 0 : Bt = a} (a ∈ R),

under the measure P0. We already saw that Ta is an a.s. finite stopping time. It turns out to

be very interesting to consider (Ta)a≥0 as a stochastic process, with the parameter a playing

the role of “time”. Note that under P0, T0 = 0 almost surely — the process starts from 0

— and the process is increasing in a.

Theorem 5.32. Under P0, the process (Ta)a≥0 has stationary independent increments. That

is, for any 0 ≤ a1 < a2 < . . . < an, the r.v.s

Ta1 , Ta2 − Ta1, . . . , Tan − Tan−1

are independent, and for any 0 ≤ a < b,

Tb − Ta
D
= Tb−a

(that is, the distribution of an increment depends only on the length of the interval between

the two times for which the incremenet is measured).

Proof. For 0 < a < b, we have Tb ◦θTa = Tb−Ta. (Exercise: check the more general fact that

for any a.s. finite stopping times S ≤ T , the relation T ◦ θS = T − S holds.) If f : R→ R is

bounded and measurable, by the strong Markov property we have:

E0

(
f(Tb − Ta)

∣∣∣FTa) = E0

(
f(Tb) ◦ θTa

∣∣∣FTa) = EBTa
f(Tb) = Eaf(Tb) = E0f(Tb−a).

This shows that Tb − Ta is independent of FTa (see the proof of Corollary 5.31 above — the

idea is similar), and equal in distribution to Tb−a. It follows easily by induction that for any

numbers 0 < a1 < . . . < an and bounded and measurable functions f1, . . . , fn : R → R, we

have

E0

(
n∏
j=1

fj(Taj − Taj−1
)

)
=

n∏
j=1

E0fj(Taj−aj−1
)

(where we denote a0 = 0). This proves the claim.

Lemma 5.33 (scaling). We have the equalities in distribution

Ta
D
= a2T1 for any a > 0,

(Tca)a≥0
D
= (c2Ta)a≥0 for any c > 0.
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Proof. Define Dt = s−1/2Bst, t ≥ 0 for some fixed s > 0. By the scaling relation of Brownian

motion (Lemma 5.8), (Dt)t≥0
D
= (Bt)t≥0 is a standard BM. So, if we define

Ua = inf{t ≥ 0 : Dt = a},

then (Ua)a≥0
D
= (Ta)a≥0. On the other hand,

Ua = inf{t ≥ 0 : Bst = s1/2a} =
1

s
inf{u ≥ 0 : Bu = s1/2a} =

1

s
Ts1/2a.

Taking c = s1/2 we get that (Ta)a≥0 = (Ua)a≥0 = (c−2Tca)a≥0, which proves the second claim.

The first claim follows by taking c = 1/a.

Note that for integer n ≥ 1, if we let X1, X2, . . . be i.i.d. copies of T1, then by The-

orem 5.32, we have the equality in distribution Tn
D
=
∑n

k=1 Xk. On the other hand, by

Lemma 5.33, Tn
D
= n2T1. So we see that the distribution of T1 has the property that a sum

of n i.i.d. copies of it is distributed as n2 times the original random variable:

n∑
k=1

Xk
D
= n2X1.

A distribution with this property is called a stable distribution with index 2. More

generally, a distribution with the property that

n∑
k=1

Yk
D
= nαY1,

where Y1, Y2, . . . is an i.i.d. sequence with that distribution, is called a stable distribution

with index α. (The two most elementary examples of this property are the standard normal

distribution, which is stable with index 1/2, and the Cauchy distribution, which is stable

distribution with index 1.)

The random variables Ta have a simple explicit formula for their density functions.

Proposition 5.34. The probability density function of Ta is given by

a√
2πt3

e−a
2/2t, t ∈ R.

The distribution of the r.v. Ta is called the Lévy distribution.

Proposition 5.34 is an easy corollary of the following result.
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Theorem 5.35 (The reflection principle). For a > 0 and t ≥ 0, we have the relation

P0(Ta < t) = 2P0(Bt > a).

Proof.

P0(Bt > a) = P0(Bt > a, Ta < t) = P0(Ta < t)P0(Bt > a |Ta < t)

= P0(Ta < t)P0(BTa + (Bt −BTa) > a |Ta < t)

= P0(Ta < t)P0(a+Bt −BTa > a |Ta < t)

= P0(Ta < t)P0(Bt −BTa > 0 |Ta < t)

Thus the claim is equivalent to the statement that P0(Bt−BTa > 0 |Ta < t) = 1
2
. This is at

least intuitively obvious. To prove it rigorously, we use the strong Markov property. Let

S =

inf
{

0 ≤ s < t : Bs = a
}

if Ta ≤ t,

∞ otherwise.

and define further

Ys(ω) =

1 if s ≤ t and ω(t− s) > a,

0 otherwise.

Then we have that

(YS ◦ θS)(ω) =

1 if S < t and Bt > a,

0 otherwise
= 1{S<t,Bt>a}.

The strong Markov property therefore gives

E0

(
YS ◦ θS

∣∣∣FS) = ϕ(BS, S) on {S <∞} = {Ta ≤ t},

where ϕ(a, s) = Pa(Bt−s > a) = 1
2
. But note that on {S < ∞}, S < t and BS = a, so that

ϕ(BS, S) = 1
2
. Thus, we have shown that

P0(Ta < t,Bt > a) = E0

(
YS ◦ θS1{S<∞}

)
= E0

(1

2
1{S<∞}

)
=

1

2
P0(S <∞) =

1

2
P0(Ta < t),

as claimed.
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Proof of Proposition 5.34.

P0(Ta ≤ t) = 2P0(Bt ≥ a) = 2

∫ ∞
a

1√
2πt

e−x
2/2t dx

= 2

∫ 0

t

1√
2πt

exp

(
−a

2

2s

)(
−1

2

√
ta

s3/2

)
ds =

∫ t

0

a√
2πs3

exp

(
−a

2

2s

)
ds.

Exercise 5.36. 1. Generalize the proof of Theorem 5.35 to conclude that if u ≤ v ≤ a

then the relation

P0(Ta < t, u < Bt < v) = P0(2a− v < Bt < 2a− u)

holds.

2. Let Mt = max
0≤s≤t

Bs. Use the above result to show that the joint density of Mt, Bt is

given by the formula

fMt,Bt(a, x) =
2(2a− x)√

2πx3
exp

(
−(2a− x)2

2t

)
.

Theorem 5.37 (The arcsine law). Define L = sup{0 ≤ t ≤ 1 : Bt = 0} (the last return

time of BM to 0 in [0, 1]). The random variable has the arcsine distribution, that is, its

density is given by

fL(t) =
1

π

1√
t(1− t)

.

(Equivalently, L ∼ Beta
(

1
2
, 1

2

)
, or FL(x) = 1

π
arcsin(

√
x).)

Proof. Let T0 = inf{s > 0 : Bs = 0}. We have (using the exercise on page ?)

P0(L ≤ s) =

∫ ∞
−∞

ps(0, x)Px(T0 > 1− s) dx

= 2

∫ ∞
0

1√
2πs

exp

(
−x

2

2s

)∫ ∞
1−s

1√
2πr2

x exp

(
−x

2

2r

)
dr dx

=
1

π

∫ ∞
1−s

1√
sr3

∫ ∞
0

x exp
(
−x2(r + s)(2rs)

)
dx dr

=
1

π

∫ ∞
1−s

1√
sr3

rs

r + s
dr =

1

π

∫ ∞
1−s

(
(r + s)2

rs

)1/2
s

(r + s)2
dr.

Applying the change of variables t = s/(r + s) in this last integral, we arrive at the formula
1
π

∫ s
0

1√
t(1−t)

dt for P0(L ≤ s), which was the claim.
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Exercise 5.38. Let R = inf{t > 1 : Bt = 0}. Show that under P0, the r.v. R has probability

density

fR(t) =
1√

πt(t− 1)
(t > 1).
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