Math 67: Modern Linear Algebra (UC Davis, Winter 2020) — Summary of lectures

Dan Romik

[Version of February 3, 2020— this document will be periodically updated with new material]

Lecture 1 (1/6/20)

- High-level description of course goals: 1. linear algebra theory; 2. linear algebra computational skills; 3. introduction to abstract math.

- Today’s topic: introduction to linear algebra. Conceptually, linear algebra is about sets of quantities (a.k.a. vectors) that are associated with each other by a “linear” relationship, and how to manipulate them, classify the nature of such relationships, and solve equations to determine one set of quantities given another.

Practically speaking, a lot of the calculations will reduce to solving a system of linear equations. An equation is called “linear” if all the terms on both sides of the equation have the form “a number times one of the unknowns” or “a number”. E.g., if \(x \) and \(y \) are the unknowns, you cannot have the term \(10xy \) or \(-5x^2\) (let alone more complicated things like \(\sqrt{x}, e^z, \sin(x+y) \) etc.).

- What is linear algebra good for? Almost everything in math, science, engineering. A few examples:
 - 3D graphics
 - Filters (Instagram, Photoshop etc). Also for music and sound processing and to filter other sources of data (such as in astronomy, medicine, nuclear physics, …).
 - Antialiasing of text on a phone or computer screen to make it look nice.
 - Analyzing card shuffling, genetic drift and other random processes with many states (Markov chains)
 - Neural networks, the mathematics of Machine Learning, AI
 - Multivariate calculus, optimizing functions of many variables
 - Search engine ranking algorithms
 - Stability analysis in control theory (think robots, rockets, airplanes)
 - Understanding fun things in math and physics such as the moving sofa problem and the Dzhanibekov effect (aka tennis racket theorem)
 - … and many more applications.

- Example 1. A baker needs one egg and 3 ounces of flour to make a muffin, and 2 eggs and 2 ounces of flour to make a croissant. Given 20 eggs and 28 ounces of flour, how many muffins and croissants can the baker make, assuming all eggs and flour are used?
Solution. Let \(x \) denote the number of muffins, and \(y \) the number of croissants. The question translates to the equations

\[
\begin{align*}
 x + 2y &= 20 \\
 3x + 2y &= 28
\end{align*}
\]

We can solve this using the “substitution” method:

\[
\begin{align*}
 x + 2y &= 20 \implies x = 20 - 2y \implies 3(20 - 2y) + 2y &= 28 \\
 \implies 4y &= 60 - 28 = 32 \implies y = 8 \implies x = 4
\end{align*}
\]

Or we can solve by “eliminating variables”, i.e., subtracting a multiple of one equation from the other to get an equation with a single variable. For example, subtracting the first equation from the second gives

\[
2x = 8 \implies x = 4,
\]

which then easily leads to \(y = 8 \) after substituting the value for \(x \) in either of the equations.

- Abstract algebraic formulation. Represent the system of equations given above symbolically in the form

\[
A \cdot \mathbf{v} = \mathbf{u},
\]

where \(A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \), \(\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} \), \(\mathbf{u} = \begin{pmatrix} 20 \\ 28 \end{pmatrix} \) and “\(\cdot \)” refers to “multiplication of a matrix by a vector”, a weird form of multiplication defined by

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}.
\]

To solve this, we simply need to “divide both sides (from the left) by \(A \)”. What does it mean to “divide” by a matrix? We will learn that there is a special matrix, denoted \(A^{-1} \) and called the “inverse” matrix of \(A \), that has the property that

\[
A^{-1} \cdot (A \cdot \mathbf{v}) = (A^{-1} \cdot A) \cdot \mathbf{v} = \mathbf{1} \cdot \mathbf{v} = \mathbf{v},
\]

(here, we need to extend the concept of multiplying a matrix by a vector to multiplying a matrix by a matrix; we also need to show “associativity”, i.e. that the order in which we multiply doesn’t change the result). So, the original equation translates to

\[
\mathbf{v} = A^{-1} \cdot \mathbf{u}.
\]

If we knew \(A^{-1} \), we would be able to compute \(\mathbf{v} \) by carrying out the multiplication. In this case,

\[
A^{-1} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{3}{4} & -\frac{1}{4} \end{pmatrix}
\]

(we will learn in the future how to compute such inverse matrices), so we get that

\[
\mathbf{u} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{3}{4} & -\frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} 20 \\ 28 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \cdot 20 + \frac{1}{2} \cdot 28 \\ \frac{3}{4} \cdot 20 - \frac{1}{4} \cdot 28 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix},
\]

as before.
• **Geometric formulation.** Each of the two equations represents the equation for a line in the plane. Finding the solution corresponds to finding the point in the plane which is at the intersection of the two lines. In the example above, we had a unique solution, but this geometric way of looking at things tells us that it’s also possible to have no solutions (in the case when the two lines are parallel but non-intersecting), or to have infinitely many solutions (if the two lines are identical). In general, “solving” a linear system of equations means “giving a simple description of the set of solutions” (which may be empty, or contain a single point, or be infinite).

• **Linear functions and linear transformations.** Yet another way of thinking about the equation, that we will explore in more detail later on in the course, is that the “operation” that takes a two-dimensional vector \(\mathbf{v} \) and returns the new vector \(A \cdot \mathbf{v} \) is a special kind of operation which we call a *linear transformation* – it acts on the two-dimensional plane in an interesting way, e.g., by stretching it, rotating it, reflecting it (but not bending it – that is why it is called “linear”). Solving the equation corresponds to finding the unknown point \(\mathbf{v} \) in the plane that is transformed to the given (known) point \(\mathbf{u} \) under the transformation. If we find good ways of visualizing linear transformations or understanding what are the different ways in which they can act, that will help us in solving linear systems.

• **Example 2. The Google PageRank algorithm.** In a simplified model of the internet, there are only 2 websites, (say) Facebook and Twitter. Facebook has 5 links pointing to itself and 2 links to Twitter. Twitter has 2 links to Facebook and 8 to itself. Which site is more important (and should therefore be placed higher up in a search result presented by Google)?

Solution. The Google PageRank web page ranking algorithm (named after its inventor, Larry Page!) assigns importance to web pages according to the self-referential rule:

A web page’s importance is proportional to the weighted average of the number of links pointing to it from all web pages, with each page being weighted according to its own importance.

(This rule can also be applied to other things, for example to the ranking of social status of people: i.e., you are popular in your social group in proportion to how many friends you have, but only to the extent that your friends are themselves popular...).

The fact that the rule is self-referential, defining “importance” in terms of that involve the same term we are trying to define, is why we are led to having to solve a system of equations (as opposed to just having a plain formula that directly cranks out the importance in terms of the data that’s given to us).

In the case of our model internet, let \(x \) denote the relative importance of Facebook and \(y \) denote the relative importance of Twitter, then the rule above leads to the equations:

\[
\begin{align*}
x + y &= 1 \\
5x + 2y &= zx \\
2x + 8y &= zy
\end{align*}
\]

where \(z \) is an additional unknown which represents an arbitrary positive proportion constant. The first equation is what I mean by relative importance — the numbers \(x, y \) add up to a “total importance” of 1.
It’s important to note that if z is taken into account, then this is a **non-linear** system of equations. However, due to their special structure such equations are still considered a part of linear algebra. The reason is that if we are magically given the value of z by someone with advanced knowledge (in this case $z = 9$), the system becomes a linear system and can be solved with the usual methods:

\[
\begin{align*}
\begin{cases}
 x + y &= 1 \\
 5x + 2y &= 9x \\
 2x + 8y &= 9y
\end{cases}
\end{align*}
\Rightarrow
\begin{align*}
\begin{cases}
 x + y &= 1 \\
 -4x + 2y &= 0 \\
 2x - y &= 0
\end{cases}
\end{align*}
\Rightarrow
\begin{align*}
\begin{cases}
 x + y &= 1 \\
 3x &= 1
\end{cases}
\end{align*}

so we finally get $x = 1/3, y = 2/3$.

We will learn later in the course how to deal with finding the value of z in such a situation. This will lead to certain **polynomial** equations (a higher-order generalization of the linear and quadratic equations we are familiar with).
Lectures 2 (1/8/20) and 3 (1/10/20)

- **Coefficients.** In linear algebra we study systems of linear equations. The numbers appearing in these equations are known as *coefficients*.

- **Number systems and number fields.** In elementary applications the coefficients are ordinary real numbers (in fact, usually they are *rational numbers*). However, it turns out that the algebraic rules for manipulating numbers (by adding, subtracting, multiplying them, etc.) that we rely on for linear algebra are not unique to real numbers. There are other number systems that satisfy the “good” properties that are necessary in linear algebra. It makes sense to abstract away those properties for a “good number system”. In higher mathematics such a system of numbers is called a *field*. In this course we will focus mainly on the real numbers and complex numbers, but it’s interesting to keep in mind that other number fields also arise in real-life applications (notably in computer science, where an important field is the “field with 2 elements” consisting of the numbers 0 and 1), and that essentially all the linear algebra theory we’ll develop carries over to that more general setting as well, with little or no modification.

- **Complex numbers.** One of the nicest fields there are (we still haven’t defined what a field is, but don’t worry about that for now) is that of the *complex numbers*. They are numbers of the form

$$z = a + bi,$$

where i is a hypothetical construct, a symbol representing one of the two square roots of -1. The other square root of -1 is $-i$, since if $i^2 = 1$ then

$$(-i)^2 = (-1) \cdot i \cdot (-1) \cdot i = (-1)^2 i^2 = 1 \cdot (-1) = (-1).$$

- Let’s be a bit more formal:

Definition. The set of complex numbers is the set, denoted \mathbb{C}, of pairs (a,b) of real numbers, with the convention that instead of writing (a,b) in the usual vector notation from calculus, we write it in the form $a + bi$. Formally, we can express this definition as

$$\mathbb{C} = \{ a + bi : a, b \in \mathbb{R} \}.$$

If $z = a + bi$ is a complex number, $a, b \in \mathbb{R}$, we call $a \in \mathbb{R}$ the *real part* of z, and we call b the *imaginary part* of z. We denote $a = \text{Re } z$ and $b = \text{Im } z$. We can think of the complex number $a + bi$ geometrically as a vector with two coordinates a (the x-coordinate) and b (the y-coordinate).

- **Algebraic operations on complex numbers.** What makes \mathbb{C} a field? As a set of numbers, it is not much different than the two-dimensional plane \mathbb{R}^2, except that the vector (a, b) is written as $a + bi$. The key to looking at \mathbb{C} as a field is to consider also its *algebraic* properties. It turns out that there is a way to define algebraic operations of addition, subtraction, multiplication and division on complex numbers, and these operations satisfy the “good” properties that we require in a field.
1. **Addition of complex numbers.** If \(z = a + bi \) and \(w = c + di \) are two complex numbers, we define their sum by

\[
z + w = (a + c) + (b + d)i
\]

2. **The negative of a complex number.** If \(z = a + bi \) is a complex number, its negative is

\[
-z = -a - bi
\]

3. **Subtraction of complex numbers.** The difference of two complex numbers \(z = a + bi \) and \(w = c + di \) is defined as

\[
z - w = z + (-w)
\]

4. **Multiplication of complex numbers.** The product of two complex numbers \(z + a + bi \) and \(w = c + di \) is defined by

\[
z \cdot w = (a + bi)(c + di) = (ac - bd) + (ad + bc)i
\]

5. **The reciprocal of a complex number.** The reciprocal of a complex number \(z = a + bi \) is defined, assuming \(z \neq 0 \), by

\[
z^{-1} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i
\]

6. **Division of complex numbers.** The quotient of two complex numbers \(z = a + bi \) and \(w = c + di \) is defined if \(w \neq 0 \) by

\[
\frac{z}{w} = z \cdot w^{-1}
\]

Examples. (fill in the answers)

\[
(3 + 5i) + (10 - 2i) = \]
\[
(3 + 5i) - (10 - 2i) = \]
\[
(3 + 5i) \cdot 4 = \]
\[
4 \cdot (3 + 5i) = \]
\[
(3 + 5i) \cdot (1 + i) = \]
\[
(1 + i)^2 = (1 + i) \cdot (1 + i) = \]
\[
(1 + i)^4 = \]
\[
(1 + i)^{-1} = \]
\[
(2 - i)^{-1} =\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]

Properties of addition. Theorem: For any complex numbers \(z, z_1, z_2, z_3 \), the following properties are satisfied:

1. ("Commutativity") \(z_1 + z_2 = z_2 + z_1 \)
2. (“Associativity”) \((z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)\)

 So, in fact, the parentheses are not needed and we will usually omit them in the future, writing this expression simply as \(z_1 + z_2 + z_3\).

3. (“Neutral element”) \(z + 0 = 0 + z = z\)

4. (“Additive inverse”) \(z + (−z) = 0\)

Proof: \ldots

- **Properties of multiplication. Theorem:** For any complex numbers \(z, z_1, z_2, z_3\), the following properties are satisfied:

 1. (“Commutativity”) \(z_1 \cdot z_2 = z_2 \cdot z_1\)
 2. (“Associativity”) \((z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)\)
 3. (“Neutral element”) \(z \cdot 1 = 1 \cdot z = z\)
 4. (“Multiplicative inverse”) If \(z \neq 0\) then \(z^{-1}\) is defined and \(z \cdot z^{-1} = 1\)
 5. (“Distributivity”) \(z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3\)

Proof: \ldots

- **The conjugate of a complex number.** If \(z = a + bi\) is a complex number, we define its conjugate to be the number \(a - bi\), denoted by \(\overline{z}\):

\[
\overline{z} = a - bi
\]

Geometrically, taking the conjugate corresponds to reflecting the vector associated with \(z\) across the \(x\)-axis.

Why is the conjugate element interesting? Let’s see what happens when we multiply \(z\) and \(\overline{z}\):

\[
z \cdot \overline{z} = (a + bi)(a - bi) = (aa - b(-b)) + (a(-b) + ba)i = (a^2 + b^2) + 0 \cdot i = a^2 + b^2
\]

The product is always an ordinary real number, equal to \(a^2 + b^2\). In particular, we see that if we take the conjugate and divide it by this real number \(a^2 + b^2\) (which is allowed if \(a^2 + b^2 \neq 0\), i.e., if \(z \neq 0\)), we get a number \(w\) with the property that \(w \cdot z = 1\). This is simply the reciprocal of \(z\). So, we have rederived the formula for the reciprocal element:

\[
z^{-1} = \frac{1}{a^2 + b^2} \cdot \overline{z} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} i
\]

- **Properties of conjugation. Theorem:** For any complex numbers \(z, z_1, z_2 \in \mathbb{C}\), the following properties hold:

 1. \(\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}\)
 2. \(\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}\)
 3. \(\overline{z^{-1}} = (\overline{z})^{-1}\) if \(z \neq 0\)
 4. \(z = \overline{z}\) if and only if \(\text{Im}(z) = 0\) (i.e., if \(z\) is a real number)
5. $\overline{z} = z$

6. The real and imaginary part of z can be written as

$$\text{Re}(z) = \frac{1}{2}(z + \overline{z}), \quad \text{Im}(z) = \frac{1}{2i}(z - \overline{z})$$

- **The modulus of a complex number.** The quantity $a^2 + b^2$ has a simple geometric meaning as well. By the Pythagorean Theorem, the distance from 0 to $z = a + bi$ is equal to $\sqrt{a^2 + b^2}$. We call this the **modulus** of the number z, and denote it by $|z|:

$$|z| = \sqrt{a^2 + b^2}$$

(if z is a real number, it is simply the usual absolute value of z). This quantity is also known as the **norm**, **magnitude**, or **length** of z (especially in the general context of vectors, not complex numbers). To summarize the above discussion, we have the identities:

$$z \cdot \overline{z} = |z|^2,$$

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$

- **Properties of the modulus.** **Theorem:** for any complex numbers $z, z_1, z_2 \in \mathbb{C}$, we have the properties:

1. $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$
2. $|z_1/z_2| = |z_1|/|z_2|$ if $z_2 \neq 0$
3. $|\overline{z}| = |z|$
4. $|\text{Re}(z)| \leq |z|$ and $|\text{Im}(z)| \leq |z|$
5. ("triangle inequality") $|z_1 + z_2| \leq |z_1| + |z_2|$
6. (triangle inequality reformulated) $|z_1 - z_2| \geq ||z_1| - |z_2||$

Proof: \ldots
Lecture 4 (1/13/20)

- **Polar representation of complex numbers.** The usual representation $z = x + yi$ of complex numbers tells us where the vector z lies in the plane in terms of the usual Cartesian coordinates. An alternative representation is in terms of the polar coordinates, where we give the length r of the vector and its angle θ (measured in the anti-clockwise direction) relative to the x-axis. The numbers (r, θ) are called the polar coordinates of z. They satisfy $r \geq 0$ and $0 \leq \theta < 2\pi$, and θ is only defined if $z \neq 0$.

 From elementary trigonometry, it is easy to see that r, θ are related to x, y by

 \[x = r \cos \theta \]
 \[y = r \sin \theta \]
 \[r = |x + yi| = \sqrt{x^2 + y^2} \]
 \[\theta = \text{“the angle function” of } (x, y) \]

 (there is no standard notation for this; sometimes “arg z” is used, and the angle may be referred to as the “argument” of z).

 To summarize, the complex representation of z is usually written in the form

 \[z = r(\cos \theta + i \sin \theta) \]

- **Multiplication in polar coordinates.** Let’s see what happens when we try to multiply two complex numbers z, w that are given in polar coordinates:

 \[z = r_1(\cos \theta_1 + i \sin \theta_1), \]
 \[w = r_2(\cos \theta_2 + i \sin \theta_2), \]
 \[z \cdot w = r_1 r_2 \left[(\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 + i \sin \theta_2)\right] \]
 \[= r_1 r_2 \left[(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + (\cos \theta_1 \sin \theta_2 + \cos \theta_2 \sin \theta_1)i\right] \]

 Because of the trigonometric formulas for the cosine and sine of a sum of two angles, we see that this can be written as

 \[z \cdot w = (r_1 r_2) \left(\cos \alpha + i \sin \alpha\right) \]

 where $\alpha = \theta_1 + \theta_2$. We have proved:

 Theorem. The product of two complex numbers is the complex number whose modulus is the product of the moduluses of the two numbers, and whose angle is the sum of the two angles.

 (Note that the sum of the two angles may be bigger than 2π, so we need to subtract 2π to get back to the usual polar representation.)

- **Powers of complex numbers.** From this multiplication rule, it is easy to understand the geometric effect of raising a complex number to the nth power (where n is a positive integer, i.e. the square, cube, fourth power of a number etc.):

 \[z = r(\cos \theta + i \sin \theta) \implies z^n = r^n(\cos n\theta + i \sin n\theta) \]
The modulus gets raised to the \(n \)th power, and the angle gets multiplied by \(n \). Note that in Cartesian coordinates the meaning of exponentiation is much less obvious or intuitive, demonstrating the usefulness of polar coordinates.

One interesting observation that we will need for the proof of the Fundamental Theorem of Algebra is: as \(z \) goes in a circle of radius \(r \) around 0 (the angle increases continuously from 0 to \(2\pi \)), its image under the \(n \)th power function \(z^n \) goes \(n \) times around the circle of radius \(r^n \).

- **Roots of complex numbers.** The inverse operation to the \(n \)th power is extracting an \(n \)th root. If \(z = r(\cos \theta + i \sin \theta) \), its \(n \)th root is given by
 \[
 \sqrt[n]{z} = \sqrt[n]{r(\cos(\theta/n) + i \sin(\theta/n))},
 \]
 i.e., we divide the angle by \(n \) instead of multiplying. However, in this case there is more than one solution, since we can also add to the angle any number which, when multiplied by \(n \), gives an integer multiple of \(2\pi \).

Theorem. If \(z = r(\cos \theta + i \sin \theta) \neq 0 \) and \(n \) is a positive integer, the \(n \)th roots of \(z \) are the \(n \) distinct numbers
 \[
 r^{1/n} \left(\cos \left(\frac{\theta + 2\pi k}{n} \right) + i \sin \left(\frac{\theta + 2\pi k}{n} \right) \right), \quad k = 0, 1, 2, \ldots, n - 1
 \]

- **Examples.**
 - The square roots of \(-1\) are \(\cos(\pi/2) + i \sin(\pi/2) = i \) and \(\cos(3\pi/2) + i \sin(3\pi/2) = -i \).
 - The fourth roots of \(1\) are \(1, -1, i, -i\).
 - The cube roots of \(2\) are
 \[
 \sqrt[3]{2}(\cos(0) + i \sin(0)) = \sqrt[3]{2},
 \]
 \[
 \sqrt[3]{2}(\cos(2\pi/3) + i \sin(2\pi/3)) = \sqrt[3]{2} \cdot \frac{-1 + \sqrt{3}i}{2},
 \]
 \[
 \sqrt[3]{2}(\cos(4\pi/3) + i \sin(4\pi/3)) = \sqrt[3]{2} \cdot \frac{-1 - \sqrt{3}i}{2}.
 \]
 - The square roots of \(1 + i = \sqrt[4]{2}(\cos \pi/4 + i \sin \pi/4)\) are the numbers
 \[
 w = \sqrt[4]{2}(\cos \pi/8 + i \sin \pi/8)
 \]
 \[
 -w = \sqrt[4]{2}(\cos 9\pi/8 + i \sin 9\pi/8)
 \]

- **Polynomial equations.** Extracting an \(n \)th root is a special case of solving a polynomial equation:
 \[
 z = \sqrt[n]{w} \iff z^n = w \iff z^n - w = 0 \iff p(z) = 0
 \]
 where \(p(z) = z^n - w \).

- **Constant polynomials.** A constant function \(p(z) = c \) is called a constant polynomial or polynomial of degree 0. The equation \(p(z) = 0 \) has no solution if \(c \neq 0 \), or if \(c = 0 \) then any value of \(z \) is a solution.
• **Polynomials of degree** 1. A function of the form \(p(z) = az + b \) is called a polynomial of degree 1. Assuming \(a \neq 0 \) (since if \(a = 0 \) this is just a constant polynomial in disguise), the equation \(p(z) = 0 \) has the unique solution \(z = -b/a \).

• **Quadratic polynomials.** A function of the form \(p(z) = az^2 + bz + c \) is called a quadratic polynomial, or a polynomial of degree 2. Assuming \(a \neq 0 \), the ancient Babylonians figured out (around 2000 BC) how to solve the equation \(p(z) = 0 \), arriving at the famous formula

\[
z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
\]

Of course, if \(b^2 - 4ac \) is a negative real number, the equation has no solution in real numbers, but it does have solutions in complex numbers.

• **Cubic polynomials.** A function of the form \(p(z) = az^3 + bz^2 + cz + d \) is called a cubic polynomial, or a polynomial of degree 2. The general solution of the cubic was found around the year 1530 by the Italian mathematicians del Ferro, Tartaglia and Cardano. This was the original motivation for the definition of complex numbers, since the solution involved extracting cube roots, which sometimes involved complex numbers even when the final answer for the roots was comprised of just real numbers.

• **Quartic polynomials.** A polynomial of degree 4 is called a quartic. The equation \(p(z) = 0 \) for a quartic was solved by the Italian mathematician Ferrari around 1540.

• **General polynomial.** If \(n \) is a positive integer and \(a_0, a_1, \ldots, a_n \) are complex numbers, the function

\[
p(z) = az^n + bz^{n-1} + cz^{n-2} + \ldots + fz^2 + gz + h
\]

is called a polynomial of degree \(n \). A number \(z \) that solves the equation \(p(z) = 0 \) is called a root of the polynomial.

• **The Fundamental Theorem of Algebra.** A fundamental fact about polynomial equations is the following famous result, first proved by the famous German mathematician Karl Friedrich Gauss in 1799.

Theorem (The Fundamental Theorem of Algebra). Every polynomial equation \(p(z) = 0 \) has a solution over the complex numbers.

This result has many different proofs (one full proof can be read in the textbook). We will describe Gauss’s original proof, which was incomplete since it relied on a “topological” argument that was not understood rigorously at the time (but has been explained since, though understanding it requires more advanced knowledge of topology that we will not discuss).

Gauss’s proof. We may assume that \(p(0) \neq 0 \), since otherwise we have a root \(z = 0 \) and there is nothing to prove. Also assume that the polynomial is monic, i.e., the coefficient of \(z^n \) is 1 (otherwise, if it is not 1, simply divide by the coefficient \(a_n \) to obtain a new coefficient with a leading coefficient of 1 with the same roots).

Denote \(w = p(0) \). Now observe that:
1. as z goes in a circle of very small radius r around 0, since $p(z)$ is a continuous function, the value $p(z)$ will traverse some closed curve that stays very close to w. In particular, such a closed curve cannot go around 0 (since w is some fixed distance from 0).

2. On the other hand, as z goes around a circle of very large radius R around 0, the polynomial $p(z)$ should behave more and more like the power function $q(z) = z^n$, since

$$p(z) = z^n + az^{n-1} + bz^{n-2} + cz^{n-3} + \ldots + gz + h$$

$$= z^n \left(1 + \frac{a}{z} + \frac{b}{z^2} + \ldots + \frac{g}{z^{n-1}} + \frac{h}{z^n}\right),$$

and all of the terms except the first are very small in magnitude (since $|z| = R$ is very large). In particular, the image of $p(z)$ as z goes around a circle will be a curve that travels n times around 0 in a counter-clockwise direction (it is like a circle with various “wiggles” and fluctuations from the “go in a circle n times around 0” image of a circle under the power function z^n).

3. The conclusion is that as we vary the radius of the circle from being a very small number “r” to being a very large number “R”, the image $p(z)$ goes from being a closed curve that doesn’t go around the origin to being a closed curve that travels precisely n times around the origin. Thus, at some point during this process, the curve must cross 0. If you don’t believe this, try taking a rubber band and making it go around a nail in the wall, without tearing it up, and without the projection of the rubber band into the plane of the wall crossing the nail at any point. It can’t be done!

For more details on this and other proofs of the Fundamental Theorem of Algebra, see

- **Polynomial roots and factoring. Lemma.** a is a root of the polynomial $p(z)$ if and only if $p(z)$ can be written in the form

$$p(z) = (z - a)q(z)$$

where $q(z)$ is a polynomial of degree 1 lower than p.

- **The Fundamental Theorem of Algebra, reformulated.** Thanks to the lemma, we can reformulate the FTA as follows: If $p(z)$ is a complex polynomial of degree n, then it can be written as

$$p(z) = c(z - a_1)(z - a_2)\ldots(z - a_n)$$

for some (not necessarily distinct) complex numbers a_1, a_2, \ldots, a_n.

Proof. Take some root a_1, and write $p(z) = (z - a_1)q(z)$ where $q(z)$ is of degree $n - 1$. Now repeat the same process for $q(z)$, getting a second root a_2, etc., until we get to the form of a product of n factors $z - a_j$ times a constant polynomial.

- **Division of polynomials with remainder.** If $f(z)$ and $g(z)$ are two polynomials, we can do a “long division” of $f(z)$ by $g(z)$ and get a “quotient” and a “remainder”, i.e., two polynomial $q(z)$ and $r(z)$ such that

$$f(z) = g(z)q(z) + r(z),$$

12
and \(r(z) \) is of lower degree than \(g(z) \). The polynomials \(q(z) \) and \(r(z) \) are determined uniquely.

- **Example.** Will be given in the discussion section.

- **Proof of the lemma.** Proof of the “only if” claim: If \(p(z) = (z - a)q(z) \) then of course \(p(a) = (a - a)q(a) = 0 \), so \(a \) is a root of \(p(z) \). Proof of the “if” claim: if \(p(a) = 0 \), we can divide \(p(z) \) by the polynomial \(z - a \) (which is of degree 1), to get

\[
p(z) = (z - a)q(z) + r(z),
\]

where \(r(z) \) is a polynomial of degree 0, i.e., a constant polynomial. But since \(p(a) = 0 \), we get

\[
0 = p(a) = (a - a)q(a) + r(a) = r(a),
\]

so in fact \(r(z) \) is the 0 polynomial, and \(p(z) = (z - a)q(z) \), as claimed.
Lecture 5 (1/15/20)

- **Vector spaces.** The abstract setting for systems of linear equations is a structure called a vector space (also called a linear space). This is a collection of objects (referred to as “vectors”) that can be added to each other, and can be multiplied by a (real or complex) scalar. The prototypical examples of vector spaces are

\[\mathbb{R}^n = \{(x_1, x_2, \ldots, x_n) : x_1, \ldots, x_n \in \mathbb{R}\}, \]
\[\mathbb{C}^n = \{(x_1, x_2, \ldots, x_n) : x_1, \ldots, x_n \in \mathbb{C}\}. \]

- **Definition of a vector space.** Let \(F \) represent either the set of real numbers \(\mathbb{R} \) or the set of complex numbers \(\mathbb{C} \). A vector space (called a real vector space if \(F = \mathbb{R} \) or a complex vector space if \(F = \mathbb{C} \)) is a set \(V \) on which are defined two operations “addition” and “scalar multiplication”; addition is defined on pairs of vectors, and scalar multiplication is defined between a scalar (an element of \(F \)) and a vector. The operations must satisfy the following properties:

1. \(u + v = v + u \) for any \(u, v \in V \).
2. \((u + v) + w = u + (v + w) \) for any \(u, v, w \in V \).
3. \(a \cdot (b \cdot v) = (a \cdot b) \cdot v \) for any \(a, b \in F, v \in V \).
4. There exists an element \(0 \in V \) such that \(v + 0 = 0 + v = v \) for all \(v \in V \).
5. For every \(v \in V \), there exists an element \(u \in V \) such that \(v + u = 0 \).
6. \(1 \cdot v = v \) for any \(v \in V \)
7. \(a \cdot (u + v) = a \cdot u + a \cdot v \) and \((a + b) \cdot u = a \cdot u + b \cdot u \) for any \(a, b \in F, u, v \in V \).

- **Examples.**

1. \(F \) is itself a vector space where scalars are also considered as vectors.
2. \(\mathbb{F}^n = \{(x_1, \ldots, x_n) : x_j \in \mathbb{F} \text{ for } j = 1, \ldots, n\} \) — the “standard”, or “canonical”, \(n \)-dimensional real/complex vector space.
3. \(\mathbb{R}^\infty = \{(x_1, x_2, \ldots) : x_j \in \mathbb{R} \text{ for } j = 1, 2, \ldots\} \) — an “infinite-dimensional” version of \(\mathbb{R}^n \) (note that we haven’t defined what “dimension” means just yet, but we will).
4. The space of polynomials of degree \(n \):
 \[P_n = \{f : \mathbb{R} \to \mathbb{R} : f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0\} \]
5. The space of all polynomials (of any degree).
6. The “trivial” space \(V = \{0\} \).
7. The space of solutions to a system of linear equations... (more on this later).
Lecture 6 (1/17/20)

- **Properties of vector spaces.**

 - **Proposition 1.** The additive neutral element is unique. **Proof.** ...

 - **Proposition 2.** The additive inverse element is unique. **Proof.** ...

 - **Proposition 3.** \(0v = 0\) for all \(v \in V\). (Note: the 0 on the left is the scalar 0; the 0 on the right is the vector 0. Mathematicians often like to confuse you by using the same symbol to mean two different things!) **Proof.** ...

 - **Proposition 4.** \(a0 = 0\) for any \(a \in \mathbb{F}\). **Proof.** ...

 - **Proposition 5.** \((-1)v = -v\) for any \(v \in V\) (here, \(-v\) is the notation for the negative inverse element of \(v\), guaranteed to exist by property 5 in the definition of a vector space). **Proof.** ...

- **Subspaces.** A (vector/linear) subspace is a subset of a vector space which also happens to be by itself a vector space, with the same operations of addition and scalar multiplication.

- **Subspace criterion.** To check that a subset \(U \subset V\) of a vector space \(V\) is a subspace, one does not need to check all 7 properties in the list, which is tedious. Instead we have an easier criterion:

 Lemma. \(U \subset V\) is a subspace if and only if the following conditions hold:

 1. \(0 \in U\).
 2. (“closure under addition”) If \(u, v \in U\) then \(u + v \in U\).
 3. (“closure under scalar multiplication”) If \(a \in \mathbb{F}, u \in U\) then \(au \in U\).

 Proof. ...

- **Examples.**

 1. \(U_{\text{smallest}} = \{0\} \subset V\) and \(U_{\text{largest}} = V \subset V\) are both subspaces, respectively the smallest and largest possible subspaces of \(V\).
 2. \(\{(x, 0) : x \in \mathbb{R}\}\) is a subspace of \(\mathbb{R}^2\).
 3. The space \(P_n\) of real polynomials of degree \(\leq n\) is a subspace of the vector space of all real polynomials. The space of all polynomials \(p\) of degree \(\leq n\) such that \(p(5) = 0\) is a subspace of that subspace.
 4. The set of solutions of a homogeneous system of linear equations in \(k\) unknowns is a subspace of \(\mathbb{R}^k\).
 5. The union of the \(x\)- and \(y\)-axes is *not* a subspace of \(\mathbb{R}^2\).
 6. If \(U_1, U_2\) are both subspaces of a larger vector space \(V\), then their intersection \(U_1 \cap U_2\) is also a subspace.

- **Creating new spaces from old.** There are several ways to get new vector spaces from existing ones:

 1. Subspaces (described above)
2. The intersection of subspaces
3. The sum of subspaces
4. The linear span of a collection of vectors

We describe these constructions next.

• **Intersection of subspaces.** The intersection $U_1 \cap U_2$ of subspaces of a vector space V is also a vector space, in fact quite a natural one since it is the largest subspace of V contained in both U_1 and U_2.
Lecture 7 (1/22/20)

• **Sum of subspaces.** Going in the opposite direction, given subspaces U_1, U_2, we might ask what is the smallest subspace of V that contains both U_1 and U_2? The answer is not the union of the subspaces, since that is not a subspace, but a new subspace called the *sum* of U_1 and U_2

Definition. The sum of U_1 and U_2 is the set

$$U_1 + U_2 = \{ u_1 + u_2 : u_1 \in U_1, u_2 \in U_2 \}$$

It is easy to check that $U_1 + U_2$ is itself a subspace of V, and contains U_1 and U_2.

• **Example.** If $U_1 = \{(x,0,0) : x \in \mathbb{R} \}$, $U_2 = \{(0,y,0) : y \in \mathbb{R} \}$ then

$$U_1 + U_2 = \{(x,y,0) : x,y \in \mathbb{R} \}.$$

If we change U_2 to $U_2' = \{(y,y,0) : y \in \mathbb{R} \}$ (a different subspace), the sum $U_1 + U_2'$ remains the same as $U_1 + U_2$ before.

• **Direct sum.** The sum $U_1 + U_2$ is called a *direct sum*, and denoted $U_1 \oplus U_2$, if we require the further property that each $v \in U_1 + U_2$ can be written in a unique way as a sum of the form $v = u_1 + u_2$, where $u_1 \in U_1, u_2 \in U_2$.

Lemma. If $U_1, U_2 \subset V$ are subspaces, and $W = U_1 + U_2$, then the following conditions are equivalent:

1. $W = U_1 \oplus U_2$
2. If $0 = u_1 + u_2$ for some $u_1 \in U_1, u_2 \in U_2$, then $u_1 = u_2 = 0$.
3. $U_1 \cap U_2 = \{0\}$.

Proof. It would be enough to prove that: $(1) \implies (2)$; $(2) \implies (1)$; and $(3) \implies (1)$. ...

• **Example.** Define

$$U_1 = \{(x,y,0) \in \mathbb{R}^3 : x,y \in \mathbb{R} \},$$

$$U_2 = \{(0,0,z) \in \mathbb{R}^3 : z \in \mathbb{R} \},$$

$$U_3 = \{(0,w,z) \in \mathbb{R}^3 : w,z \in \mathbb{R} \}.$$

Then $\mathbb{R}^3 = U_1 \oplus U_2$, but $\mathbb{R}^3 = U_1 + U_3$ is *not* a direct sum.

• **Example.** Define

$$P_3 = \{ p(x) = ax^3 + bx^2 + cx + d : a,b,c,d \in \mathbb{R} \},$$

the vector space of polynomials of degree ≤ 3 with real coefficients. Define

$$U_1 = \{ p(x) \in P_3 : p(0) = 0 \},$$

$$U_2 = \{ p(x) = ax^3 + bx^2 + cx + d \in P_3 : a = 0 \}$$

Then $P_3 = U_1 + U_2$ (a small exercise: check this), but it is not a direct sum.
Lecture 8 (1/24/20)

- **Linear combinations.** Let V be a vector space over \mathbb{F}. If v_1, v_2, \ldots, v_m are vectors in V, an expression of the form
 \[a_1 v_1 + a_2 v_2 + \ldots + a_m v_m, \]
 where a_1, \ldots, a_m are scalars from \mathbb{F}, is called a linear combination.

- **Linear span.** If v_1, \ldots, v_m are vectors in a vector space V, define the linear span of v_1, \ldots, v_m as
 \[\text{span}(v_1, \ldots, v_m) = \{ a_1 v_1 + \ldots + a_m v_m : a_1, \ldots, a_m \in \mathbb{F} \}, \]
 i.e., the span is the set of all linear combinations of v_1, \ldots, v_m.

Lemma. The span of v_1, \ldots, v_m is a subspace. Furthermore, it is the smallest possible subspace that contains v_1, \ldots, v_m (more precisely, what this means is that if $U \subset V$ is any subspace that contains v_1, \ldots, v_m, then $\text{span}(v_1, \ldots, v_m) \subset U$).

Proof: This is similar to the property of a sum of subspaces mentioned above. In fact, an equivalent way to define $\text{span}(v_1, \ldots, v_m)$ would be to write it as
 \[\text{span}(v_1, \ldots, v_m) = V_1 + V_2 + \ldots + V_m, \]
 where $V_i = \{ tv_i : t \in \mathbb{F} \}$ is the subspace consisting of v_i and all its scalar multiple (geometrically, V_i is a line through 0 and v_i).

Finite and infinite dimension. If V is a vector space, we say that it is finite-dimensional if there are vectors $v_1, \ldots, v_m \in V$ such that $V = \text{span}(v_1, \ldots, v_m)$. Otherwise, we say V is infinite-dimensional, i.e., if it is not spanned by a finite set of vectors.

If $V = \text{span}(v_1, \ldots, v_m)$, does it make sense to say that V has dimension m? No, since there may be many spanning sets, not all of them containing the same number of elements. But we will soon figure out the right way to define the actual dimension.

Examples. \mathbb{F}^n is finite-dimensional since it is spanned by
 \[e_1 = (1, 0, \ldots, 0), e_2 = (0, 1, \ldots, 0), \ldots, e_n = (0, 0, \ldots, 1). \]

Similarly, the space P_n of polynomials of degree $\leq n$ is finite-dimensional; it is spanned by the monomials $1, z, \ldots, z^n$. The space of all polynomials of arbitrary degree is infinite-dimensional (proof: ...).

- **Linear independence.** Definition. The vectors $v_1, \ldots, v_m \in V$ are called linearly independent if whenever we have
 \[a_1 v_1 + \ldots + a_m v_m = 0 \]
 it follows that $a_1 = a_2 = \ldots = a_m = 0$. I.e., the only linear combination of v_1, \ldots, v_m that equals the zero vector is the obvious one with all coefficients equal to 0. If the vectors are not linearly independent, they are called linearly dependent.

Examples.
1. The vectors \(e_1, \ldots, e_n \) mentioned before as a spanning set for \(\mathbb{R}^n \) are linearly independent. Proof: ...

2. The vectors \(v_1 = (1, 1, 1), v_2 = (0, 1, -1), v_3 = (1, 2, 0) \) in \(\mathbb{R}^3 \) are linearly dependent. To see this, we look for coefficients \(a_1, a_2, a_3 \) such that \(a_1 v_1 + a_2 v_2 + a_3 v_3 = (0, 0, 0) \). This leads to a system of linear equations. It is not difficult to find that it has the solution \((a_1, a_2, a_3) = (1, 1, -1) \) (as well as any scalar multiple of this solution).

Lemma. \(v_1, \ldots, v_m \) are linearly independent if and only if every vector \(v \in \text{span}(v_1, \ldots, v_m) \) can be written in a unique way as a linear combination of \(v_1, \ldots, v_m \).

Proof. ...

- **Linear dependence means the spanning set can be made smaller.** **Lemma.** If vectors \(v_1, \ldots, v_m \) in a vector space \(V \) are linearly dependent, then there is an index \(1 \leq j \leq m \) such that

 1. \(v_j \in \text{span}(v_1, \ldots, v_{j-1}) \) (here, if \(j = 1 \) this statement should be interpreted as saying that \(v_1 = 0 \)).

 2. \(\text{span}(v_1, \ldots, \hat{v}_j, \ldots, v_m) = \text{span}(v_1, \ldots, v_m) \), where \(\hat{v}_j \) means that \(v_j \) is omitted from the list.

Proof. ...
Lecture 9 (1/27/20)

• A spanning set which is linearly independent is minimal. The lemma above could actually be formulated as an “if and only if” statement. The easy converse (“only if”) part says that if the vectors are linearly independent, then removing any of them from the list makes the span a strictly smaller subspace. The following theorem makes a much stronger claim:

Theorem. If vectors v_1, \ldots, v_m in a vector space V are linearly independent, then for any vectors w_1, \ldots, w_n, if they span V (i.e., if $V = \text{span}(w_1, \ldots, w_n)$) then $n \geq m$.

Proof. (Important) See pages 43–44 in the textbook.

• Bases. We now get to the important concept of a basis. **Definition.** A sequence of vectors v_1, \ldots, v_m in a finite-dimensional vector space V is called a basis if the vectors are linearly independent and $V = \text{span}(v_1, \ldots, v_m)$.

• Dimension. By the theorem above, all bases have the same size (any spanning set has at least as many elements as any linearly independent set; a basis has both properties so we’ll get an inequality in both directions), so we can use it to define the dimension. **Definition.** The dimension of a finite-dimensional vector space V is the size of any basis (and therefore all bases) of V.

• Is this a good definition? Note that we haven’t yet proved that any finite-dimensional space has even one basis, which leaves the theoretical possibility of a finite-dimensional vector space whose dimension is undefined. This problem is remedied by the following theorem:

Basis reduction theorem. If $V = \text{span}(v_1, \ldots, v_m)$ then either v_1, \ldots, v_m is a basis of V or some vectors can be removed from the list to obtain a basis for V.

Proof. Successively remove any v_i which is in the span of the ones preceding it in the list. Each such removal does not change the span. Eventually we end up with a spanning set in which no vector is in the span of the ones preceding it, and by the lemma above that set must be linearly independent, hence it is a basis.

• Corollary. Every finite-dimensional vector space has a basis, since it has a spanning set (by the definition of finite-dimensionality) which, by the theorem above, can be thinned to give a basis.

• The dimension is well-defined. If V is finite-dimensional, it has a basis, therefore its dimension is defined.

• Examples

1. e_1, \ldots, e_n form a basis for \mathbb{R}^n.

2. The polynomials $1, z, z^2, \ldots, z^n$ are a basis for the space P_n of polynomials of degree at most n.

3. Let $S = \{(1, -1, 0), (2, -2, 0), (-1, 0, 1), (0, -1, 1), (0, 1, 0)\}$. One can verify that an arbitrary vector $v = (x, y, z) \in \mathbb{R}^3$ can be written as a linear combination

$$v = (x + z)(1, -1, 0) + 0(2, -2, 0) + z(-1, 0, 1) + 0(0, -1, 1) + (x + y + z)(0, 1, 0)$$
of the elements of \mathcal{S}. Therefore \mathcal{S} is a spanning set for \mathbb{R}^3. However, $\dim \mathbb{R}^3 = 3$, so we can replace \mathcal{S} with the smaller set $\mathcal{B} = \{(1, -1, 0), (-1, 0, 1), (0, 1, 0)\}$, which is linearly independent and therefore a basis.

- **Basis extension theorem.** If v_1, \ldots, v_m are linearly independent vectors in a finite-dimensional vector space V, either they are a basis, or we can add additional vectors v_{m+1}, \ldots, v_n to them to form a basis.

 Proof. ...
Lecture 10 (1/29/20)

• Summary. To summarize the discussion on bases and dimension, here are a few additional facts that follow as easy consequences of the results we showed:

1. The dimension is the smallest size of a spanning set.
 Proof. If there is a spanning set of size n, then as we saw from the basis reduction theorem, the dimension is $\leq n$. But if there is no spanning set of smaller size, in particular the smallest basis has size $\geq n$ and therefore the dimension is $\geq n$.

2. The dimension is the largest size of a linearly independent set.
 Proof. If there is a linearly independent set of size n, then as we saw from the basis extension theorem, the dimension is $\geq n$. But if there is no linearly independent set of bigger size, in particular the largest basis has size $\leq n$ and therefore the dimension is $\leq n$.

3. Any spanning set whose size is the dimension is a basis.
 Proof. If a spanning set is not a basis, it can be reduced to a basis, so its size must be strictly bigger than the dimension.

4. Any linearly independent set whose size is the dimension is a basis.
 Proof. If a linearly independent set is not a basis, it can be extended to a basis, so its size must be strictly smaller than the dimension.

5. If $U \subset V$ is a subspace then $\dim U \leq \dim V$.
 Proof. Take a basis for U. In particular it is linearly independent (in U, and therefore also in V) and hence is either a basis for V or can be extended to a basis of V by adding more vectors to it.

• Theorem. If $U, W \subset V$ are subspaces of a finite-dimensional vector space V, then

$$\dim(U + W) = \dim(U) + \dim(W) - \dim(U \cap W).$$

In particular, if $U + W = U \oplus W$ then $\dim(U + W) = \dim(U) + \dim(W)$.

Proof. (Important) See page 48 in the textbook.
Lecture 11 (1/31/20)

- **Linear transformations.** If V, W are vector spaces, a function $T : V \to W$ is called a *linear transformation*, or *linear map*, if it satisfies the properties

 1. For any $u, v \in V$, $T(u + v) = T(u) + T(v)$.
 2. For any $a \in \mathbb{F}$, $v \in V$, we have $T(av) = aT(v)$.

We can write a single condition that encompasses both conditions at the same time: it is easy to see that T is linear if and only if it satisfies

$$T(au + bv) = aT(u) + bT(v)$$

for any $a, b \in \mathbb{F}$ and $u, v \in V$.

The space V is called the *domain* of the linear transformation. The space W is called the *co-domain*.

Note that a linear transformation always maps the zero vector in V to the zero vector in W, i.e., it satisfies $T(0) = 0$, since $T(0) = T(0 \cdot 0) = 0 \cdot T(0) = 0$.

The set of linear transformations from V to W is denoted by $\mathcal{L}(V, W)$ (this is a vector space!). If $V = W$ we denote $\mathcal{L}(V) = \mathcal{L}(V, V)$ and refer to linear transformations $T : V \to V$ as *linear operators*.

- **Examples.**
 1. **The zero map** $0 : V \to W$ sends every vector $v \in V$ to $0 \in W$.
 2. **The identity map** $I : V \to V$ (also denoted 1) is defined by $I(v) = v$.
 3. A function $f : \mathbb{R} \to \mathbb{R}$ is linear if and only if $f(x) = ax$ for some $a \in \mathbb{R}$. So $f(x) = e^x$ for example is not linear. A first-degree polynomial $g(x) = ax + b$ is sometimes referred to as a linear function or linear polynomial, but this terminology is inconsistent with our current one so we will not use it.
 4. On the space P_∞ of polynomials (or more generally on the vector space of differentiable functions) we can define the differentiation operator $T(f) = f'(x)$.
 5. $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(x, y) = (x - 2y, 3x + y)$ is linear. This is an example of matrix multiplication, since we can write

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

We shall see that linear transformations can in general be encoded (in some sense that will be explained) by such matrix multiplication operations, and that is what ties them to systems of linear equations, which can also be written in terms of matrix multiplication.

- **Describing a linear transformation.** A linear transformation seems to contain a lot of information — all possible values $T(v)$ for all possible vectors in V — but in fact, as the following lemma shows, it is enough to specify their values on a much smaller set.
Theorem. Let v_1, \ldots, v_m be a basis for V. A linear transformation $T : V \to W$ is uniquely determined by the vectors

$$w_1 = T(v_1), w_2 = T(v_2), \ldots, w_m = T(v_m).$$

That is, for any list of vectors $w_1, \ldots, w_m \in W$ there exists exactly one linear transformation $T : V \to W$ for which $T(v_j) = w_j$ for $j = 1, \ldots, m$.

Proof. ...
Lecture 12 (2/3/20)

• **Composition/product of linear maps.** If V, U, W are vector spaces and $S \in \mathcal{L}(V,U), T \in \mathcal{L}(U,W)$, we can define a function $R : V \to W$ by

$$R(v) = T(S(v))$$

R is called the composition of the functions T and S, and denoted $R = T \circ S$. It is easy to verify that it is also a linear transformation. In linear algebra, sometimes R will be referred to as the product of the linear transformations, and denoted $R = TS$. Talking about composition in this way makes sense, since it shares the following properties with other “products”:

1. **Associativity:** $(T_1 T_2) T_3 = T_1 (T_2 T_3)$
2. **Neutral element:** $TI = IT = T$ where I is the identity map on the appropriate space (if $T \in \mathcal{L}(V,W)$ then the I in TI is $I : V \to V$ and the I in IT is $I : W \to W$).
3. **Distributivity:** $(T_1 + T_2) S = T_1 S + T_2 S$ and $T(S_1 + S_2) = TS_1 + TS_2$.

The main place where multiplication of linear maps differs from normal multiplication is:

4. **NO Commutativity:** It is not true that $TS = ST$ for all linear transformations S, T (even when both ST and TS are defined; sometimes only one of them makes sense). Here is an example where $TS \neq ST$: on \mathbb{R}^2 take $T(x, y) = (y, x)$ and $S(x, y) = (x, -y)$.

• **Null space and range.** Given a linear transformation $T : V \to W$, we can define two interesting linear subspaces:

1. The **null space** of T, denoted $\text{null}(T)$ (also sometimes called the kernel of T and denoted $\ker(T)$), is the set vectors in V that T maps to $0 \in W$:

$$\text{null}(T) = \{v \in V : T(v) = 0\}.$$

2. The **range** of T, denoted $\text{range}(T)$ (also sometimes called the image of T and denoted $\text{im}(T)$), is the set of vectors in W to which T maps some vector in V:

$$\text{range}(T) = \{T(v) : v \in V\}.$$

• **Claim:** (easy) $\text{null}(T)$ is a linear subspace of V, and $\text{range}(T)$ is a linear subspace of W.

• **Injective transformations. Definition.** $T \in \mathcal{L}(V,W)$ is called injective (or one-to-one) if for any $u, v \in V$, if $T(v) = T(u)$ then $u = v$. Equivalently, T is injective if it maps any distinct vectors $u \neq v \in V$ to distinct vectors $T(u) \neq T(v) \in W$.

• **Proposition.** $T \in \mathcal{L}(V,W)$ is injective if and only if $\text{null}(T) = \{0\}$.

 Proof. ...

• **Examples**

 1. The differentiation operator on polynomials is not injective.
2. The identity map is injective.
3. The linear map that sends a polynomial \(p(z) \) to \(z^2 p(z) \) is injective.
4. The linear map \(T(x, y) = (x - 2y, 3x + y) \) is injective.

- **Surjective transformations. Definition.** A linear transformation \(T \in \mathcal{L}(V, W) \) is called *surjective* (or *onto*) if for any \(w \in W \) there exists a \(v \in V \) such that \(T(v) = w \). Equivalently, \(T \) is injective if \(\text{range}(T) = W \), i.e., the range of \(T \) is equal to its co-domain.

- **Examples**
 1. The identity map is surjective.
 2. The differentiation operator on polynomials is surjective.
 3. The map \(T(x, y) = (x - 2y, 3x + y) \) is surjective. Given a vector \(w = (a, b) \in \mathbb{R}^2 \), we can solve the equation \(T(x, y) = (a, b) \) and obtain \(x, y \). Note that the fact that there is a solution means \(T \) is surjective; the fact that there is a *unique* solution means it’s injective.
 4. The map on polynomials that sends \(p(z) \) to \(z^2 p(z) \) is not surjective, since no polynomials of degree 0 or 1 are in its image.