Math 67: Modern Linear Algebra (UC Davis, Winter 2020) — Summary of
lectures

Dan Romik

[Version of March 14, 2020— this document will be periodically updated with new material]

Lecture 1 (1/6/20)

e High-level description of course goals: 1. linear algebra theory; 2. linear algebra computa-
tional skills; 3. introduction to abstract math.

e Today’s topic: introduction to linear algebra. Conceptually, linear algebra is about
sets of quantities (a.k.a. vectors) that are associated with each other by a “linear” rela-
tionship, and how to manipulate them, classify the nature of such relationships, and solve
equations to determine one set of quantities given another.

Practically speaking, a lot of the calculations will reduce to solving a system of linear
equations. An equation is called “linear” if all the terms on both sides of the equation have
the form “a number times one of the unknowns” or “a number”. E.g., if x and y are the
unknowns, you cannot have the term 10zy or —5x2 (let alone more complicated things like

Vv, €*, sin(z + y) etc.).

e What is linear algebra good for? Almost everything in math, science, engineering. A
few examples:

— 3D graphics

— Filters (Instagram, Photoshop etc). Also for music and sound processing and to filter
other sources of data (such as in astronomy, medicine, nuclear physics, ... ).

— Antialiasing of text on a phone or computer screen to make it look nice.

— Analyzing card shuffling, genetic drift and other random processes with many states
(Markov chains)

Neural networks, the mathematics of Machine Learning, Al

Multivariate calculus, optimizing functions of many variables

— Search engine ranking algorithms

Stability analysis in control theory (think robots, rockets, airplanes)

Understanding fun things in math and physics such as the moving sofa problem and
the Dzhanibekov effect (aka tennis racket theorem)

— ...and many more applications.

e Example 1. A baker needs one egg and 3 ounces of flour to make a muffin, and 2 eggs
and 2 ounces of flour to make a croissant. Given 20 eggs and 28 ounces of flour, how many
muffins and croissants can the baker make, assuming all eggs and flour are used?


https://youtu.be/1VPfZ_XzisU

Solution. Let  denote the number of muffins, and y the number of croissants. The question
translates to the equations
r + 2y = 20
{ 3z + 2y = 28

We can solve this using the “substitution” method:

r+2y=20 = x=20—-2y = 3(20 —2y) +2y =28
— 4y =60-28=32 — y=8 — z—4

Or we can solve by “eliminating variables”, i.e., subtracting a multiple of one equation
from the other to get an equation with a single variable. For example, subtracting the first
equation from the second gives

20 =8 = x =4,

which then easily leads to y = 8 after substituting the value for z in either of the equations.

Abstract algebraic formulation. Represent the system of equations given above sym-
bolically in the form

A-v=u,
1 2

3 2
by a vector”, a weird form of multiplication defined by

(e o) (5)=(ati)

To solve this, we simply need to “divide both sides (from the left) by A”. What does it
mean to “divide” by a matrix? We will learn that there is a special matrix, denoted A~!
and called the “inverse” matrix of A, that has the property that

where A = ( >, v = ( Z ), u= < ;g > and “” refers to “multiplication of a matrix

A (Av)=AT1 A v=D v =u,

(here, we need to extend the concept of multiplying a matrix by a vector to multiplying a
matrix by a matrix; we also need to show “associativity”, i.e. that the order in which we
multiply doesn’t change the result). So, the original equation translates to

v=A"1. u

If we knew A~!, we would be able to compute v by carrying out the multiplication. In this
case,

as before.



e Geometric formulation. Each of the two equations represents the equation for a line in
the plane. Finding the solution corresponds to finding the point in the plane which is at
the intersection of the two lines. In the example above, we had a unique solution, but this
geometric way of looking at things tells us that it’s also possible to have no solutions (in
the case when the two lines are parallel but non-intersecting), or to have infinitely many
solutions (if the two lines are identical). In general, “solving” a linear system of equations
means “giving a simple description of the set of solutions” (which may be empty, or contain
a single point, or be infinite).

e Linear functions and linear transformations. Yet another way of thinking about the
equation, that we will explore in more detail later on in the course, is that the “operation”
that takes a two-dimensional vector v and returns the new vector A - v is a special kind of
operation which we call a linear transformation — it acts on the two-dimensional plane in
an interesting way, e.g., by stretching it, rotating it, reflecting it (but not bending it — that
is why it is called “linear”). Solving the equation corresponds to finding the unknown point
v in the plane that is transformed to the given (known) point u under the transformation.
If we find good ways of visualizing linear transformations or understanding what are the
different ways in which they can act, that will help us in solving linear systems.

e Example 2. The Google PageRank algorithm. In a simplified model of the internet,
there are only 2 websites, (say) Facebook and Twitter. Facebook has 5 links pointing to
itself and 2 links to Twitter. Twitter has 2 links to Facebook and 8 to itself. Which site is
more important (and should therefore be placed higher up in a search result presented by
Google)?

Solution. The Google PageRank web page ranking algorithm (named after its inventor,
Larry Page!) assigns importance to web pages according to the self-referential rule:

A web page’s importance is proportional to the weighted average of the number of
links pointing to it from all web pages, with each page being weighted according
to its own importance.

(This rule can also be applied to other things, for example to the ranking of social status
of people: i.e., you are popular in your social group in proportion to how many friends you
have, but only to the extent that your friends are themselves popular...).

The fact that the rule is self-referential, defining “importance” in terms of that involve the
same term we are trying to define, is why we are led to having to solve a system of equations
(as opposed to just having a plain formula that directly cranks out the importance in terms
of the data that’s given to us).

In the case of our model internet, let = denote the relative importance of Facebook and y
denote the relative importance of Twitter, then the rule above leads to the equations:

r + y = 1
br + 2y = zx
20 + 8y = z2y

where z is an additional unknown which represents an arbitrary positive proportion constant.
The first equation is what I mean by relative importance — the numbers z,y add up to a
“total importance” of 1.



It’s important to note that if z is taken into account, then this is a non-linear system of
equations. However, due to their special structure such equations are still considered a part
of linear algebra. The reason is that if we are magically given the value of z by someone
with advanced knowledge (in this case z = 9), the system becomes a linear system and can
be solved with the usual methods:

r + y = 1 r + y =1 _
5x+2y=9x:>4x+2y=0=>{3i+y:1
20 + 8y = Yy 2% — y = 0 =

so we finally get z = 1/3,y = 2/3.

We will learn later in the course how to deal with finding the value of z in such a situation.
This will lead to certain polynomial equations (a higher-order generalization of the linear
and quadratic equations we are familiar with).



Lectures 2 (1/8/20) and 3 (1/10/20)

e Coefficients. In linear algebra we study systems of linear equations. The numbers appear-
ing in these equations are known as coefficients.

e Number systems and number fields. In elementary applications the coefficients are
ordinary real numbers (in fact, usually they are rational numbers). However, it turns out
that the algebraic rules for manipulating numbers (by adding, subtracting, multiplying
them, etc.) that we rely on for linear algebra are not unique to real numbers. There
are other number systems that satisfy the “good” properties that are necessary in linear
algebra. It makes sense to abstract away those properties for a “good number system”. In
higher mathematics such a system of numbers is called a field. In this course we will focus
mainly on the real numbers and complex numbers, but it’s interesting to keep in mind that
other number fields also arise in real-life applications (notably in computer science, where
an important field is the “field with 2 elements” consisting of the numbers 0 and 1), and
that essentially all the linear algebra theory we’ll develop carries over to that more general
setting as well, with little or no modification.

e Complex numbers. One of the nicest fields there are (we still haven’t defined what a field
is, but don’t worry about that for now) is that of the complex numbers. They are numbers
of the form

z=a+ b,

where ¢ is a hypothetical construct, a symbol representing one of the two square roots of
—1. The other square root of —1 is —i, since if i> = 1 then

(~)* = (=1) i+ (=1) i = (<12 = 1. (=1) = (~1).

e Let’s be a bit more formal:

Definition. The set of complex numbers is the set, denoted C, of pairs (a, b) of real numbers,
with the convention that instead of writing (a, b) in the usual vector notation from calculus,
we write it in the form a + bi. Formally, we can express this definition as

C={a+bi : a,beR}.

If 2 = a+ bi is a complex number, a,b € R, we call a € R the real part of z, and we call b
the imaginary part of z. We denote a = Rez and b = Im z. We can think of the complex
number a + bi geometrically as a vector with two coordinates a (the z-coordinate) and b
(the y-coordinate).

e Algebraic operations on complex numbers. What makes C a field? As a set of
numbers, it is not much different than the two-dimensional plane R?, except that the vector
(a,b) is written as a + bi. The key to looking at C as a field is to consider also its algebraic
properties. It turns out that there is a way to define algebraic operations of addition,
subtraction, multiplication and division on complex numbers, and these operations satisfy
the “good” properties that we require in a field.



1. Addition of complex numbers. If z = a + bi and w = ¢ + di are two complex
numbers, we define their sum by

z+w=(a+c)+ (b+d)i

2. The negative of a complex number. If z = a+bi is a complex number, its negative
is
—z=—a—b

3. Subtraction of complex numbers. The difference of two complex numbers z = a+bi
and w = ¢+ di is defined as
z—w=z+(—w)

4. Multiplication of complex numbers. The product of two complex numbers z+a+bi
and w = ¢+ di is defined by

z-w = (a+bi)(c+di) = (ac — bd) + (ad + bc)i

5. The reciprocal of a complex number. The reciprocal of a complex number z =
a + bi is defined, assuming z # 0, by
N ;
I R

6. Division of complex numbers. The quotient of two complex numbers z = a + bi
and w = ¢+ di is defined if w # 0 by

e Examples. (fill in the answers)

(3 +51) + (10 — 24)
(3 + 5i) — (10 — 2)
(3+5i)-4
4 (3 + 59)
(3+45i)- (1+4) =
(1+1)?
(1+i)! =
(1+i)~t=
2—-i)~" =

2

142

(1+1)- (1+1) =

e Properties of addition. Theorem: For any complex numbers z, z1, 22, 23, the following
properties are satisfied:

1. (“Commutativity”) z1 + 22 = 22 + 21



2. (“Associativity”) (21 + ZQ) +23 =214 (22 + 2’3)
So, in fact, the parentheses are not needed and we will usually omit them in the future,
writing this expression simply as z; + 22 + 23.

3. (“Neutral element”) 2+ 0=04 2 =z
4. (“Additive inverse”) z + (—z) =0

Proof: ...
e Properties of multiplication. Theorem: For any complex numbers z, z1, 29, 23, the
following properties are satisfied:
“Commutativity”) z1 - 29 = 29 - 21
“Associativity”) (z1 - 22) - 23 = 21 - (22 - 23)

1. (

2. (

3. (“Neutral element”) z-1=1-2 =2

4. (“Multiplicative inverse”) If z # 0 then z~! is defined and z- 2~ = 1
5. (

“Distributivity”) 2z - (22 + 2’3) =212+ 2123
Proof: ...

e The conjugate of a complex number. If z = a + bi is a complex number, we define its
conjugate to be the number a — bi, denoted by z:

Z=a-—0bi

Geometrically, taking the conjugate corresponds to reflecting the vector associated with z
across the x-axis.

Why is the conjugate element interesting? Let’s see what happens when we multiply z
and Z:

2-Z = (a+bi)(a — bi) = (aa — b(=b)) + (a(=b) + ba)i = (a* + b*) +0-i = a® + V*

The product is always an ordinary real number, equal to a® + b2. In particular, we see
that if we take the conjugate and divide it by this real number a? + b? (which is allowed if
a? 4+ b2 #£0, ie., if z # 0), we get a number w with the property that w - z = 1. This is
simply the reciprocal of z. So, we have rederived the formula for the reciprocal element:

—1 1 a b

T2+ T2+ @+ 6

z

e Properties of conjugation. Theorem: For any complex numbers z,z1,20 € C, the
following properties hold:

1. 21+ 20=21+72

o

2122 =21"%22
3. 27 1=3@)tif 2 #£0

4. z =7 if and only if Im(z) = 0 (i.e., if 2z is a real number)



5. 2=z

6. The real and imaginary part of z can be written as
Re(z) = 3(2 + 2), Im(z) = 5(z — %)

e The modulus of a complex number. The quantity a® 4+ b> has a simple geometric
meaning as well. By the Pythagorean Theorem, the distance from 0 to z = a + bi is equal
to va? + b2. We call this the modulus of the number z, and denote it by |z|:

|z| = Va? + b2

(if z is a real number, it is simply the usual absolute value of z). This quantity is also known
as the norm, magnitude, or length of z (especially in the general context of vectors, not
complex numbers). To summarize the above discussion, we have the identities:

z-Z =|z|?,
-1_ %
e

e Properties of the modulus. Theorem: for any complex numbers z, z1, zo € C, we have
the properties:

a1z =z - 2|

cz1/z2| = |21l /|z2 if 22 # 0

- |zl =4

. [Re(2)| < 2] and |Im()] < |2]

(“triangle inequality”) |z1 + zo| < |21| + |22]

=W N =

A

(triangle inequality reformulated) |z; — 22| > ‘|zl| - |22|‘

Proof: ...



Lecture 4 (1/13/20)

e Polar representation of complex numbers. The usual representation z = = + yi of
complex numbers tells us where the vector z lies in the plane in terms of the usual Cartesian
coordinates. An alternative representation is in terms of the polar coordinates, where we
give the length r of the vector and its angle 6 (measured in the anti-clockwise direction)
relative to the z-axis. The numbers (r, ) are called the polar coordinates of z. They satisfy
r>0and 0 <6 < 27, and 0 is only defined if z # 0.

From elementary trigonometry, it is easy to see that r, 8 are related to x,y by

T =rcost

y =rsind

r= |z +yi| = Va2 + y?
6 = “the angle function” of (z,y)
(there is no standard notation for this; sometimes “arg z” is used, and the angle

may be referred to as the “argument” of z).
To summarize, the complex representation of z is usually written in the form
z=r(cosf +isinf)
e Multiplication in polar coordinates. Let’s see what happens when we try to multiply
two complex numbers z, w that are given in polar coordinates:

z =ry(cos by +isinb;),

w = 12(cos Py + isin by),

Z-wW =TTy [(cos 61 + isinfy)(cos by + isinby)
=7riry [(cos 01 cos 03 — sin 61 sin f2) + (cos 0 sin By + cos O sin 91)4

Because of the trigonometric formulas for the cosine and sine of a sum of two angles, we see
that this can be written as

z-w = (r1re) (cos o + isin av)

where a = 61 + 6. We have proved:

Theorem. The product of two complex numbers is the complex number whose modulus is
the product of the moduluses of the two numbers, and whose angle is the sum of the two
angles.

(Note that the sum of the two angles may be bigger than 27, so we need to subtract 27 to
get back to the usual polar representation.)

e Powers of complex numbers. From this multiplication rule, it is easy to understand the
geometric effect of raising a complex number to the nth power (where n is a positive integer,
i.e. the square, cube, fourth power of a number etc.):

z=r(cosf +isinf) = 2" =r"(cosnb + isinnh)



The modulus gets raised to the nth power, and the angle gets multiplied by n. Note that
in Cartesian coordinates the meaning of exponentiation is much less obvious or intuitive,
demonstrating the usefulness of polar coordinates.

One interesting observation that we will need for the proof of the Fundamental Theorem
of Algebra is: as z goes in a circle of radius r around 0 (the angle increases continuously
from 0 to 27), its image under the nth power function z™ goes n times around the circle of
radius r™.

e Roots of complex numbers. The inverse operation to the nth power is extracting an
nth root. If z = r(cos# + isinf), its nth root is given by

Yz = {r(cos(0/n) + isin(0/n)),

i.e., we divide the angle by n instead of multiplying. However, in this case there is more
than one solution, since we can also add to the angle any number which, when multiplied
by n, gives an integer multiple of 2.

Theorem. If z = r(cosf + isinf) # 0 and n is a positive integer, the nth roots of z are
the n distinct numbers

rl/”<cos<0+2ﬂ€>+isin<6+2ﬁk>), k=0,1,2,...,n—1
n n

e Examples.

— The square roots of —1 are cos(7/2) +isin(n/2) = ¢ and cos(37/2) +isin(37/2) = —i.
The fourth roots of 1 are 1, —1, 14, —1.

The cube roots of 2 are

V2(cos(0) + isin(0)) = V2,

—14+/3i
2
-1 —+/3i
—

V2(cos(2m/3) + isin(27/3)) = V2
V2(cos(4m/3) + isin(4r/3)) = V/2 -

The square roots of 14 i = v/2(cos /4 + isin7/4) are the numbers

w = V/2(cos /8 + isin/8)
—w = V/2(cos 97 /8 + isin 97/8)
e Polynomial equations. Extracting an nth root is a special case of solving a polynomial

equation:
z=w = "=w <= "—w=0 < p(z) =0

where p(z) = 2" — w.

e Constant polynomials. A constant function p(z) = ¢ is called a constant polynomial or
polynomial of degree 0. The equation p(z) = 0 has no solution if ¢ # 0, or if ¢ = 0 then any
value of z is a solution.

10



e Polynomials of degree 1. A function of the form p(z) = az + b is called a polynomial of
degree 1. Assuming a # 0 (since if a = 0 this is just a constant polynomial in disguise), the
equation p(z) = 0 has the unique solution z = —b/a.

e Quadratic polynomials. A function of the form p(z) = az? + bz + ¢ is called a quadratic
polynomial, or a polynomial of degree 2. Assuming a # 0, the ancient Babylonians figured
out (around 2000 BC) how to solve the equation p(z) = 0, arriving at the famous formula

—b+Vb? — dac
2a '

Z12 =

Of course, if b?> —4ac is a negative real number, the equation has no solution in real numbers,
but it does have solutions in complex numbers.

e Cubic polynomials. A function of the form p(z) = az® + b2% + cz + d is called a cubic
polynomial, or a polynomial of degree 2. The general solution of the cubic was found around
the year 1530 by the Italian mathematicians del Ferro, Tartaglia and Cardano. This was
the original motivation for the definition of complex numbers, since the solution involved
extracting cube roots, which sometimes involved complex numbers even when the final
answer for the roots was comprised of just real numbers.

e Quartic polynomials. A polynomial of degree 4 is called a quartic. The equation p(z) =0
for a quartic was solved by the Italian mathematician Ferrari around 1540.

e General polynomial. If n is a positive integer and ag, a1, ..., a, are complex numbers,
the function
p(z) =az" + 02" fe" b+ P gzt b

is called a polynomial of degree n. A number z that solves the equation p(z) = 0 is called
a root of the polynomial.

e The Fundamental Theorem of Algebra. A fundamental fact about polynomial equa-
tions is the following famous result, first proved by the famous German mathematician Karl
Friedrich Gauss in 1799.

Theorem (The Fundamental Theorem of Algebra). Every polynomial equation p(z) = 0
has a solution over the complex numbers.

This result has many different proofs (one full proof can be read in the textbook). We
will describe Gauss’s original proof, which was incomplete since it relied on a “topological”
argument that was not understood rigorously at the time (but has been explained since,
though understanding it requires more advanced knowledge of topology that we will not
discuss).

Gauss’s proof. We may assume that p(0) # 0, since otherwise we have a root z = 0 and
there is nothing to prove. Also assume that the polynomial is monic, i.e., the coefficient of
2™ is 1 (otherwise, if it is not 1, simply divide by the coefficient a,, to obtain a new coefficient
with a leading coefficient of 1 with the same roots).

Denote w = p(0). Now observe that:

11



1. as z goes in a circle of very small radius r around 0, since p(z) is a continuous function,
the value p(z) will traverse some closed curve that stays very close to w. In particular,
such a closed curve cannot go around 0 (since w is some fixed distance from 0).

2. On the other hand, as z goes around a circle of very large radius R around 0, the
polynomial p(z) should behave more and more like the power function ¢(z) = 2", since

p(z) = 2"+ az" " p et gzt h
a b h
:z”(1++2+...+ J_4 >,
z oz z

n—1 27

and all of the terms except the first are very small in magnitude (since |z| = R is very
large).

In particular, the image of p(z) as z goes around a circle will be a curve that travels n
times around 0 in a counter-clockwise direction (it is like a circle with various “wiggles”
and fluctuations from the “go in a circle n times around 0” image of a circle under the
power function z").

3. The conclusion is that as we vary the radius of the circle from being a very small
number “r” to being a very large number “R”, the image p(z) goes from being a closed
curve that doesn’t go around the origin to being a closed curve that travels precisely n
times around the origin. Thus, at some point during this process, the curve must cross
0. If you don’t believe this, try taking a rubber band and making it go around a nail
in the wall, without tearing it up, and without the projection of the rubber band into
the plane of the wall crossing the nail at any point. It can’t be done!

For more details on this and other proofs of the Fundamental Theorem of Algebra, see
http://en.wikipedia.org/wiki/Fundamental theorem of algebra

Polynomial roots and factoring. Lemma. a is a root of the polynomial p(z) if and
only if p(z) can be written in the form

p(z) = (z —a)q(z)
where ¢(z) is a polynomial of degree 1 lower than p.
The Fundamental Theorem of Algebra, reformulated. Thanks to the lemma, we can

reformulate the FTA as follows: If p(z) is a complex polynomial of degree n, then it can be
written as

p(z)=clz—a1)(z—az)...(z —ay)
for some (not necessarily distinct) complex numbers ay, ag, . .., ay.

Proof. Take some root a1, and write p(z) = (2 — a1)q(z) where ¢(z) is of degree n — 1. Now
repeat the same process for ¢(z), getting a second root ag, etc., until we get to the form of
a product of n factors z — a; times a constant polynomial.

Division of polynomials with remainder. If f(z) and g(z) are two polynomials, we
can do a “long division” of f(z) by g(z) and get a “quotient” and a “remainder”, i.e., two
polynomial ¢(z) and r(z) such that

f(z) = 9(2)q(z) +7(2),

12



and r(z) is of lower degree than g(z). The polynomials ¢(z) and r(z) are determined
uniquely.

Example. Will be given in the discussion section.

Proof of the lemma. Proof of the “only if” claim: If p(z) = (2 — a)q(z) then of course
p(a) = (a —a)q(a) = 0, so a is a root of p(z). Proof of the “if” claim: if p(a) = 0, we can
divide p(z) by the polynomial z — a (which is of degree 1), to get

p(z) = (z —a)q(z) +7(2),

where r(z) is a polynomial of degree 0, i.e., a constant polynomial. But since p(a) = 0, we
get
0=p(a) = (a—a)q(a) + r(a) = r(a),

so in fact r(2) is the 0 polynomial, and p(z) = (z — a)q(z), as claimed.

13



Lecture 5 (1/15/20)

e Vector spaces. The abstract setting for systems of linear equations is a structure called
a vector space (also called a linear space). This is a collection of objects (referred to as
“vectors”) that can be added to each other, and can be multiplied by a (real or complex)
scalar. The prototypical examples of vector spaces are

Rn:{(xl,xg,...,xn) : IE1,...,.an€R}7
C" = {(21,22,...,2p) © T1,..., 25 € C},

e Definition of a vector space. Let I represent either the set of real numbers R or the set
of complex numbers C. A vector space (called a real vector space if F = R or a complex
vector space if F = C) is a set V on which are defined two operations “addition” and “scalar
multiplication”; addition is defined on pairs of vectors, and scalar multiplication is defined
between a scalar (an element of F) and a vector. The operations must satisfy the following
properties:

u~+v=v+u for any u,v € V.

(u4v)+w=u+ (v+w) for any u,v,w € V.

.a-(b-v)=(a-b)-vforany a,beF, veV.

. There exists an element 0 € V such that v+ 0=0+v=wvforallv e V.

. For every v € V, there exists an element u € V' such that v +u = 0.

.l-v=vforanyv eV

e IR = T, SO GUR R

a-(u+v)=a-u+a-vand (a+b)-u=a-u+b-uforanyabelF, uveV.
e Examples.

1. T is itself a vector space where scalars are also considered as vectors.

2. F* = {(z1,...,2p) : z; € Fforj =1,...,n} — the “standard”, or “canonical”,
n-dimensional real/complex vector space.

3. R® = {(z1,22,...) : x;j € Rfor j =1,2,...} — an “infinite-dimensional” version of
R™ (note that we haven’t defined what “dimension” means just yet, but we will).

4. The space of polynomials of degree n:
Po={f:R=R : f(z)=an2" +ap 12" " +... + a1 + ap}

5. The space of all polynomials (of any degree).
6. The “trivial” space V = {0}.

7. The space of solutions to a system of linear equations... (more on this later).

14



Lecture 6 (1/17/20)

e Properties of vector spaces.

Proposition 1. The additive neutral element is unique. Proof. ...
Proposition 2. The additive inverse element is unique. Proof. ...

Proposition 3. 0v =0 for all v € V. (Note: the 0 on the left is the scalar 0; the 0 on
the right is the vector 0. Mathematicians often like to confuse you by using the same
symbol to mean two different things!) Proof. ...

Proposition 4. a0 = 0 for any a € F. Proof. ...

Proposition 5. (—1)v = —v for any v € V' (here, —v is the notation for the negative
inverse element of v, guaranteed to exist by property 5 in the definition of a vector
space). Proof. ...

e Subspaces. A (vector/linear) subspace is a subset of a vector space which also happens to
be by itself a vector space, with the same operations of addition and scalar multiplication.

e Subspace criterion. To check that a subset U C V of a vector space V is a subspace,
one does not need to check all 7 properties in the list, which is tedious. Instead we have an
easier criterion:

Lemma. U C V is a subspace if and only if the following conditions hold:

1.
2.
3.

0eU.
(“closure under addition”) If u,v € U then u +v € U.

(“closure under scalar multiplication”) If a € F, u € U then au € U.

Proof. ...

¢ Examples.

1.

Usmallest = {0} C V and Ulargest = V' C V' are both subspaces, respectively the smallest
and largest possible subspaces of V.

2. {(z,0) : x € R} is a subspace of R%.

. The space P, of real polynomials of degree < n is a subspace of the vector space of all

real polynomials. The space of all polynomials p of degree < n such that p(5) =0is a
subspace of that subspace.

The set of solutions of a homogeneous system of linear equations in k£ unknowns is a
subspace of R¥.

5. The union of the z- and y-axes is not a subspace of R?.

. If Uy, Uy are both subspaces of a larger vector space V', then their intersection Uy N Us

is also a subspace.

e Creating new spaces from old. There are several ways to get new vector spaces from
existing ones:

1.

Subspaces (described above)
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2. The intersection of subspaces
3. The sum of subspaces

4. The linear span of a collection of vectors

We describe these constructions next.
e Intersection of subspaces. The intersection U; N Uy of subspaces of a vector space V is

also a vector space, in fact quite a natural one since it is the largest subspace of V' contained
in both Uy and Us.
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Lecture 7 (1/22/20)

e Sum of subspaces. Going in the opposite direction, given subspaces Uy, Uz, we might ask
what is the smallest subspace of V' that contains both Uy and Us? The answer is not the
union of the subspaces, since that is not a subspace, but a new subspace called the sum of
U1 and U2

Definition. The sum of U; and U, is the set
Ui+ U ={u; +ug : uy €Uy, ug € Us}
It is easy to check that U; 4 U, is itself a subspace of V', and contains U; and Us.
e Example. If U; = {(2,0,0) : z € R}, Uy ={(0,9,0) : y € R} then
Uy +Us ={(x,9,0) : z,y € R}

If we change Us to U = {(y,y,0) : y € R} (a different subspace), the sum U; 4+ U} remains
the same as U; + Us before.

e Direct sum. The sum Uy + Us is called a direct sum, and denoted Uy @ Us, if we require
the further property that each v € Uy + Us can be written in a unique way as a sum of the
form v = u1 + uo, where uq € Uy, ug € Us.

Lemma. If Uy,U; C V are subspaces, and W = U; + Us, then the following conditions are
equivalent:

(1) W=UaU,
(2) If 0 = uy + ug for some uy € Uy, ug € Uy, then uj = ug = 0.
(3) UnNU; = {0}

Proof. It would be enough to prove that: (1) = (2); (2) = (1); and (3) = (1). ...
e Example. Define

Ul = {(CL‘,y,O) € RB T,y € R}a
Us = {(0,0,2) € R® 2z € R},
Us = {(0,w,2) € R® w,z € R}.

Then R3 = U; @ Us, but R? = U; + Us is not a direct sum.
o Example. Define
Py ={p(z) =az® +bx® +cx+d : a,b,c,d € R},
the vector space of polynomials of degree < 3 with real coefficients. Define

Ulz{p(ZE)EP3 : p(()):()}7
Uy ={p(z) =az’ +bx* +cx +d € Py : a =0}

Then P3 = U; + Uz (a small exercise: check this), but it is not a direct sum.
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Lecture 8 (1/24/20)

e Linear combinations. Let V be a vector space over F. If v, v, ..., v, are vectors in V,
an expression of the form
a1v1 + agv2 + ... + @MU,

where a1, ..., a, are scalars from F, is called a linear combination.

e Linear span. If vy,...,v, are vectors in a vector space V, define the linear span of
V1y...,Um as

span(vi, ..., vm) = {a1v1 + ...+ apvm : a1,...,am € F},

i.e., the span is the set of all linear combinations of vy, ..., vp,.
Lemma. The span of vq,...,v, is a subspace. Furthermore, it is the smallest possible
subspace that contains vy, ..., v, (more precisely, what this means is that if U C V is any
subspace that contains vy, ..., vy, then span(vy,...,vy) C U).

Proof: This is similar to the property of a sum of subspaces mentioned above. In fact, an
equivalent way to define span(vy, ..., v,) would be to write it as

span(vi, ..., vm) =Vi+Vo+ ...+ Vi,
where V; = {tv; : t € F} is the subspace consisting of v; and all its scalar multiple

(geometrically, V; is a line through 0 and v;).

Finite and infinite dimension. If V' is a vector space, we say that it is finite-dimensional
if there are vectors vy,...,v,, € V such that V = span(vy,...,v,). Otherwise, we say V is
infinite-dimensional, i.e., if it is not spanned by a finite set of vectors.

If V.= span(vy, ..., Un), does it make sense to say that V has dimension m? No, since there
may be many spanning sets, not all of them containing the same number of elements. But
we will soon figure out the right way to define the actual dimension.

Examples. F” is finite-dimensional since it is spanned by
er = (1,0,...,0),ea = (0,1,...,0),...,v, = (0,0,...,1).

Similarly, the space P, of polynomials of degree < n is finite-dimensional; it is spanned
by the monomials 1, z,...,2". The space of all polynomials of arbitrary degree is infinite-
dimensional (proof: ...).

e Linear independence. Definition. The vectors vi,...,v,, € V are called linearly inde-
pendent if whenever we have
aiv1 + ... amUm =0

it follows that a; = a9 = ... = a,,, = 0. Le., the only linear combination of vy, ..., v,, that
equals the zero vector is the obvious one with all coefficients equal to 0. If the vectors are
not linearly independent, they are called linearly dependent.

Examples.
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1. The vectors ey, ..., e, mentioned before as a spanning set for R™ are linearly indepen-
dent. Proof: ...

2. The vectors vy = (1,1,1),v3 = (0,1,—1),v3 = (1,2,0) in R? are linearly dependent.
To see this, we look for coefficients aq, as, ag such that ajv1 + agvy + azvs = (0,0,0).
This leads to a system of linear equations. It is not difficult to find that it has the
solution (a1, az,a3) = (1,1, —1) (as well as any scalar multiple of this solution).

Lemma. vy, ..., v, are linearly independent if and only if every vector v € span(vy, ..., vy)
can be written in a unique way as a linear combination of vy, ..., Up,.
Proof. ...

e Linear dependence means the spanning set can be made smaller. Lemma. If
vectors vy, ...,Un in a vector space V are linearly dependent, then there is an index 1 <
7 < m such that

1. vj € span(vy,...,vj—1) (here, if j = 1 this statement should be interpreted as saying
that v = 0).
2. span(vi,...,Uj,...,Uy) = span(vi,...,Vy), where U; means that v; is omitted from
the list.
Proof. ...
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Lecture 9 (1/27/20)

e A spanning set which is linearly independent is minimal. The lemma above could
actually be formulated as an “if and only if” statement. The easy converse (“only if”) part
says that if the vectors are linearly independent, then removing any of them from the list
makes the span a strictly smaller subspace. The following theorem makes a much stronger

claim:
Theorem. If vectors vy, ..., v, in a vector space V are linearly independent, then for any
vectors wy, . . ., Wy, if they span V' (i.e., if V' = span(wy, ..., wy,)) then n > m.

Proof. (Important) See pages 43-44 in the textbook.

e Bases. We now get to the important concept of a basis. Definition. A sequence of vectors
V1,...,Un in a finite-dimensional vector space V is called a basis if the vectors are linearly
independent and V' = span(v1, ..., vpn).

e Dimension. By the theorem above, all bases have the same size (any spanning set has at
least as many elements as any linearly independent set; a basis has both properties so we’ll
get an inequality in both directions), so we can use it to define the dimension. Definition.
The dimension of a finite-dimensional vector space V' is the size of any basis (and therefore
all bases) of V.

e Is this a good definition? Note that we haven’t yet proved that any finite-dimensional
space has even one basis, which leaves the theoretical possibility of a finite-dimensional
vector space whose dimension is undefined. This problem is remedied by the following
theorem:

Basis reduction theorem. If V = span(vy,...,v,) then either vy, ..., vy, is a basis of V'
or some vectors can be removed from the list to obtain a basis for V.

Proof. Successively remove any v; which is in the span of the ones preceding it in the list.
Each such removal does not change the span. Eventually we end up with a spanning set in
which no vector is in the span of the ones preceding it, and by the lemma above that set
must be linearly independent, hence it is a basis.

e Corollary. Every finite-dimensional vector space has a basis, since it has a spanning set
(by the definition of finite-dimensionality) which, by the theorem above, can be thinned to
give a basis.

e The dimension is well-defined. If V is finite-dimensional, it has a basis, therefore its
dimension is defined.

e Examples

1. e1,...,e, form a basis for R™.

2. The polynomials 1, z,22,..., 2" are a basis for the space P, of polynomials of degree
at most n.

3. Let S = {(1,-1,0),(2,-2,0),(-1,0,1),(0,—1,1),(0,1,0)}. One can verify that an
arbitrary vector v = (x,%,2) € R? can be written as a linear combination

v=(zx+2)(1,-1,0)+0(2,-2,0) + 2(—1,0,1) + 0(0,—1,1) + (z + y + 2)(0, 1,0)
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of the elements of S. Therefore S is a spanning set for R3. However, dim R? = 3, so we
can replace S with the smaller set B = {(1,—1,0),(—1,0,1),(0,1,0)}, which is linearly
independent and therefore a basis.

e Basis extension theorem. If vy,...,v, are linearly independent vectors in a finite-
dimensional vector space V, either they are a basis, or we can add additional vectors
Um41, - - -, Un, t0 them to form a basis.

Proof. ...
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Lecture 10 (1/29/20)

e Summary. To summarize the discussion on bases and dimension, here are a few additional
facts that follow as easy consequences of the results we showed:

1.

The dimension is the smallest size of a spanning set.

Proof. If there is a spanning set of size n, then as we saw from the basis reduction
theorem, the dimension is < n. But if there is no spanning set of smaller size, in
particular the smallest basis has size > n and therefore the dimension is > n.

. The dimension is the largest size of a linearly independent set.

Proof. If there is a linearly independent set of size n, then as we saw from the basis
extension theorem, the dimension is > n. But if there is no linearly independent set of
bigger size, in particular the largest basis has size < n and therefore the dimension is
<n.

. Any spanning set whose size is the dimension is a basis.

Proof. If a spanning set is not a basis, it can be reduced to a basis, so its size must
be strictly bigger than the dimension.
Any linearly independent set whose size is the dimension is a basis.

Proof. If a linearly independent set is not a basis, it can be extended to a basis, so its
size must be strictly smaller than the dimension.

. If U C V is a subspace then dimU < dim V.

Proof. Take a basis for U. In particular it is linearly independent (in U, and therefore
also in V') and hence is either a basis for V or can be extended to a basis of V' by
adding more vectors to it.

e Theorem. If U, W C V are subspaces of a finite-dimensional vector space V', then

dim(U + W) = dim(U) + dim(W) — dim(U N W).

In particular, if U + W = U @ W then dim(U + W) = dim(U) + dim(W).
Proof. (Important) See page 48 in the textbook.
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Lecture 11 (1/31/20)

e Linear transformations. If VW are vector spaces, a function T': V — W is called a
linear transformation, or linear map, if it satisfies the properties
1. For any u,v € V, T(u+v) = T(u) + T(v).
2. For any a € F, v € V, we have T'(av) = aT(v).

We can write a single condition that encompasses both conditions at the same time: it is
easy to see that T is linear if and only if it satisfies

T(au+bv) =aT(u) +bT(v)

for any a,b € F and u,v € V.

The space V is called the domain of the linear transformation. The space W is called the
co-domain.

Note that a linear transformation always maps the zero vector in V' to the zero vector in
W, i.e., it satisfies T'(0) = 0, since T'(0) =T(0-0) =0-T7(0) = 0.

The set of linear transformations from V' to W is denoted by £(V, W) (this is a vector space!).
If V=W we denote L(V) = L(V,V) and refer to linear transformations 7" : V. — V as
linear operators.

e Examples.

1. The zero map 0: V — W sends every vector v € V to 0 € W.
2. The identity map [ : V — V (also denoted 1) is defined by I(v) = v.

3. A function f : R — R is linear if and only if f(z) = ax for some a € R. So f(z) =e”
for example is not linear. A first-degree polynomial g(z) = ax +b is sometimes referred
to as a linear function or linear polynomial, but this terminology is inconsistent with
our current one so we will not use it.

4. On the space P, of polynomials (or more generally on the vector space of differentiable
functions) we can define the differentiation operator T'(f) = f'(z).

5. T : R? — R? given by T(x,y) = (z — 2y, 3z +y) is linear. This is an example of matrix
multiplication, since we can write

T 1 -2 x
T = .
(3)-(7)-(0)
We shall see that linear transformations can in general be encoded (in some sense
that will be explained) by such matrix multiplication operations, and that is what

ties them to systems of linear equations, which can also be written in terms of matrix
multiplication.

e Describing a linear transformation. A linear transformation seems to contain a lot of
information — all possible values T'(v) for all possible vectors in V' — but in fact, as the
following lemma shows, it is enough to specify their values on a much smaller set.

23



Theorem. Let vy,...,v, be a basis for V. A linear transformation 7" : V' — W is uniquely
determined by the vectors

w1 =T(vy),we =T(Va),...,wyn =T (vn).

That is, for any list of vectors wy, ..., w, € W there exists exactly one linear transformation
T :V — W for which T'(v;) = wj for j =1,...,m.
Proof. ...
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Lecture 12 (2/3/20)

Composition/product of linear maps. If V, U, W are vector spacesand S € L(V,U),T €
L(U,W), we can define a function R:V — W by

R is called the composition of the functions 7" and S, and denoted R = T o S. It is easy
to verify that it is also a linear transformation. In linear algebra, sometimes R will be
referred to as the product of the linear transformations, and denoted R = T'S. Talking
about composition in this way makes sense, since it shares the following properties with
other “products”:

1. ASSOCiatiVity: (TlTQ)T3 = T1 (T2T3)

2. Neutral element: 71 = IT = T where I is the identity map on the appropriate
space (if '€ L(V,W) then the [ in T is I : V — V and the I in IT is [ : W — W).

3. Distributivity: (Tl + TQ)S =115 + TS and T(Sl + Sg) =TS8, +T58,.
The main place where multiplication of linear maps differs from normal multiplication is:

4. NO Commutativity: It is not true that T'S = ST for all linear transformations S, T
(even when both ST and T'S are defined; sometimes only one of them makes sense).
Here is an example where T'S # ST: on R? take T'(x,y) = (y,z) and S(z,y) = (z, —y).

Null space and range. Given a linear transformation T : V — W, we can define two
interesting linear subspaces:

1. The null space of T', denoted null(7") (also sometimes called the kernel of T' and denoted
ker(7")), is the set vectors in V' that 7" maps to 0 € W

null(7) ={veV : T(v) =0}

2. The range of T', denoted range(T") (also sometimes called the image of T and denoted
im(T")), is the set of vectors in W to which T" maps some vector in V:

range(T) = {T(v) : ve V}.

Claim: (easy) null(T) is a linear subspace of V', and range(T’) is a linear subspace of W.

Injective transformations. Definition. 7' € £(V, W) is called injective (or one-to-one)
if for any w,v € V, if T'(v) = T'(u) then u = v. Equivalently, T is injective if it maps any
distinct vectors u # v € V' to distinct vectors T'(u) # T'(v) € W.

Proposition. T € L(V,W) is injective if and only if null(7") = {0}.
Proof. ...

Examples

1. The differentiation operator on polynomials is not injective.
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2.
3.
4.

The identity map is injective.
The linear map that sends a polynomial p(z) to 2%p(z) is injective.

The linear map T'(z,y) = (x — 2y, 3z + y) is injective.

e Surjective transformations. Definition. A linear transformation 7' € L£L(V, W) is called
surjective (or (onto) if for any w € W there exists a v € V such that T'(v) = w. Equivalently,
T is injective if range(T) = W, i.e., the range of T is equal to its co-domain.

e Examples

1.

The identity map is surjective.

2. The differentiation operator on polynomials is surjective.

. The map T(z,y) = (z — 2y, 3z + y) is surjective. Given a vector w = (a,b) € R?, we

can solve the equation T'(z,y) = (a,b) and obtain (z,y) = 1(a + 2b,—3a + b). Note
that the fact that there is a solution means T is surjective; the fact that there is a
unique solution means it’s injective.

The map on polynomials that sends p(z) to z?p(z) is not surjective, since no polyno-
mials of degree 0 or 1 are in its image.
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Lectures 13 (2/5/20) and 14 (2/7/20)

e The dimension formula. Theorem. If VW are vector spaces and T : V — W is a
linear transformation, then

dim(V) = dim(null(7")) + dim(range(7T)).

Proof. (Important) See pages 56-57 in the textbook.
e Corollary. Let T € L(V,W).

1. If dim(V) > dim(W) then T is not injective.
2. If dim(V') < dim(W) then T is not surjective.

e Coordinate vectors. Let B = {v1,...,v,} be a basis of a vector space V. Any other
vector v can be written in a unique way as a linear combination

V= a1v1 + a2 + ...+ apUy.

Another way of thinking about this is that the vector of coefficients (a1, ..., a,) (which is a
vector in F™) encodes the vector v (which is an element of an abstract vector space V).

Definition. The vector of coefficients in the linear combination (traditionally written as a
column vector) is called the coordinate vector of v in the basis B, and denoted

ay
as
vl =

an

Note that the function mapping a vector v to its coordinate vector [v]|p is linear, i.e., we
have the relations [u + v]p = [u]p + [v]p and [av]p = a[v]p for u,v € V and a € F.

¢ Representing a linear transformation as a matrix. If T : V — W is a linear trans-
formation, we can encode it as a matrix. Fix a basis B = {v1,...,v,} of V and a basis
C ={wi,...,wy} of W. For each j = 1,...,n, the vector T'(v;) is in W so we can consider
its coordinate vector u; = [T'(vj)]c in the basis C' (which is a vector in F""). Now package
all the vectors uq, ..., u, in a matrix with m rows and n columns. This is called the matriz
representing T' in the bases B and C, and denoted M (T):

We can also write the matrix in terms of its entries

ail ai19 e A1n

asy a9 e aon
M(T) = : : ;

Aml1 Qm2 ... Amn
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or abbreviate it as M (T") = (a;j)1<i<m,1<j<n- Its defining property is that foreach 1 < j <n
we have the equation
T(w‘) = apjwy + ag;w2 + . .. + Apjwp.

expressing 1'(v;) as a linear combination of the elements of the basis C.

Example. If T(x,y) = (ax+by, cx+dy) (which can also be written as matrix multiplication

of < v > by the matrix ( a b
Yy c

d > ), then the matrix M (T") representing T in the standard

basis B = C = {e1, ez} of R? is again the matrix ( CCL Z >

More generally, for each m x n matrix M = (m; j)1<i<m,1<j<n We have the linear transfor-
mation 7' : R™ — R™ defined by matrix multiplication:

T(v) =M -v.

If we take the bases B and C' to be the standard bases in R™ and R™, respectively, then the
representing matrix M (7T') is simply the original matrix M we started with.

Example. Let T'(z,y) = (x 4+ 2y, —x + 3y). In the standard basis B = C = {(1,0),(0,1)}

the matrix representing 7' is
1 2
B _
M(T)é = < 1 3>.

What happens if we change the basis? Take B = {(1,1),(0,1)} and C' = {(1,0),(0,1)}. In
this case we may compute:

T(1,1) = (3,2) = 3(1,0) + 2(0,1), T(0,1) = (2,3) = 2(1,0) + 3(0, 1),

M(T)Ez(i g)

If we exchange the roles of C' and B we get (check!)

mrg=( 1 1)

Example. Let B = C = {1, 2,22, 23} be bases for the space P3 of polynomials of degree
< 3, and let T'(p) = p’ be the derivative map. In this case it is not difficult to check that
the representing matrix is

SO

M(T) =

o O O O
o O O
O O N O
O w o o

Matrix multiplication. If M = (aij)lgigm,lgjgn and N = (bij)lgign,lgjgpy the matrix
product M N is computed by multiplying the matrix M by each of the columns of N, and
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packaging the results in a new m x p matrix. Formally, we have MN = (¢ij)1<i<m,1<j<ps

where
n
Cij = E Qikbp;.-
k=1

Another way of thinking about it is that we compute all possible “dot products” of rows of
M with columns of N, where a dot product of two (row or column) vectors (z1, ..., x,) and
(y1,-..,Yn) is equal to the sum of the products of the coordinates, i.e.

(1y.voymn) - (Y1, Yn) = T1Yy1 + . . + TnYn.
The matrix product M N is the rectangular table of numbers containing all these dot prod-
ucts.
Examples: ...
Matrix multiplication and composition of linear transformations. A fundamental

fact related matrix multiplication with composition of linear maps:
Theorem. U, V,W be finite-dimensional vector spaces. Let T € L(V,W) and S € L(W,U)
be linear transformations. Fix bases B = {v1,...,vm}, C ={w1,...,wp}, D = {u1,...,up}
of V, W, U respectively. Then we have

M(SoT)=M(S)M(T),

where M(T) = M(T)E is the matrix representing 7' in the bases B and C; M(S) = M(S)$,
is the matrix representing S in the bases C' and D; and M (S oT) is the matrix representing
the composition S o T in the bases B and D.

Proof. Denote M(T) = (aij)i<i<n,1<j<m, M(S) = (bij)i1<i<p,i<j<n-
(S o T)vj = S(ij) = S(bljwl -+ bgj’U)Q 4+ ...+ bnjwn) = bljS(wl) 4+ ...+ ban(wn)
= blj (a11u1 + as1us + ...+ aplup) =+ sz (a12u1 —+ aguo + ...+ apgup)
+...+ bnj (alnul + agpu + ... + apnup)
= C15U1 + C2;U2 4+ ...+ CpjUp,
where
c1j = ainbij + a2by; + ... + ainbpj,

Coj = a21b1j + agbaj + ... + az,bpj,

n

Cij = aitbyj + Gigboj + ... + Ginbpy = > aixbrj,
k=1

Cpj = ap1b1j + apabaj + ...+ appbn;.

By the definition of the representing matrix, the numbers c;; are exactly the entries of the
matrix M(SoT).
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e Corollary. Matrix multiplication has the same properties that composition of linear trans-
formations has:

1. Associativity: (M;Ma)Ms = M;(MaMs3)

2. Neutral element: MI = IM = M where I is the identity matrix of the appropriate
size.

3. Distributivity: (Ml + MQ)N = M{N + M>sN and M(N1 + NQ) = MN; 4+ MN,.

4. NO Commutativity: It is not true that M N = NM for all matrices M, N (even
when both M N and NM are defined).

e Inverse functions. A function f : A — B (where A and B are sets) is called invertible if
for each b € B there is a unique a € A for which f(a) = b. In this case we denote a = f~1(b)
and call f~!: B — A the inverse function of f, and say that f is invertible. It has the
property that f~! o f = the identity function on A, f o f~! = the identity function on B.

It is easy to see that f is invertible if and only if it is both injective and surjective: injectivity
means for any b € B there is at most one a € A such that f(a) = b, and surjectivity means
for any b € B there is at least one a € A such that f(a) =b.
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Lecture 15 (2/10/20)

e Invertible transformations. A linear transformation 7' : V' — W is called invertible if it
is invertible as a function, and also its inverse T~ : W — V is itself a linear transformation.
It turns out this last condition is redundant: 7! is automatically linear; in other words we
have the following result:

Proposition. The following conditions are equivalent:

1. T is invertible as a function, i.e., is injective and surjective.
2. T is invertible as a linear transformation.

3. T :V — W is invertible if and only if there exists a linear transformation S : W — V
such that
ToS=Iy and SoT =1y

(here Iy denotes the identity map on W and Iy denotes the identity map on V).
Note that in this case, S is determined uniquely, since if S’ : V' — W also satisfies
ToS =1Iy,S oT = Iy, then

S=Soly=80(ToS)=(SoT)oS =Iyo8 =9
Proof. (1) = (2): If wi,ws € W, a,b € F, denote v; = T~ (w),ve = T~ (wy). Then
T(avy + bve) = aT'(v1) + bT'(v2) = awy + bwo,
but that means that av; 4+ bvy is the inverse image of aw; 4 bwo, i.e.,
T Y aw;y + bwy) = aT Y wy) + T (vy),

which is exactly what we need to know that 77! is a linear transformation.

(2) = (3): T~ is exactly the S we need.

(3) = (1): If such an S exists then 7T is injective and surjective and S is its inverse (as
a function): if T'(v) = T'(v') for some v,v" € V then v = Iy (v) = SoT(v) = SoT(V') =
Iy (v") = v (proving injectivity), and for any w € W, T(S(w)) = T o S(w) = Iy (w) =
(proving surjectivity).

w

e Example. The transformation T'(z,y) = (x — 2y, 3z +v) is invertible. Compute its inverse.
Solution. ...

e Isomorphic vector spaces. Definition. If V, W are vector spaces, they are called isomorphic
if there exists an invertible linear map T' € L(V, W).

For finite-dimensional vector spaces, the question of whether two given spaces are isomorphic
has an easy answer.

Theorem. If VW are finite-dimensional vector spaces, then they are isomorphic if and
only if dim(V') = dim(W).
Proof. ...

e Invertible linear operators. Theorem. If V is a finite-dimensional vector space and
T :V — V is a linear operator, then the following are equivalent:
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1.
2.
3.

T is invertible.
T is injective.

T is surjective.

Proof. ...

e Invertible matrices. A square matrix M = (a;;)1<i j<n is invertible if there is a matrix
B = (bij)1<i j<n such that AB = BA = I (where I denotes the identity matrix of order n).
This is equivalent to the linear map 7' : F" — F"™ defined by T'(v) = A - v being invertible.
We can rewrite the theorem above in terms of matrices as follows:

Theorem. For a square matrix A, the following conditions are equivalent:

1. A is invertible.

2. the system of linear equations Av = 0 has the unique solution v = 0 (the zero vector).
3.
4

. The reduced row-echelon form of A is the identity matrix.

The columns of the matrix A span F".

Proof. ...
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Lecture 16 (2/14/20)

e Algorithm to find the inverse of a matrix. In the discussion section you will learn a
simple method to find the inverse of a matrix by using Gaussian elimination.

e Inverse of a 2 x 2 matrix. We saw that the 2 x 2 matrix < a b ) is invertible if and

d

only if ad — bc # 0. In that case it is not difficult to verify that its inverse matrix is

1 d —b
A7l = .
ad — be < —Cc a )

For higher-order square matrices, it would be nice if we had a simple criterion to determine
whether the matrix is invertible. It turns out that there is a function of the matrix entries,
generalizing the function ad — be, that gives such a criterion. This function is called the
determinant.

Permutations. To define the determinant of an n X n matrix we need the concept of a
permutation.

Definition. A permutation (of order n) is a function o : {1,2,...,n} — {1,2,...,n} which
is a bijection (a.k.a invertible, i.e., it is injective and surjective).

One can think of a permutation as a way of arranging n objects in a line: object number 1
goes in position number o (1) (from the left), object number 2 goes in position number o (2),
etc. Because permutations are such special functions, we use a special notation to denote
them in what’s known as two-line notation: the permutation o will be written as

_ 1 2 eemn
7T\ o) o2 ... o)
Note that the top line in two-line notation is redundant — it will always consist of the

numbers 1,...,n arranged in increasing order — but it is useful for the purposes of getting
a “feel” for what the permutation does and for manipulating it in some ways, as we will see.

e Example. There are 2 different permutations of order 2: ..., and here are the 6 different
permutations of order 3: ...

e Denote by S, the set of permutations of order n (this is a standard notation used pretty
much in all of mathematics).

Theorem. The number |S,,| of permutations of order n is given by the factorial function
nl=1-2-3...(n—1)n.
Proof. ...

Note. The factorial function grows very fast. Here are its first few values:

n|1|2[3]4|5 |6 | 7 | 8 | 9 | 10
n![1]2]6]24]120 720 | 5040 | 40320 | 362880 | 3628800

Unfortunately, the determinant, which is the magical function that will tell us if a square
matrix is invertible, will be defined as a sum of n! terms, one for each permutation. So, for
large matrices, computing it seems hopeless (but it isn’t, as it turns out).
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Lecture 17 (2/19/20)

e The identity permutation. The most important permutation in .S,, is the identity per-
mutation o = id defined by o(j) = j for j =1,...,n.

e Composition of permutations. Permutations, like general functions, can be composed
with each other. If o, 7 € S,, we define their composition c o7 : {1,...,n} — {1,...,n} by

(om)(G) =a(n(d), J=1L...,n

Examples. ...

e Properties of composition of permutations. Theorem. The composition of permu-
tations is a “nice” operation; it has the following properties:

1. The composition of two permutations is itself a permutation.
2. Associativity: mo(co7) = (moo)or for any w, 0,7 € S).

3. Neutral element: moid =idonw = 7 for any © € 5,,.
4

. Inverse element: for any 7 € S,, there is a unique inverse permutation 7—! such that

mon t=n"lor=id.
5. NO commutativity: the composition is in general not commutative, i.e. 7 o ¢ is not

necessarily equal to o o 7w (and in most cases it isn’t).

e Inversions. There is a way to measure how “badly ordered” a permutation is, using a
concept called inversions. If 4, j are two numbers between 1 and n and o € S,,, then we say
that the pair (¢,7) is an inversion pair of ¢ if i < j but (i) > o(j). The total number of
inversion pairs is called the inversion number of the permutation.

Examples. The identity permutation has inversion number 0 (the smallest possible). The

. 2 ... n—1 n . .
reverse permutation has inversion number
n n—1 ... 2 1
1
1+2+3+...+n:n(nQ),

which is the largest possible inversion number for a permutation of order n.

In general, the inversion number can be visualized as the number of “line crossings” in a
diagram showing the numbers 1,...,n in the top row, the same numbers (in the same order)
in the bottom row, with lines connecting each number j on the top row to the number o ()
on the bottom row.

e The sign of a permutation. With each permutation we associate a sign sign(o) = +1
given by

. B (the inversion number of o) __ 41 even number of inversions,
sign(o) = (—1) = . .
—1 odd number of inversions.
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Theorem. Assume that a permutation ¢’ is obtained from o € S,, by swapping the values
of 7 and j. In other words, o’ = t; joo, where t; ; is the permutation (called a transposition)
which leaves all numbers unchanged except for swapping the values ¢ and j, i.e.,

b 123 ... ¢ ... j ... n—=1n

“o\1 23 .04 ...i ... n—=1n)°
Then we have sign(c’) = —sign(o).
Sketch of proof. The proof is a bit elaborate so we won’t write it fully, but here’s the
idea. First, prove this in the case when the transposition ¢; ; is an adjacent transposition,
meaning that 5 = ¢4+ 1. In this case, it is not difficult to see that the inversion number of o
differs from that of o by either +1 or —1, and that means that the sign gets inverted. Next,
for a general transposition ¢; ; with 1 < i < j < n, show that t; ; can be expressed as a
composition of an odd number of adjacent transpositions. Since each adjacent transposition

has the effect of inverting the sign of the permutation, composing an odd number of them
will also have that effect.

e Corollary. sign(o o) = sign(o) sign(m).

Proof. By the result above, this is true when ¢ is a transposition. By induction, it is
also true when o is a composition of many transpositions. It remains to observe that any
permutation can be represented as a composition of transpositions — this is left to the
reader as an exercise.

e Definition of the determinant. Finally, we can define the determinant of a square
matrix.

Definition. If M = (aij)?jzl is an n X n square matrix, its determinant is defined as

det(M) = Z Sign(g)ala(l)a2a(2) -+ Qng(n)
oESy

e Examples. The determinants of a general 2 x 2 matrix and of a general 3 x 3 matrix are:

35



Lectures 18 (2/21/20) and 19 (2/24/20)

e Properties of the determinant.

1.

det(l,) = 1. More generally, if A = (a;)} ;- is a diagonal matriz, i.e., all of its
off-diagonal entries are 0, then det(A) = ajjag2...an, is the product of the diagonal
entries.

. More generally, even if A is upper triangular or lower triangular, i.e., all of its en-

tries below (respectively, above) the main diagonal are 0, then the formula det(A) =
ai1a92 - . . apy still holds.

. det(A) = det(AT), where AT denotes the transpose matriz of A, whose entry in position

(4,7) (ith row, jth column) is a;; (the entry in the jth row, ith column of the original
matrix).

If A has two identical rows/columns, then det(A) = 0.

5. If A has a row/column of 0s, then det(A) = 0.

. det(A) is linear in each of the rows of A. Le., if A, A’ are identical except in the jth

row then det(A + A’) = det(A) + det(A’); if A’ is obtained from A by multiplying the
jth row by a scalar ¢ then det(A’) = cdet(A).

If E is an elementary matrix (a matrix such that multiplying A from the left by E has
the effect of performing an elementary row operation on A; see section 12.3.1 in the

textbook) then det(FA) = det(F) det(A). It is easy to compute det(E) for each of the
elementary matrix types.

. det(A) = det(RREF(A))/(det(E)...det(Ey)), where RREF(A) = Ej ... E A repre-

sents the sequence of elementary operations used to bring A to reduced row-echelon
form. Note that all of the numbers det(E}) are non-zero. Therefore we get:

. det(A) # 0 if and only if A is invertible.
10.

det(AB) = det(A) det(B) for every n x n square matrices A, B — to see this, factor
A into a product EyEg_q...E2E; - RREF(A) of elementary matrices followed by a
reduced row-echelon form matrix. If A is invertible then the RREF is the identity

matrix I and the claim follows from the previous property