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Lecture 1 (1/6/20)

• High-level description of course goals: 1. linear algebra theory; 2. linear algebra computa-
tional skills; 3. introduction to abstract math.

• Today’s topic: introduction to linear algebra. Conceptually, linear algebra is about
sets of quantities (a.k.a. vectors) that are associated with each other by a “linear” rela-
tionship, and how to manipulate them, classify the nature of such relationships, and solve
equations to determine one set of quantities given another.

Practically speaking, a lot of the calculations will reduce to solving a system of linear
equations. An equation is called “linear” if all the terms on both sides of the equation have
the form “a number times one of the unknowns” or “a number”. E.g., if x and y are the
unknowns, you cannot have the term 10xy or −5x2 (let alone more complicated things like√
x, ez, sin(x+ y) etc.).

• What is linear algebra good for? Almost everything in math, science, engineering. A
few examples:

– 3D graphics

– Filters (Instagram, Photoshop etc). Also for music and sound processing and to filter
other sources of data (such as in astronomy, medicine, nuclear physics, . . . ).

– Antialiasing of text on a phone or computer screen to make it look nice.

– Analyzing card shuffling, genetic drift and other random processes with many states
(Markov chains)

– Neural networks, the mathematics of Machine Learning, AI

– Multivariate calculus, optimizing functions of many variables

– Search engine ranking algorithms

– Stability analysis in control theory (think robots, rockets, airplanes)

– Understanding fun things in math and physics such as the moving sofa problem and
the Dzhanibekov effect (aka tennis racket theorem)

– . . . and many more applications.

• Example 1. A baker needs one egg and 3 ounces of flour to make a muffin, and 2 eggs
and 2 ounces of flour to make a croissant. Given 20 eggs and 28 ounces of flour, how many
muffins and croissants can the baker make, assuming all eggs and flour are used?
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Solution. Let x denote the number of muffins, and y the number of croissants. The question
translates to the equations {

x + 2y = 20
3x + 2y = 28

We can solve this using the “substitution” method:

x+ 2y = 20 =⇒ x = 20− 2y =⇒ 3(20− 2y) + 2y = 28

=⇒ 4y = 60− 28 = 32 =⇒ y = 8 =⇒ x = 4

Or we can solve by “eliminating variables”, i.e., subtracting a multiple of one equation
from the other to get an equation with a single variable. For example, subtracting the first
equation from the second gives

2x = 8 =⇒ x = 4,

which then easily leads to y = 8 after substituting the value for x in either of the equations.

• Abstract algebraic formulation. Represent the system of equations given above sym-
bolically in the form

A · v = u,

where A =

(
1 2
3 2

)
, v =

(
x
y

)
, u =

(
20
28

)
and “·” refers to “multiplication of a matrix

by a vector”, a weird form of multiplication defined by(
a b
c d

)
·
(
x
y

)
=

(
ax+ by
cx+ dy

)
.

To solve this, we simply need to “divide both sides (from the left) by A”. What does it
mean to “divide” by a matrix? We will learn that there is a special matrix, denoted A−1

and called the “inverse” matrix of A, that has the property that

A−1 · (A · v) = (A−1 ·A) · v = “1” · v = v,

(here, we need to extend the concept of multiplying a matrix by a vector to multiplying a
matrix by a matrix; we also need to show “associativity”, i.e. that the order in which we
multiply doesn’t change the result). So, the original equation translates to

v = A−1 · u.

If we knew A−1, we would be able to compute v by carrying out the multiplication. In this
case,

A−1 =

(
−1

2
1
2

3
4 −1

4

)
(we will learn in the future how to compute such inverse matrices), so we get that

u =

(
−1

2
1
2

3
4 −1

4

)
·
(

20
28

)
=

(
−1

2 · 20 + 1
2 · 28

3
4 · 20− 1

4 · 28

)
=

(
4
8

)
,

as before.
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• Geometric formulation. Each of the two equations represents the equation for a line in
the plane. Finding the solution corresponds to finding the point in the plane which is at
the intersection of the two lines. In the example above, we had a unique solution, but this
geometric way of looking at things tells us that it’s also possible to have no solutions (in
the case when the two lines are parallel but non-intersecting), or to have infinitely many
solutions (if the two lines are identical). In general, “solving” a linear system of equations
means “giving a simple description of the set of solutions” (which may be empty, or contain
a single point, or be infinite).

• Linear functions and linear transformations. Yet another way of thinking about the
equation, that we will explore in more detail later on in the course, is that the “operation”
that takes a two-dimensional vector v and returns the new vector A · v is a special kind of
operation which we call a linear transformation – it acts on the two-dimensional plane in
an interesting way, e.g., by stretching it, rotating it, reflecting it (but not bending it – that
is why it is called “linear”). Solving the equation corresponds to finding the unknown point
v in the plane that is transformed to the given (known) point u under the transformation.
If we find good ways of visualizing linear transformations or understanding what are the
different ways in which they can act, that will help us in solving linear systems.

• Example 2. The Google PageRank algorithm. In a simplified model of the internet,
there are only 2 websites, (say) Facebook and Twitter. Facebook has 5 links pointing to
itself and 2 links to Twitter. Twitter has 2 links to Facebook and 8 to itself. Which site is
more important (and should therefore be placed higher up in a search result presented by
Google)?

Solution. The Google PageRank web page ranking algorithm (named after its inventor,
Larry Page!) assigns importance to web pages according to the self-referential rule:

A web page’s importance is proportional to the weighted average of the number of
links pointing to it from all web pages, with each page being weighted according
to its own importance.

(This rule can also be applied to other things, for example to the ranking of social status
of people: i.e., you are popular in your social group in proportion to how many friends you
have, but only to the extent that your friends are themselves popular...).

The fact that the rule is self-referential, defining “importance” in terms of that involve the
same term we are trying to define, is why we are led to having to solve a system of equations
(as opposed to just having a plain formula that directly cranks out the importance in terms
of the data that’s given to us).

In the case of our model internet, let x denote the relative importance of Facebook and y
denote the relative importance of Twitter, then the rule above leads to the equations:

x + y = 1
5x + 2y = zx
2x + 8y = zy

where z is an additional unknown which represents an arbitrary positive proportion constant.
The first equation is what I mean by relative importance — the numbers x, y add up to a
“total importance” of 1.
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It’s important to note that if z is taken into account, then this is a non-linear system of
equations. However, due to their special structure such equations are still considered a part
of linear algebra. The reason is that if we are magically given the value of z by someone
with advanced knowledge (in this case z = 9), the system becomes a linear system and can
be solved with the usual methods:

x + y = 1
5x + 2y = 9x
2x + 8y = 9y

=⇒


x + y = 1

−4x + 2y = 0
2x − y = 0

=⇒
{

x + y = 1
3x = 1

so we finally get x = 1/3, y = 2/3.

We will learn later in the course how to deal with finding the value of z in such a situation.
This will lead to certain polynomial equations (a higher-order generalization of the linear
and quadratic equations we are familiar with).
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Lectures 2 (1/8/20) and 3 (1/10/20)

• Coefficients. In linear algebra we study systems of linear equations. The numbers appear-
ing in these equations are known as coefficients.

• Number systems and number fields. In elementary applications the coefficients are
ordinary real numbers (in fact, usually they are rational numbers). However, it turns out
that the algebraic rules for manipulating numbers (by adding, subtracting, multiplying
them, etc.) that we rely on for linear algebra are not unique to real numbers. There
are other number systems that satisfy the “good” properties that are necessary in linear
algebra. It makes sense to abstract away those properties for a “good number system”. In
higher mathematics such a system of numbers is called a field. In this course we will focus
mainly on the real numbers and complex numbers, but it’s interesting to keep in mind that
other number fields also arise in real-life applications (notably in computer science, where
an important field is the “field with 2 elements” consisting of the numbers 0 and 1), and
that essentially all the linear algebra theory we’ll develop carries over to that more general
setting as well, with little or no modification.

• Complex numbers. One of the nicest fields there are (we still haven’t defined what a field
is, but don’t worry about that for now) is that of the complex numbers. They are numbers
of the form

z = a+ bi,

where i is a hypothetical construct, a symbol representing one of the two square roots of
−1. The other square root of −1 is −i, since if i2 = 1 then

(−i)2 = (−1) · i · (−1) · i = (−1)2i2 = 1 · (−1) = (−1).

• Let’s be a bit more formal:

Definition. The set of complex numbers is the set, denoted C, of pairs (a, b) of real numbers,
with the convention that instead of writing (a, b) in the usual vector notation from calculus,
we write it in the form a+ bi. Formally, we can express this definition as

C = {a+ bi : a, b ∈ R}.

If z = a + bi is a complex number, a, b ∈ R, we call a ∈ R the real part of z, and we call b
the imaginary part of z. We denote a = Re z and b = Im z. We can think of the complex
number a + bi geometrically as a vector with two coordinates a (the x-coordinate) and b
(the y-coordinate).

• Algebraic operations on complex numbers. What makes C a field? As a set of
numbers, it is not much different than the two-dimensional plane R2, except that the vector
(a, b) is written as a+ bi. The key to looking at C as a field is to consider also its algebraic
properties. It turns out that there is a way to define algebraic operations of addition,
subtraction, multiplication and division on complex numbers, and these operations satisfy
the “good” properties that we require in a field.
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1. Addition of complex numbers. If z = a + bi and w = c + di are two complex
numbers, we define their sum by

z + w = (a+ c) + (b+ d)i

2. The negative of a complex number. If z = a+bi is a complex number, its negative
is

−z = −a− bi

3. Subtraction of complex numbers. The difference of two complex numbers z = a+bi
and w = c+ di is defined as

z − w = z + (−w)

4. Multiplication of complex numbers. The product of two complex numbers z+a+bi
and w = c+ di is defined by

z · w = (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

5. The reciprocal of a complex number. The reciprocal of a complex number z =
a+ bi is defined, assuming z 6= 0, by

z−1 =
a

a2 + b2
− b

a2 + b2
i

6. Division of complex numbers. The quotient of two complex numbers z = a + bi
and w = c+ di is defined if w 6= 0 by

z

w
= z · w−1

• Examples. (fill in the answers)

(3 + 5i) + (10− 2i) =

(3 + 5i)− (10− 2i) =

(3 + 5i) · 4 =

4 · (3 + 5i) =

(3 + 5i) · (1 + i) =

(1 + i)2 = (1 + i) · (1 + i) =

(1 + i)4 =

(1 + i)−1 =

(2− i)−1 =

2− i
1 + i

=

• Properties of addition. Theorem: For any complex numbers z, z1, z2, z3, the following
properties are satisfied:

1. (“Commutativity”) z1 + z2 = z2 + z1
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2. (“Associativity”) (z1 + z2) + z3 = z1 + (z2 + z3)
So, in fact, the parentheses are not needed and we will usually omit them in the future,
writing this expression simply as z1 + z2 + z3.

3. (“Neutral element”) z + 0 = 0 + z = z

4. (“Additive inverse”) z + (−z) = 0

Proof: . . .

• Properties of multiplication. Theorem: For any complex numbers z, z1, z2, z3, the
following properties are satisfied:

1. (“Commutativity”) z1 · z2 = z2 · z1
2. (“Associativity”) (z1 · z2) · z3 = z1 · (z2 · z3)
3. (“Neutral element”) z · 1 = 1 · z = z

4. (“Multiplicative inverse”) If z 6= 0 then z−1 is defined and z · z−1 = 1

5. (“Distributivity”) z1 · (z2 + z3) = z1 · z2 + z1 · z3

Proof: . . .

• The conjugate of a complex number. If z = a+ bi is a complex number, we define its
conjugate to be the number a− bi, denoted by z:

z = a− bi

Geometrically, taking the conjugate corresponds to reflecting the vector associated with z
across the x-axis.

Why is the conjugate element interesting? Let’s see what happens when we multiply z
and z:

z · z = (a+ bi)(a− bi) = (aa− b(−b)) + (a(−b) + ba)i = (a2 + b2) + 0 · i = a2 + b2

The product is always an ordinary real number, equal to a2 + b2. In particular, we see
that if we take the conjugate and divide it by this real number a2 + b2 (which is allowed if
a2 + b2 6= 0, i.e., if z 6= 0), we get a number w with the property that w · z = 1. This is
simply the reciprocal of z. So, we have rederived the formula for the reciprocal element:

z−1 =
1

a2 + b2
· z =

a

a2 + b2
− b

a2 + b2
i

• Properties of conjugation. Theorem: For any complex numbers z, z1, z2 ∈ C, the
following properties hold:

1. z1 + z2 = z1 + z2

2. z1 · z2 = z1 · z2
3. z−1 = (z)−1 if z 6= 0

4. z = z if and only if Im(z) = 0 (i.e., if z is a real number)
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5. z = z

6. The real and imaginary part of z can be written as

Re(z) = 1
2(z + z), Im(z) = 1

2i(z − z)

• The modulus of a complex number. The quantity a2 + b2 has a simple geometric
meaning as well. By the Pythagorean Theorem, the distance from 0 to z = a + bi is equal
to
√
a2 + b2. We call this the modulus of the number z, and denote it by |z|:

|z| =
√
a2 + b2

(if z is a real number, it is simply the usual absolute value of z). This quantity is also known
as the norm, magnitude, or length of z (especially in the general context of vectors, not
complex numbers). To summarize the above discussion, we have the identities:

z · z = |z|2,

z−1 =
z

|z|2

• Properties of the modulus. Theorem: for any complex numbers z, z1, z2 ∈ C, we have
the properties:

1. |z1 · z2| = |z1| · |z2|
2. |z1/z2| = |z1|/|z2 if z2 6= 0

3. |z| = |z|
4. |Re(z)| ≤ |z| and | Im(z)| ≤ |z|
5. (“triangle inequality”) |z1 + z2| ≤ |z1|+ |z2|
6. (triangle inequality reformulated) |z1 − z2| ≥

∣∣|z1| − |z2|∣∣
Proof: . . .
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Lecture 4 (1/13/20)

• Polar representation of complex numbers. The usual representation z = x + yi of
complex numbers tells us where the vector z lies in the plane in terms of the usual Cartesian
coordinates. An alternative representation is in terms of the polar coordinates, where we
give the length r of the vector and its angle θ (measured in the anti-clockwise direction)
relative to the x-axis. The numbers (r, θ) are called the polar coordinates of z. They satisfy
r ≥ 0 and 0 ≤ θ < 2π, and θ is only defined if z 6= 0.

From elementary trigonometry, it is easy to see that r, θ are related to x, y by

x = r cos θ

y = r sin θ

r = |x+ yi| =
√
x2 + y2

θ = “the angle function” of (x, y)

(there is no standard notation for this; sometimes “arg z” is used, and the angle

may be referred to as the “argument” of z).

To summarize, the complex representation of z is usually written in the form

z = r(cos θ + i sin θ)

• Multiplication in polar coordinates. Let’s see what happens when we try to multiply
two complex numbers z, w that are given in polar coordinates:

z = r1(cos θ1 + i sin θ1),

w = r2(cos θ2 + i sin θ2),

z · w = r1r2

[
(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

]
= r1r2

[
(cos θ1 cos θ2 − sin θ1 sin θ2) + (cos θ1 sin θ2 + cos θ2 sin θ1)i

]
Because of the trigonometric formulas for the cosine and sine of a sum of two angles, we see
that this can be written as

z · w = (r1r2) (cosα+ i sinα)

where α = θ1 + θ2. We have proved:

Theorem. The product of two complex numbers is the complex number whose modulus is
the product of the moduluses of the two numbers, and whose angle is the sum of the two
angles.

(Note that the sum of the two angles may be bigger than 2π, so we need to subtract 2π to
get back to the usual polar representation.)

• Powers of complex numbers. From this multiplication rule, it is easy to understand the
geometric effect of raising a complex number to the nth power (where n is a positive integer,
i.e. the square, cube, fourth power of a number etc.):

z = r(cos θ + i sin θ) =⇒ zn = rn(cosnθ + i sinnθ)
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The modulus gets raised to the nth power, and the angle gets multiplied by n. Note that
in Cartesian coordinates the meaning of exponentiation is much less obvious or intuitive,
demonstrating the usefulness of polar coordinates.

One interesting observation that we will need for the proof of the Fundamental Theorem
of Algebra is: as z goes in a circle of radius r around 0 (the angle increases continuously
from 0 to 2π), its image under the nth power function zn goes n times around the circle of
radius rn.

• Roots of complex numbers. The inverse operation to the nth power is extracting an
nth root. If z = r(cos θ + i sin θ), its nth root is given by

n
√
z = n
√
r(cos(θ/n) + i sin(θ/n)),

i.e., we divide the angle by n instead of multiplying. However, in this case there is more
than one solution, since we can also add to the angle any number which, when multiplied
by n, gives an integer multiple of 2π.

Theorem. If z = r(cos θ + i sin θ) 6= 0 and n is a positive integer, the nth roots of z are
the n distinct numbers

r1/n
(

cos

(
θ + 2πk

n

)
+ i sin

(
θ + 2πk

n

))
, k = 0, 1, 2, . . . , n− 1

• Examples.

– The square roots of −1 are cos(π/2) + i sin(π/2) = i and cos(3π/2) + i sin(3π/2) = −i.
– The fourth roots of 1 are 1,−1, i,−i.
– The cube roots of 2 are

3
√

2(cos(0) + i sin(0)) =
3
√

2,

3
√

2(cos(2π/3) + i sin(2π/3)) =
3
√

2 · −1 +
√

3i

2
,

3
√

2(cos(4π/3) + i sin(4π/3)) =
3
√

2 · −1−
√

3i

2
.

– The square roots of 1 + i =
√

2(cosπ/4 + i sinπ/4) are the numbers

w =
4
√

2(cosπ/8 + i sinπ/8)

−w =
4
√

2(cos 9π/8 + i sin 9π/8)

• Polynomial equations. Extracting an nth root is a special case of solving a polynomial
equation:

z = n
√
w ⇐⇒ zn = w ⇐⇒ zn − w = 0 ⇐⇒ p(z) = 0

where p(z) = zn − w.

• Constant polynomials. A constant function p(z) = c is called a constant polynomial or
polynomial of degree 0. The equation p(z) = 0 has no solution if c 6= 0, or if c = 0 then any
value of z is a solution.
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• Polynomials of degree 1. A function of the form p(z) = az + b is called a polynomial of
degree 1. Assuming a 6= 0 (since if a = 0 this is just a constant polynomial in disguise), the
equation p(z) = 0 has the unique solution z = −b/a.

• Quadratic polynomials. A function of the form p(z) = az2 + bz + c is called a quadratic
polynomial, or a polynomial of degree 2. Assuming a 6= 0, the ancient Babylonians figured
out (around 2000 BC) how to solve the equation p(z) = 0, arriving at the famous formula

z1,2 =
−b±

√
b2 − 4ac

2a
.

Of course, if b2−4ac is a negative real number, the equation has no solution in real numbers,
but it does have solutions in complex numbers.

• Cubic polynomials. A function of the form p(z) = az3 + bz2 + cz + d is called a cubic
polynomial, or a polynomial of degree 2. The general solution of the cubic was found around
the year 1530 by the Italian mathematicians del Ferro, Tartaglia and Cardano. This was
the original motivation for the definition of complex numbers, since the solution involved
extracting cube roots, which sometimes involved complex numbers even when the final
answer for the roots was comprised of just real numbers.

• Quartic polynomials. A polynomial of degree 4 is called a quartic. The equation p(z) = 0
for a quartic was solved by the Italian mathematician Ferrari around 1540.

• General polynomial. If n is a positive integer and a0, a1, . . . , an are complex numbers,
the function

p(z) = azn + bzn−1 + czn−2 + . . .+ fz2 + gz + h

is called a polynomial of degree n. A number z that solves the equation p(z) = 0 is called
a root of the polynomial.

• The Fundamental Theorem of Algebra. A fundamental fact about polynomial equa-
tions is the following famous result, first proved by the famous German mathematician Karl
Friedrich Gauss in 1799.

Theorem (The Fundamental Theorem of Algebra). Every polynomial equation p(z) = 0
has a solution over the complex numbers.

This result has many different proofs (one full proof can be read in the textbook). We
will describe Gauss’s original proof, which was incomplete since it relied on a “topological”
argument that was not understood rigorously at the time (but has been explained since,
though understanding it requires more advanced knowledge of topology that we will not
discuss).

Gauss’s proof. We may assume that p(0) 6= 0, since otherwise we have a root z = 0 and
there is nothing to prove. Also assume that the polynomial is monic, i.e., the coefficient of
zn is 1 (otherwise, if it is not 1, simply divide by the coefficient an to obtain a new coefficient
with a leading coefficient of 1 with the same roots).

Denote w = p(0). Now observe that:
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1. as z goes in a circle of very small radius r around 0, since p(z) is a continuous function,
the value p(z) will traverse some closed curve that stays very close to w. In particular,
such a closed curve cannot go around 0 (since w is some fixed distance from 0).

2. On the other hand, as z goes around a circle of very large radius R around 0, the
polynomial p(z) should behave more and more like the power function q(z) = zn, since

p(z) = zn + azn−1 + bzn−2 + czn−3 + . . .+ gz + h

= zn
(

1 +
a

z
+

b

z2
+ . . .+

g

zn−1
+

h

zn

)
,

and all of the terms except the first are very small in magnitude (since |z| = R is very
large).

In particular, the image of p(z) as z goes around a circle will be a curve that travels n
times around 0 in a counter-clockwise direction (it is like a circle with various “wiggles”
and fluctuations from the “go in a circle n times around 0” image of a circle under the
power function zn).

3. The conclusion is that as we vary the radius of the circle from being a very small
number “r” to being a very large number “R”, the image p(z) goes from being a closed
curve that doesn’t go around the origin to being a closed curve that travels precisely n
times around the origin. Thus, at some point during this process, the curve must cross
0. If you don’t believe this, try taking a rubber band and making it go around a nail
in the wall, without tearing it up, and without the projection of the rubber band into
the plane of the wall crossing the nail at any point. It can’t be done!

For more details on this and other proofs of the Fundamental Theorem of Algebra, see

http://en.wikipedia.org/wiki/Fundamental theorem of algebra

• Polynomial roots and factoring. Lemma. a is a root of the polynomial p(z) if and
only if p(z) can be written in the form

p(z) = (z − a)q(z)

where q(z) is a polynomial of degree 1 lower than p.

• The Fundamental Theorem of Algebra, reformulated. Thanks to the lemma, we can
reformulate the FTA as follows: If p(z) is a complex polynomial of degree n, then it can be
written as

p(z) = c(z − a1)(z − a2) . . . (z − an)

for some (not necessarily distinct) complex numbers a1, a2, . . . , an.

Proof. Take some root a1, and write p(z) = (z−a1)q(z) where q(z) is of degree n−1. Now
repeat the same process for q(z), getting a second root a2, etc., until we get to the form of
a product of n factors z − aj times a constant polynomial.

• Division of polynomials with remainder. If f(z) and g(z) are two polynomials, we
can do a “long division” of f(z) by g(z) and get a “quotient” and a “remainder”, i.e., two
polynomial q(z) and r(z) such that

f(z) = g(z)q(z) + r(z),
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and r(z) is of lower degree than g(z). The polynomials q(z) and r(z) are determined
uniquely.

• Example. Will be given in the discussion section.

• Proof of the lemma. Proof of the “only if” claim: If p(z) = (z − a)q(z) then of course
p(a) = (a − a)q(a) = 0, so a is a root of p(z). Proof of the “if” claim: if p(a) = 0, we can
divide p(z) by the polynomial z − a (which is of degree 1), to get

p(z) = (z − a)q(z) + r(z),

where r(z) is a polynomial of degree 0, i.e., a constant polynomial. But since p(a) = 0, we
get

0 = p(a) = (a− a)q(a) + r(a) = r(a),

so in fact r(z) is the 0 polynomial, and p(z) = (z − a)q(z), as claimed.
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Lecture 5 (1/15/20)

• Vector spaces. The abstract setting for systems of linear equations is a structure called
a vector space (also called a linear space). This is a collection of objects (referred to as
“vectors”) that can be added to each other, and can be multiplied by a (real or complex)
scalar. The prototypical examples of vector spaces are

Rn = {(x1, x2, . . . , xn) : x1, . . . , xn ∈ R},
Cn = {(x1, x2, . . . , xn) : x1, . . . , xn ∈ C}.

• Definition of a vector space. Let F represent either the set of real numbers R or the set
of complex numbers C. A vector space (called a real vector space if F = R or a complex
vector space if F = C) is a set V on which are defined two operations “addition” and “scalar
multiplication”; addition is defined on pairs of vectors, and scalar multiplication is defined
between a scalar (an element of F) and a vector. The operations must satisfy the following
properties:

1. u+ v = v + u for any u, v ∈ V .

2. (u+ v) + w = u+ (v + w) for any u, v, w ∈ V .

3. a · (b · v) = (a · b) · v for any a, b ∈ F, v ∈ V .

4. There exists an element 0 ∈ V such that v + 0 = 0 + v = v for all v ∈ V .

5. For every v ∈ V , there exists an element u ∈ V such that v + u = 0.

6. 1 · v = v for any v ∈ V
7. a · (u+ v) = a · u+ a · v and (a+ b) · u = a · u+ b · u for any a, b ∈ F, u, v ∈ V .

• Examples.

1. F is itself a vector space where scalars are also considered as vectors.

2. Fn = {(x1, . . . , xn) : xj ∈ F for j = 1, . . . , n} — the “standard”, or “canonical”,
n-dimensional real/complex vector space.

3. R∞ = {(x1, x2, . . .) : xj ∈ R for j = 1, 2, . . .} — an “infinite-dimensional” version of
Rn (note that we haven’t defined what “dimension” means just yet, but we will).

4. The space of polynomials of degree n:

Pn = {f : R→ R : f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0}

5. The space of all polynomials (of any degree).

6. The “trivial” space V = {0}.
7. The space of solutions to a system of linear equations... (more on this later).
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Lecture 6 (1/17/20)

• Properties of vector spaces.

– Proposition 1. The additive neutral element is unique. Proof. ...

– Proposition 2. The additive inverse element is unique. Proof. ...

– Proposition 3. 0v = 0 for all v ∈ V . (Note: the 0 on the left is the scalar 0; the 0 on
the right is the vector 0. Mathematicians often like to confuse you by using the same
symbol to mean two different things!) Proof. ...

– Proposition 4. a0 = 0 for any a ∈ F. Proof. ...

– Proposition 5. (−1)v = −v for any v ∈ V (here, −v is the notation for the negative
inverse element of v, guaranteed to exist by property 5 in the definition of a vector
space). Proof. ...

• Subspaces. A (vector/linear) subspace is a subset of a vector space which also happens to
be by itself a vector space, with the same operations of addition and scalar multiplication.

• Subspace criterion. To check that a subset U ⊂ V of a vector space V is a subspace,
one does not need to check all 7 properties in the list, which is tedious. Instead we have an
easier criterion:

Lemma. U ⊂ V is a subspace if and only if the following conditions hold:

1. 0 ∈ U .

2. (“closure under addition”) If u, v ∈ U then u+ v ∈ U .

3. (“closure under scalar multiplication”) If a ∈ F, u ∈ U then au ∈ U .

Proof. ...

• Examples.

1. Usmallest = {0} ⊂ V and Ulargest = V ⊂ V are both subspaces, respectively the smallest
and largest possible subspaces of V .

2. {(x, 0) : x ∈ R} is a subspace of R2.

3. The space Pn of real polynomials of degree ≤ n is a subspace of the vector space of all
real polynomials. The space of all polynomials p of degree ≤ n such that p(5) = 0 is a
subspace of that subspace.

4. The set of solutions of a homogeneous system of linear equations in k unknowns is a
subspace of Rk.

5. The union of the x- and y-axes is not a subspace of R2.

6. If U1, U2 are both subspaces of a larger vector space V , then their intersection U1 ∩U2

is also a subspace.

• Creating new spaces from old. There are several ways to get new vector spaces from
existing ones:

1. Subspaces (described above)

15



2. The intersection of subspaces

3. The sum of subspaces

4. The linear span of a collection of vectors

We describe these constructions next.

• Intersection of subspaces. The intersection U1 ∩ U2 of subspaces of a vector space V is
also a vector space, in fact quite a natural one since it is the largest subspace of V contained
in both U1 and U2.
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Lecture 7 (1/22/20)

• Sum of subspaces. Going in the opposite direction, given subspaces U1, U2, we might ask
what is the smallest subspace of V that contains both U1 and U2? The answer is not the
union of the subspaces, since that is not a subspace, but a new subspace called the sum of
U1 and U2

Definition. The sum of U1 and U2 is the set

U1 + U2 = {u1 + u2 : u1 ∈ U1, u2 ∈ U2}

It is easy to check that U1 + U2 is itself a subspace of V , and contains U1 and U2.

• Example. If U1 = {(x, 0, 0) : x ∈ R}, U2 = {(0, y, 0) : y ∈ R} then

U1 + U2 = {(x, y, 0) : x, y ∈ R}.

If we change U2 to U ′2 = {(y, y, 0) : y ∈ R} (a different subspace), the sum U1 +U ′2 remains
the same as U1 + U2 before.

• Direct sum. The sum U1 + U2 is called a direct sum, and denoted U1 ⊕ U2, if we require
the further property that each v ∈ U1 +U2 can be written in a unique way as a sum of the
form v = u1 + u2, where u1 ∈ U1, u2 ∈ U2.

Lemma. If U1, U2 ⊂ V are subspaces, and W = U1 +U2, then the following conditions are
equivalent:

(1) W = U1 ⊕ U2

(2) If 0 = u1 + u2 for some u1 ∈ U1, u2 ∈ U2, then u1 = u2 = 0.

(3) U1 ∩ U2 = {0}.

Proof. It would be enough to prove that: (1) =⇒ (2); (2) =⇒ (1); and (3) =⇒ (1). ...

• Example. Define

U1 = {(x, y, 0) ∈ R3 x, y ∈ R},
U2 = {(0, 0, z) ∈ R3 z ∈ R},
U3 = {(0, w, z) ∈ R3 w, z ∈ R}.

Then R3 = U1 ⊕ U2, but R3 = U1 + U3 is not a direct sum.

• Example. Define

P3 = {p(x) = ax3 + bx2 + cx+ d : a, b, c, d ∈ R},

the vector space of polynomials of degree ≤ 3 with real coefficients. Define

U1 = {p(x) ∈ P3 : p(0) = 0 },
U2 = {p(x) = ax3 + bx2 + cx+ d ∈ P3 : a = 0}

Then P3 = U1 + U2 (a small exercise: check this), but it is not a direct sum.
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Lecture 8 (1/24/20)

• Linear combinations. Let V be a vector space over F. If v1, v2, . . . , vm are vectors in V ,
an expression of the form

a1v1 + a2v2 + . . .+ amvm,

where a1, . . . , am are scalars from F, is called a linear combination.

• Linear span. If v1, . . . , vm are vectors in a vector space V , define the linear span of
v1, . . . , vm as

span(v1, . . . , vm) = {a1v1 + . . .+ amvm : a1, . . . , am ∈ F},

i.e., the span is the set of all linear combinations of v1, . . . , vm.

Lemma. The span of v1, . . . , vm is a subspace. Furthermore, it is the smallest possible
subspace that contains v1, . . . , vm (more precisely, what this means is that if U ⊂ V is any
subspace that contains v1, . . . , vm, then span(v1, . . . , vm) ⊂ U).

Proof: This is similar to the property of a sum of subspaces mentioned above. In fact, an
equivalent way to define span(v1, . . . , vm) would be to write it as

span(v1, . . . , vm) = V1 + V2 + . . .+ Vm,

where Vi = {tvi : t ∈ F} is the subspace consisting of vi and all its scalar multiple
(geometrically, Vi is a line through 0 and vi).

Finite and infinite dimension. If V is a vector space, we say that it is finite-dimensional
if there are vectors v1, . . . , vm ∈ V such that V = span(v1, . . . , vm). Otherwise, we say V is
infinite-dimensional, i.e., if it is not spanned by a finite set of vectors.

If V = span(v1, . . . , vm), does it make sense to say that V has dimension m? No, since there
may be many spanning sets, not all of them containing the same number of elements. But
we will soon figure out the right way to define the actual dimension.

Examples. Fn is finite-dimensional since it is spanned by

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , vn = (0, 0, . . . , 1).

Similarly, the space Pn of polynomials of degree ≤ n is finite-dimensional; it is spanned
by the monomials 1, z, . . . , zn. The space of all polynomials of arbitrary degree is infinite-
dimensional (proof: ...).

• Linear independence. Definition. The vectors v1, . . . , vm ∈ V are called linearly inde-
pendent if whenever we have

a1v1 + . . . amvm = 0

it follows that a1 = a2 = . . . = am = 0. I.e., the only linear combination of v1, . . . , vm that
equals the zero vector is the obvious one with all coefficients equal to 0. If the vectors are
not linearly independent, they are called linearly dependent.

Examples.
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1. The vectors e1, . . . , en mentioned before as a spanning set for Rn are linearly indepen-
dent. Proof: ...

2. The vectors v1 = (1, 1, 1), v2 = (0, 1,−1), v3 = (1, 2, 0) in R3 are linearly dependent.
To see this, we look for coefficients a1, a2, a3 such that a1v1 + a2v2 + a3v3 = (0, 0, 0).
This leads to a system of linear equations. It is not difficult to find that it has the
solution (a1, a2, a3) = (1, 1,−1) (as well as any scalar multiple of this solution).

Lemma. v1, . . . , vm are linearly independent if and only if every vector v ∈ span(v1, . . . , vm)
can be written in a unique way as a linear combination of v1, . . . , vm.

Proof. ...

• Linear dependence means the spanning set can be made smaller. Lemma. If
vectors v1, . . . , vm in a vector space V are linearly dependent, then there is an index 1 ≤
j ≤ m such that

1. vj ∈ span(v1, . . . , vj−1) (here, if j = 1 this statement should be interpreted as saying
that v1 = 0).

2. span(v1, . . . , v̂j , . . . , vm) = span(v1, . . . , vm), where v̂j means that vj is omitted from
the list.

Proof. ...

19



Lecture 9 (1/27/20)

• A spanning set which is linearly independent is minimal. The lemma above could
actually be formulated as an “if and only if” statement. The easy converse (“only if”) part
says that if the vectors are linearly independent, then removing any of them from the list
makes the span a strictly smaller subspace. The following theorem makes a much stronger
claim:

Theorem. If vectors v1, . . . , vm in a vector space V are linearly independent, then for any
vectors w1, . . . , wn, if they span V (i.e., if V = span(w1, . . . , wn)) then n ≥ m.

Proof. (Important) See pages 43–44 in the textbook.

• Bases. We now get to the important concept of a basis. Definition. A sequence of vectors
v1, . . . , vm in a finite-dimensional vector space V is called a basis if the vectors are linearly
independent and V = span(v1, . . . , vm).

• Dimension. By the theorem above, all bases have the same size (any spanning set has at
least as many elements as any linearly independent set; a basis has both properties so we’ll
get an inequality in both directions), so we can use it to define the dimension. Definition.
The dimension of a finite-dimensional vector space V is the size of any basis (and therefore
all bases) of V .

• Is this a good definition? Note that we haven’t yet proved that any finite-dimensional
space has even one basis, which leaves the theoretical possibility of a finite-dimensional
vector space whose dimension is undefined. This problem is remedied by the following
theorem:

Basis reduction theorem. If V = span(v1, . . . , vm) then either v1, . . . , vm is a basis of V
or some vectors can be removed from the list to obtain a basis for V .

Proof. Successively remove any vi which is in the span of the ones preceding it in the list.
Each such removal does not change the span. Eventually we end up with a spanning set in
which no vector is in the span of the ones preceding it, and by the lemma above that set
must be linearly independent, hence it is a basis.

• Corollary. Every finite-dimensional vector space has a basis, since it has a spanning set
(by the definition of finite-dimensionality) which, by the theorem above, can be thinned to
give a basis.

• The dimension is well-defined. If V is finite-dimensional, it has a basis, therefore its
dimension is defined.

• Examples

1. e1, . . . , en form a basis for Rn.

2. The polynomials 1, z, z2, . . . , zn are a basis for the space Pn of polynomials of degree
at most n.

3. Let S = {(1,−1, 0), (2,−2, 0), (−1, 0, 1), (0,−1, 1), (0, 1, 0)}. One can verify that an
arbitrary vector v = (x, y, z) ∈ R3 can be written as a linear combination

v = (x+ z)(1,−1, 0) + 0(2,−2, 0) + z(−1, 0, 1) + 0(0,−1, 1) + (x+ y + z)(0, 1, 0)
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of the elements of S. Therefore S is a spanning set for R3. However, dimR3 = 3, so we
can replace S with the smaller set B = {(1,−1, 0), (−1, 0, 1), (0, 1, 0)}, which is linearly
independent and therefore a basis.

• Basis extension theorem. If v1, . . . , vm are linearly independent vectors in a finite-
dimensional vector space V , either they are a basis, or we can add additional vectors
vm+1, . . . , vn to them to form a basis.

Proof. ...
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Lecture 10 (1/29/20)

• Summary. To summarize the discussion on bases and dimension, here are a few additional
facts that follow as easy consequences of the results we showed:

1. The dimension is the smallest size of a spanning set.

Proof. If there is a spanning set of size n, then as we saw from the basis reduction
theorem, the dimension is ≤ n. But if there is no spanning set of smaller size, in
particular the smallest basis has size ≥ n and therefore the dimension is ≥ n.

2. The dimension is the largest size of a linearly independent set.

Proof. If there is a linearly independent set of size n, then as we saw from the basis
extension theorem, the dimension is ≥ n. But if there is no linearly independent set of
bigger size, in particular the largest basis has size ≤ n and therefore the dimension is
≤ n.

3. Any spanning set whose size is the dimension is a basis.

Proof. If a spanning set is not a basis, it can be reduced to a basis, so its size must
be strictly bigger than the dimension.

4. Any linearly independent set whose size is the dimension is a basis.

Proof. If a linearly independent set is not a basis, it can be extended to a basis, so its
size must be strictly smaller than the dimension.

5. If U ⊂ V is a subspace then dimU ≤ dimV .

Proof. Take a basis for U . In particular it is linearly independent (in U , and therefore
also in V ) and hence is either a basis for V or can be extended to a basis of V by
adding more vectors to it.

• Theorem. If U,W ⊂ V are subspaces of a finite-dimensional vector space V , then

dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ).

In particular, if U +W = U ⊕W then dim(U +W ) = dim(U) + dim(W ).

Proof. (Important) See page 48 in the textbook.
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Lecture 11 (1/31/20)

• Linear transformations. If V,W are vector spaces, a function T : V → W is called a
linear transformation, or linear map, if it satisfies the properties

1. For any u, v ∈ V , T (u+ v) = T (u) + T (v).

2. For any a ∈ F, v ∈ V , we have T (av) = a T (v).

We can write a single condition that encompasses both conditions at the same time: it is
easy to see that T is linear if and only if it satisfies

T (au+ bv) = a T (u) + b T (v)

for any a, b ∈ F and u, v ∈ V .

The space V is called the domain of the linear transformation. The space W is called the
co-domain.

Note that a linear transformation always maps the zero vector in V to the zero vector in
W , i.e., it satisfies T (0) = 0, since T (0) = T (0 · 0) = 0 · T (0) = 0.

The set of linear transformations from V toW is denoted by L(V,W ) (this is a vector space!).
If V = W we denote L(V ) = L(V, V ) and refer to linear transformations T : V → V as
linear operators.

• Examples.

1. The zero map 0 : V →W sends every vector v ∈ V to 0 ∈W .

2. The identity map I : V → V (also denoted 1) is defined by I(v) = v.

3. A function f : R → R is linear if and only if f(x) = ax for some a ∈ R. So f(x) = ex

for example is not linear. A first-degree polynomial g(x) = ax+b is sometimes referred
to as a linear function or linear polynomial, but this terminology is inconsistent with
our current one so we will not use it.

4. On the space P∞ of polynomials (or more generally on the vector space of differentiable
functions) we can define the differentiation operator T (f) = f ′(x).

5. T : R2 → R2 given by T (x, y) = (x− 2y, 3x+ y) is linear. This is an example of matrix
multiplication, since we can write

T

(
x
y

)
=

(
1 −2
3 1

)
·
(
x
y

)
We shall see that linear transformations can in general be encoded (in some sense
that will be explained) by such matrix multiplication operations, and that is what
ties them to systems of linear equations, which can also be written in terms of matrix
multiplication.

• Describing a linear transformation. A linear transformation seems to contain a lot of
information — all possible values T (v) for all possible vectors in V — but in fact, as the
following lemma shows, it is enough to specify their values on a much smaller set.
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Theorem. Let v1, . . . , vm be a basis for V . A linear transformation T : V →W is uniquely
determined by the vectors

w1 = T (v1), w2 = T (V2), . . . , wm = T (vm).

That is, for any list of vectors w1, . . . , wm ∈W there exists exactly one linear transformation
T : V →W for which T (vj) = wj for j = 1, . . . ,m.

Proof. ...
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Lecture 12 (2/3/20)

• Composition/product of linear maps. If V,U,W are vector spaces and S ∈ L(V,U), T ∈
L(U,W ), we can define a function R : V →W by

R(v) = T (S(v))

R is called the composition of the functions T and S, and denoted R = T ◦ S. It is easy
to verify that it is also a linear transformation. In linear algebra, sometimes R will be
referred to as the product of the linear transformations, and denoted R = TS. Talking
about composition in this way makes sense, since it shares the following properties with
other “products”:

1. Associativity: (T1T2)T3 = T1(T2T3)

2. Neutral element: TI = IT = T where I is the identity map on the appropriate
space (if T ∈ L(V,W ) then the I in TI is I : V → V and the I in IT is I : W →W ).

3. Distributivity: (T1 + T2)S = T1S + T2S and T (S1 + S2) = TS1 + TS2.

The main place where multiplication of linear maps differs from normal multiplication is:

4. NO Commutativity: It is not true that TS = ST for all linear transformations S, T
(even when both ST and TS are defined; sometimes only one of them makes sense).
Here is an example where TS 6= ST : on R2 take T (x, y) = (y, x) and S(x, y) = (x,−y).

• Null space and range. Given a linear transformation T : V → W , we can define two
interesting linear subspaces:

1. The null space of T , denoted null(T ) (also sometimes called the kernel of T and denoted
ker(T )), is the set vectors in V that T maps to 0 ∈W :

null(T ) = {v ∈ V : T (v) = 0}.

2. The range of T , denoted range(T ) (also sometimes called the image of T and denoted
im(T )), is the set of vectors in W to which T maps some vector in V :

range(T ) = {T (v) : v ∈ V }.

• Claim: (easy) null(T ) is a linear subspace of V , and range(T ) is a linear subspace of W .

• Injective transformations. Definition. T ∈ L(V,W ) is called injective (or one-to-one)
if for any u, v ∈ V , if T (v) = T (u) then u = v. Equivalently, T is injective if it maps any
distinct vectors u 6= v ∈ V to distinct vectors T (u) 6= T (v) ∈W .

• Proposition. T ∈ L(V,W ) is injective if and only if null(T ) = {0}.
Proof. ...

• Examples

1. The differentiation operator on polynomials is not injective.
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2. The identity map is injective.

3. The linear map that sends a polynomial p(z) to z2p(z) is injective.

4. The linear map T (x, y) = (x− 2y, 3x+ y) is injective.

• Surjective transformations. Definition. A linear transformation T ∈ L(V,W ) is called
surjective (or (onto) if for any w ∈W there exists a v ∈ V such that T (v) = w. Equivalently,
T is injective if range(T ) = W , i.e., the range of T is equal to its co-domain.

• Examples

1. The identity map is surjective.

2. The differentiation operator on polynomials is surjective.

3. The map T (x, y) = (x − 2y, 3x + y) is surjective. Given a vector w = (a, b) ∈ R2, we
can solve the equation T (x, y) = (a, b) and obtain (x, y) = 1

7(a + 2b,−3a + b). Note
that the fact that there is a solution means T is surjective; the fact that there is a
unique solution means it’s injective.

4. The map on polynomials that sends p(z) to z2p(z) is not surjective, since no polyno-
mials of degree 0 or 1 are in its image.
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Lectures 13 (2/5/20) and 14 (2/7/20)

• The dimension formula. Theorem. If V,W are vector spaces and T : V → W is a
linear transformation, then

dim(V ) = dim(null(T )) + dim(range(T )).

Proof. (Important) See pages 56–57 in the textbook.

• Corollary. Let T ∈ L(V,W ).

1. If dim(V ) > dim(W ) then T is not injective.

2. If dim(V ) < dim(W ) then T is not surjective.

• Coordinate vectors. Let B = {v1, . . . , vn} be a basis of a vector space V . Any other
vector v can be written in a unique way as a linear combination

v = a1v1 + a2v2 + . . .+ anvn.

Another way of thinking about this is that the vector of coefficients (a1, . . . , an) (which is a
vector in Fn) encodes the vector v (which is an element of an abstract vector space V ).

Definition. The vector of coefficients in the linear combination (traditionally written as a
column vector) is called the coordinate vector of v in the basis B, and denoted

[v]B =


a1
a2
...
an

 .

Note that the function mapping a vector v to its coordinate vector [v]B is linear, i.e., we
have the relations [u+ v]B = [u]B + [v]B and [av]B = a[v]B for u, v ∈ V and a ∈ F.

• Representing a linear transformation as a matrix. If T : V → W is a linear trans-
formation, we can encode it as a matrix. Fix a basis B = {v1, . . . , vn} of V and a basis
C = {w1, . . . , wm} of W . For each j = 1, . . . , n, the vector T (vj) is in W so we can consider
its coordinate vector uj = [T (vj)]C in the basis C (which is a vector in Fm). Now package
all the vectors u1, . . . , un in a matrix with m rows and n columns. This is called the matrix
representing T in the bases B and C, and denoted M(T ):

M(T ) =

 | | |
[T (v1)]C [T (v2)]C · · · [T (vn)]C
| | |

 .

We can also write the matrix in terms of its entries

M(T ) =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn

 ,
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or abbreviate it as M(T ) = (aij)1≤i≤m,1≤j≤n. Its defining property is that for each 1 ≤ j ≤ n
we have the equation

T (vj) = a1jw1 + a2jw2 + . . .+ anjwn.

expressing T (vj) as a linear combination of the elements of the basis C.

• Example. If T (x, y) = (ax+by, cx+dy) (which can also be written as matrix multiplication

of

(
x
y

)
by the matrix

(
a b
c d

)
), then the matrix M(T ) representing T in the standard

basis B = C = {e1, e2} of R2 is again the matrix

(
a b
c d

)
.

More generally, for each m× n matrix M = (mi,j)1≤i≤m,1≤j≤n we have the linear transfor-
mation T : Rn → Rm defined by matrix multiplication:

T (v) = M · v.

If we take the bases B and C to be the standard bases in Rn and Rm, respectively, then the
representing matrix M(T ) is simply the original matrix M we started with.

• Example. Let T (x, y) = (x+ 2y,−x+ 3y). In the standard basis B = C = {(1, 0), (0, 1)}
the matrix representing T is

M(T )BC =

(
1 2
−1 3

)
.

What happens if we change the basis? Take B = {(1, 1), (0, 1)} and C = {(1, 0), (0, 1)}. In
this case we may compute:

T (1, 1) = (3, 2) = 3(1, 0) + 2(0, 1), T (0, 1) = (2, 3) = 2(1, 0) + 3(0, 1),

so

M(T )BC =

(
3 2
2 3

)
.

If we exchange the roles of C and B we get (check!)

M(T )CB =

(
1 2
−2 1

)

• Example. Let B = C = {1, z, z2, z3} be bases for the space P3 of polynomials of degree
≤ 3, and let T (p) = p′ be the derivative map. In this case it is not difficult to check that
the representing matrix is

M(T ) =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


• Matrix multiplication. If M = (aij)1≤i≤m,1≤j≤n and N = (bij)1≤i≤n,1≤j≤p, the matrix

product MN is computed by multiplying the matrix M by each of the columns of N , and
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packaging the results in a new m × p matrix. Formally, we have MN = (cij)1≤i≤m,1≤j≤p,
where

cij =

n∑
k=1

aikbkj .

Another way of thinking about it is that we compute all possible “dot products” of rows of
M with columns of N , where a dot product of two (row or column) vectors (x1, . . . , xn) and
(y1, . . . , yn) is equal to the sum of the products of the coordinates, i.e.

(x1, . . . , xn) · (y1, ·yn) = x1y1 + . . .+ xnyn.

The matrix product MN is the rectangular table of numbers containing all these dot prod-
ucts.

• Examples: ...

• Matrix multiplication and composition of linear transformations. A fundamental
fact related matrix multiplication with composition of linear maps:

Theorem. U, V,W be finite-dimensional vector spaces. Let T ∈ L(V,W ) and S ∈ L(W,U)
be linear transformations. Fix bases B = {v1, . . . , vm}, C = {w1, . . . , wn}, D = {u1, . . . , up}
of V,W,U respectively. Then we have

M(S ◦ T ) = M(S)M(T ),

where M(T ) = M(T )BC is the matrix representing T in the bases B and C; M(S) = M(S)CD
is the matrix representing S in the bases C and D; and M(S ◦T ) is the matrix representing
the composition S ◦ T in the bases B and D.

Proof. Denote M(T ) = (aij)1≤i≤n,1≤j≤m,M(S) = (bij)1≤i≤p,1≤j≤n.

(S ◦ T )vj = S(Tvj) = S(b1jw1 + b2jw2 + . . .+ bnjwn) = b1jS(w1) + . . .+ bnjS(wn)

= b1j(a11u1 + a21u2 + . . .+ ap1up) + b2j(a12u1 + a22u2 + . . .+ ap2up)

+ . . .+ bnj(a1nu1 + a2nu2 + . . .+ apnup)

= c1ju1 + c2ju2 + . . .+ cpjup,

where

c1j = a11b1j + a12b2j + . . .+ a1nbnj ,

c2j = a21b1j + a22b2j + . . .+ a2nbnj ,

...

cij = ai1b1j + ai2b2j + . . .+ ainbnj =
n∑
k=1

aikbkj ,

...

cpj = ap1b1j + ap2b2j + . . .+ apnbnj .

By the definition of the representing matrix, the numbers cij are exactly the entries of the
matrix M(S ◦ T ).
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• Corollary. Matrix multiplication has the same properties that composition of linear trans-
formations has:

1. Associativity: (M1M2)M3 = M1(M2M3)

2. Neutral element: MI = IM = M where I is the identity matrix of the appropriate
size.

3. Distributivity: (M1 +M2)N = M1N +M2N and M(N1 +N2) = MN1 +MN2.

4. NO Commutativity: It is not true that MN = NM for all matrices M,N (even
when both MN and NM are defined).

• Inverse functions. A function f : A→ B (where A and B are sets) is called invertible if
for each b ∈ B there is a unique a ∈ A for which f(a) = b. In this case we denote a = f−1(b)
and call f−1 : B → A the inverse function of f , and say that f is invertible. It has the
property that f−1 ◦ f = the identity function on A, f ◦ f−1 = the identity function on B.

It is easy to see that f is invertible if and only if it is both injective and surjective: injectivity
means for any b ∈ B there is at most one a ∈ A such that f(a) = b, and surjectivity means
for any b ∈ B there is at least one a ∈ A such that f(a) = b.
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Lecture 15 (2/10/20)

• Invertible transformations. A linear transformation T : V →W is called invertible if it
is invertible as a function, and also its inverse T−1 : W → V is itself a linear transformation.
It turns out this last condition is redundant: T−1 is automatically linear; in other words we
have the following result:

Proposition. The following conditions are equivalent:

1. T is invertible as a function, i.e., is injective and surjective.

2. T is invertible as a linear transformation.

3. T : V → W is invertible if and only if there exists a linear transformation S : W → V
such that

T ◦ S = IW and S ◦ T = IV

(here IW denotes the identity map on W and IV denotes the identity map on V ).
Note that in this case, S is determined uniquely, since if S′ : V → W also satisfies
T ◦ S′ = IW , S

′ ◦ T = IV , then

S = S ◦ IW = S ◦ (T ◦ S′) = (S ◦ T ) ◦ S′ = IV ◦ S′ = S′

Proof. (1) =⇒ (2): If w1, w2 ∈W , a, b ∈ F, denote v1 = T−1(w1), v2 = T−1(w2). Then

T (av1 + bv2) = aT (v1) + bT (v2) = aw1 + bw2,

but that means that av1 + bv2 is the inverse image of aw1 + bw2, i.e.,

T−1(aw1 + bw2) = aT−1(w1) + bT−1(v2),

which is exactly what we need to know that T−1 is a linear transformation.

(2) =⇒ (3): T−1 is exactly the S we need.

(3) =⇒ (1): If such an S exists then T is injective and surjective and S is its inverse (as
a function): if T (v) = T (v′) for some v, v′ ∈ V then v = IV (v) = S ◦ T (v) = S ◦ T (v′) =
IV (v′) = v′ (proving injectivity), and for any w ∈ W , T (S(w)) = T ◦ S(w) = IW (w) = w
(proving surjectivity).

• Example. The transformation T (x, y) = (x−2y, 3x+y) is invertible. Compute its inverse.
Solution. ...

• Isomorphic vector spaces. Definition. If V,W are vector spaces, they are called isomorphic
if there exists an invertible linear map T ∈ L(V,W ).

For finite-dimensional vector spaces, the question of whether two given spaces are isomorphic
has an easy answer.

Theorem. If V,W are finite-dimensional vector spaces, then they are isomorphic if and
only if dim(V ) = dim(W ).

Proof. ...

• Invertible linear operators. Theorem. If V is a finite-dimensional vector space and
T : V → V is a linear operator, then the following are equivalent:
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1. T is invertible.

2. T is injective.

3. T is surjective.

Proof. ...

• Invertible matrices. A square matrix M = (aij)1≤i,j≤n is invertible if there is a matrix
B = (bij)1≤i,j≤n such that AB = BA = I (where I denotes the identity matrix of order n).
This is equivalent to the linear map T : Fn → Fn defined by T (v) = A · v being invertible.
We can rewrite the theorem above in terms of matrices as follows:

Theorem. For a square matrix A, the following conditions are equivalent:

1. A is invertible.

2. the system of linear equations Av = 0 has the unique solution v = 0 (the zero vector).

3. The columns of the matrix A span Fn.

4. The reduced row-echelon form of A is the identity matrix.

Proof. ...
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Lecture 16 (2/14/20)

• Algorithm to find the inverse of a matrix. In the discussion section you will learn a
simple method to find the inverse of a matrix by using Gaussian elimination.

• Inverse of a 2 × 2 matrix. We saw that the 2 × 2 matrix

(
a b
c d

)
is invertible if and

only if ad− bc 6= 0. In that case it is not difficult to verify that its inverse matrix is

A−1 =
1

ad− bc

(
d −b
−c a

)
.

For higher-order square matrices, it would be nice if we had a simple criterion to determine
whether the matrix is invertible. It turns out that there is a function of the matrix entries,
generalizing the function ad − bc, that gives such a criterion. This function is called the
determinant.

Permutations. To define the determinant of an n × n matrix we need the concept of a
permutation.

Definition. A permutation (of order n) is a function σ : {1, 2, . . . , n} → {1, 2, . . . , n} which
is a bijection (a.k.a invertible, i.e., it is injective and surjective).

One can think of a permutation as a way of arranging n objects in a line: object number 1
goes in position number σ(1) (from the left), object number 2 goes in position number σ(2),
etc. Because permutations are such special functions, we use a special notation to denote
them in what’s known as two-line notation: the permutation σ will be written as

σ =

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
Note that the top line in two-line notation is redundant — it will always consist of the
numbers 1, . . . , n arranged in increasing order — but it is useful for the purposes of getting
a “feel” for what the permutation does and for manipulating it in some ways, as we will see.

• Example. There are 2 different permutations of order 2: ..., and here are the 6 different
permutations of order 3: ...

• Denote by Sn the set of permutations of order n (this is a standard notation used pretty
much in all of mathematics).

Theorem. The number |Sn| of permutations of order n is given by the factorial function

n! = 1 · 2 · 3 . . . (n− 1)n.

Proof. ...

Note. The factorial function grows very fast. Here are its first few values:

n 1 2 3 4 5 6 7 8 9 10

n! 1 2 6 24 120 720 5040 40320 362880 3628800

Unfortunately, the determinant, which is the magical function that will tell us if a square
matrix is invertible, will be defined as a sum of n! terms, one for each permutation. So, for
large matrices, computing it seems hopeless (but it isn’t, as it turns out).
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Lecture 17 (2/19/20)

• The identity permutation. The most important permutation in Sn is the identity per-
mutation σ = id defined by σ(j) = j for j = 1, . . . , n.

• Composition of permutations. Permutations, like general functions, can be composed
with each other. If σ, π ∈ Sn we define their composition σ ◦ π : {1, . . . , n} → {1, . . . , n} by

(σ ◦ π)(j) = σ(π(j)), j = 1, . . . , n

Examples. ...

• Properties of composition of permutations. Theorem. The composition of permu-
tations is a “nice” operation; it has the following properties:

1. The composition of two permutations is itself a permutation.

2. Associativity: π ◦ (σ ◦ τ) = (π ◦ σ) ◦ τ for any π, σ, τ ∈ Sn.

3. Neutral element: π ◦ id = id ◦ π = π for any π ∈ Sn.

4. Inverse element: for any π ∈ Sn there is a unique inverse permutation π−1 such that
π ◦ π−1 = π−1 ◦ π = id.

5. NO commutativity: the composition is in general not commutative, i.e. π ◦ σ is not
necessarily equal to σ ◦ π (and in most cases it isn’t).

• Inversions. There is a way to measure how “badly ordered” a permutation is, using a
concept called inversions. If i, j are two numbers between 1 and n and σ ∈ Sn, then we say
that the pair (i, j) is an inversion pair of σ if i < j but σ(i) > σ(j). The total number of
inversion pairs is called the inversion number of the permutation.

Examples. The identity permutation has inversion number 0 (the smallest possible). The

reverse permutation

(
1 2 . . . n− 1 n
n n− 1 . . . 2 1

)
has inversion number

1 + 2 + 3 + . . .+ n =
n(n− 1)

2
,

which is the largest possible inversion number for a permutation of order n.

In general, the inversion number can be visualized as the number of “line crossings” in a
diagram showing the numbers 1, . . . , n in the top row, the same numbers (in the same order)
in the bottom row, with lines connecting each number j on the top row to the number σ(j)
on the bottom row.

• The sign of a permutation. With each permutation we associate a sign sign(σ) = ±1
given by

sign(σ) = (−1)(the inversion number of σ) =

{
+1 even number of inversions,

−1 odd number of inversions.
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Theorem. Assume that a permutation σ′ is obtained from σ ∈ Sn by swapping the values
of i and j. In other words, σ′ = ti,j ◦σ, where ti,j is the permutation (called a transposition)
which leaves all numbers unchanged except for swapping the values i and j, i.e.,

ti,j =

(
1 2 3 . . . i . . . j . . . n− 1 n
1 2 3 . . . j . . . i . . . n− 1 n

)
.

Then we have sign(σ′) = − sign(σ).

Sketch of proof. The proof is a bit elaborate so we won’t write it fully, but here’s the
idea. First, prove this in the case when the transposition ti,j is an adjacent transposition,
meaning that j = i± 1. In this case, it is not difficult to see that the inversion number of σ′

differs from that of σ by either +1 or −1, and that means that the sign gets inverted. Next,
for a general transposition ti,j with 1 < i < j ≤ n, show that ti,j can be expressed as a
composition of an odd number of adjacent transpositions. Since each adjacent transposition
has the effect of inverting the sign of the permutation, composing an odd number of them
will also have that effect.

• Corollary. sign(σ ◦ π) = sign(σ) sign(π).

Proof. By the result above, this is true when σ is a transposition. By induction, it is
also true when σ is a composition of many transpositions. It remains to observe that any
permutation can be represented as a composition of transpositions — this is left to the
reader as an exercise.

• Definition of the determinant. Finally, we can define the determinant of a square
matrix.

Definition. If M = (aij)
n
i,j=1 is an n× n square matrix, its determinant is defined as

det(M) =
∑
σ∈Sn

sign(σ)a1σ(1)a2σ(2) . . . anσ(n)

• Examples. The determinants of a general 2× 2 matrix and of a general 3× 3 matrix are:
...
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Lectures 18 (2/21/20) and 19 (2/24/20)

• Properties of the determinant.

1. det(In) = 1. More generally, if A = (aij)
n
i,j=1 is a diagonal matrix, i.e., all of its

off-diagonal entries are 0, then det(A) = a11a22 . . . ann is the product of the diagonal
entries.

2. More generally, even if A is upper triangular or lower triangular, i.e., all of its en-
tries below (respectively, above) the main diagonal are 0, then the formula det(A) =
a11a22 . . . ann still holds.

3. det(A) = det(A>), whereA> denotes the transpose matrix ofA, whose entry in position
(i, j) (ith row, jth column) is aji (the entry in the jth row, ith column of the original
matrix).

4. If A has two identical rows/columns, then det(A) = 0.

5. If A has a row/column of 0s, then det(A) = 0.

6. det(A) is linear in each of the rows of A. I.e., if A,A′ are identical except in the jth
row then det(A+A′) = det(A) + det(A′); if A′ is obtained from A by multiplying the
jth row by a scalar c then det(A′) = cdet(A).

7. If E is an elementary matrix (a matrix such that multiplying A from the left by E has
the effect of performing an elementary row operation on A; see section 12.3.1 in the
textbook) then det(EA) = det(E) det(A). It is easy to compute det(E) for each of the
elementary matrix types.

8. det(A) = det(RREF(A))/(det(E1) . . . det(Ek)), where RREF(A) = Ek . . . E1A repre-
sents the sequence of elementary operations used to bring A to reduced row-echelon
form. Note that all of the numbers det(Ej) are non-zero. Therefore we get:

9. det(A) 6= 0 if and only if A is invertible.

10. det(AB) = det(A) det(B) for every n × n square matrices A,B — to see this, factor
A into a product EkEk−1 . . . E2E1 · RREF(A) of elementary matrices followed by a
reduced row-echelon form matrix. If A is invertible then the RREF is the identity
matrix I and the claim follows from the previous property; otherwise AB cannot be
invertible and therefore det(AB) = 0 = det(A) = det(A) det(B).

• Minors. Let A = (aij)
n
i,j=1 be a square matrix. For any 1 ≤ i, j ≤ n, the determinant of

the matrix obtained from A by deleting the ith row and jth column is called the (i, j)-minor
of A, and we will sometimes denote it by Mij or Mij(A).

• Cofactors. The cofactor is almost the same as the minor, but we add a sign of +1 or −1 to
each minor by imposing the following “checkerboard” pattern of signs on top of the matrix:

+ − + −
− + − + . . .
+ − + − . . .
− + − +

...
...

. . .
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To make this precise, the (i, j)-cofactor of the matrix A is Cij = (−1)i+jMij where Mij is
the (i, j)-minor.

• Computing determinants by row expansion. One reason why cofactors are useful is
that they allow us to easily compute the determinant of a matrix using the method known
as row expansion. In the simplest case of a “first row expansion”, the formula looks like
this:

det(A) = a11C11 + a12C12 + . . .+ a1nC1n

Sketch of proof. Divide the n! permutations in the sum defining the determinant into
classes according to the value j = σ(1). In each class we have (n − 1)! permutation-like
functions (which are not quite permutations, since they map the numbers {2, . . . , n} to the
numbers {1, 2, . . . , ĵ, . . . , n}— the “hat” notation ĵ means j is missing from the list). These
can be identified with the permutations with the permutations involved in computing each
of the cofactors C1j .

• Expansion by other rows. For a general row i we can write the ith row expansion of the
determinant as

det(A) = ai1Ci1 + ai2Ci2 + . . .+ ainCin =

n∑
j=1

aijCij .

To prove this, we can reduce it to the case of a first row expansion by swapping the ith
row with the first row (this has the effect of only changing the sign of the determinant),
then doing a first row expansion and noticing that all the (1, j)-cofactors in the new matrix
(after swapping the rows) correspond to (i, j)-cofactors of the original matrix with their
signs inverted to account for the fact that the values of 1 and j are transposed for each
permutation appearing in the sum.

• Column expansion. Since we know that det(A) = det(A>), by taking the transpose of
the matrix and doing a row expansion, we see that we could have simply done an analogous
column expansion to compute the determinant of the original matrix A, i.e., for each 1 ≤
j ≤ n we have the formula for a jth column expansion, given by

det(A) =

n∑
i=1

aijCij

(note that here the summation is on the row index i, not the column index j).
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• The adjoint matrix. We can package all the cofactors Cij into a matrix to get what is
known as the adjoint matrix (or adjugate matrix ) of A, denoted adj(A); except that, for
reasons that will be explained in the next theorem, to get the adjoint matrix one first writes
down all the cofactors in a matrix and then takes the transpose (do not forget this step!),
i.e,

adj(A) = (Cji(A))ni,j=1.

The usefulness of this matrix is explained by the next result:

Theorem. We have the equation of matrices:

A · adj(A) = adj(A) ·A = det(A) · I

(In words: when multiplying A by its adjoint, in either order, we get the identity matrix of
order n multiplied by the scalar det(A).) In particular, if A is invertible then the adjoint
matrix is related to the inverse matrix A−1 by

A−1 =
1

det(A)
adj(A)

Thus, the adjoint matrix gives a formula of sorts for the inverse matrix. For small matrices
this is actually a reasonably efficient way of computing the inverse matrix, as long as one
remembers the definition of the adjoint and is skilled in computing determinants.

• Proof idea. When we multiply A by the adjoint matrix adj(A), the diagonal entries are
seen to be precisely representations of det(A) as row expansions of the different rows of
A. The off-diagonal entries are also determinants of various matrices which are obtained
from A by replacing row i by row j for various different values of (non-equal) i, j. All such
matrices have two identical rows and therefore their determinants are all equal to 0.
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Lecture 20 (2/26/20) — eigenvectors, eigenvalues, and diagonalization of linear
operators

• Invariant subspaces. Let T : V → V be a linear operator on a vector space V . A linear
subspace U ⊆ V is called an invariant subspace for T if for any u ∈ U , also T (u) ∈ U .

• Examples. The spaces null(T ) and range(T ) are both invariant subspaces.

• Eigenvectors and eigenvalues. An eigenvector corresponds to the simplest type of in-
variant subspace which is a 1-dimensional subspace.

Definition. A vector v ∈ V is called an eigenvector of a linear operator T ∈ L(V ) if v 6= 0
and T (v) = λv for some scalar λ ∈ F. The number λ is called the eigenvalue associated
with the eigenvector v.

• Properties of eigenvectors.

1. null(T ) is the set of eigenvectors corresponding to the eigenvalue 0 (plus the zero vector,
which is not considered an eigenvector).

2. More generally, null(T−λI) is the set of eigenvectors corresponding to the eigenvalue λ.
This is sometimes referred to as the eigenspace of T associated with λ.

3. Theorem. The following conditions are equivalent:

(a) λ is an eigenvalue.

(b) null(T − λI) 6= {0}.
(c) T − λI is not injective.

(d) T − λI is not surjective.

(e) T − λI is not invertible.

(f) det(M − λI) = 0 where M = M(T )BB is a matrix representing T in some basis B
of V .

Concerning the last condition on this list, note that if we think of the matrix M as fixed,
then p(λ) = det(M − λI) as a function of λ is a polynomial, called the characteristic
polynomial of M , whose roots are the eigenvalues. This is why polynomial equations
are so important in linear algebra.

• Examples.

– T = 0 (the zero map): all nonzero vectors are eigenvectors associated with the eigen-
value 0.

– T = I (the identity map): all nonzero vectors are eigenvectors associated with the
eigenvalue 1.

– P : R3 → R3, P (x, y, z) = (x, y, 0) has eigenvalues 0 and 1. The eigenvectors for the
eigenvalue 0 are of the form (0, 0, z) for z ∈ R. The eigenvectors for the eigenvalue 1
have the form (x, y, 0) for x, y ∈ R.

• Eigenvectors associated with distinct eigenvalues are linearly independent.

Theorem. If T ∈ L(V ) has eigenvectors v1, . . . , vn where vi is associated with eigenvalue
λi, i.e., T (vi) = λivi, and λ1, . . . , λn are distinct, then v1, . . . , vn are linearly independent.

Proof. ...
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Lecture 21 (2/28/20)

• Corollary. An operator T ∈ L(V ) where dim(V ) = n has at most n eigenvalues.

• Diagonalization. Assume that we can find a basis B = {v1, . . . , vn} consisting of eigen-
vectors of T , where each vi is associated with an eigenvalue λi. If we represent the trans-
formation T in the basis B we get a diagonal matrix:

M(T )BB =


λ1 0 0 0
0 λ2 0 . . . 0
0 0 λ3 0

...
. . .

...
0 0 0 . . . λn

 .

In that case we can say that we diagonalized T .

• Example: Let us try to diagonalize the linear transformation T : R2 → R2 given by

T

(
x
y

)
=

(
5 3
−2 0

)(
x
y

)
= A

(
x
y

)
=

(
5x+ 3y
−2x

)
First, we find the eigenvalues. A number λ is an eigenvalue if and only if det(A− λI) = 0,
so we compute

A− λI =

(
5− λ 3
−2 −λ

)
= (5− λ)(−λ)− 3(−2) = λ2 − 5λ+ 6

This is 0 when λ = 2, 3, so these are the possible eigenvalues. Next, for each of the eigenval-
ues we find an associated eigenvector: For λ1 = 2, we need to solve the equation Av = 2v
or (A− 2I)v = 0:

(A− 2I)

(
x
y

)
=

(
3 3
−2 −2

)(
x
y

)
=

(
0
0

)
It is easy to find that x = 1, y = −1 is a solution (in fact the vector (1,−1) spans the space
of solutions, i.e., any other solution is a scalar multiple of this solution). This gives us our
first eigenvector v1 = (1,−1).

For the second eigenvalue λ2 = 3, we solve

(A− 3I)

(
x
y

)
=

(
2 3
−2 −3

)(
x
y

)
=

(
0
0

)
and we get a solution x = 3, y = −2, which gives us the second eigenvector v2 = (3,−2).

To summarize, we found a basis B = {(1,−1), (3,−2)} of eigenvectors of T , so when repre-
sented in the basis B, the representing matrix for T will be the diagonal matrix.

M(T )BB =

(
2 0
0 3

)
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This is especially helpful, for example, if we wanted to compute a high power

Tn = T ◦ T ◦ . . . ◦ T

of the transformation: in this case, when representing everything in the basis B the problem
would be reduced to computing a high power of the matrix M(T )BB, which is easy since this
is a diagonal matrix. (In the next lecture we’ll see how this can be used to find a formula
for the famous Fibonacci numbers).

• The characteristic polynomial. As the example above illustrates, an important role in
the discussion about eigenvectors and diagonalization is played by the function det(M−λI),
so we take a closer look at this function.

Definition. Let M = (mij)
n
i,j=1 be a square matrix of order n. The characteristic polyno-

mial of M is the function

p(x) = pM (x) = det(xI −M) = det


x−m11 −m12 −m13 . . . −m1n

−m21 x−m22 −m23 . . . −m2n

−m31 −m32 x−m33 . . . −m3n
...

...
...

. . .
...

−mn1 −mn2 −mn3 . . . x−mnn


• Properties of the characteristic polynomial.

1. The characteristic polynomial is a polynomial of degree n in x. There are several ways
to see this, by thinking of the determinant as a sum over permutations or by doing a
first-row expansion.

2. The leading coefficient of p(x) (i.e., the coefficient of xn) is 1, since that comes from
expanding the product (x − m11)(x − m22) . . . (x − mnn) associate with the identity
permutation in the sum over the permutations that defines the determinant.

3. The coefficient of xn−1 is −(m11 +m22 + . . .+mnn). The number
∑

jmjj is called the
trace of the matrix M and is denoted tr(M), so a shorter way to write this coefficient
is − tr(M).

4. The constant coefficient is p(0) = det(−M) = (−1)n det(M).

5. The roots of the polynomial p(x) (i.e., solutions of the equation p(x) = 0) are exactly
the eigenvalues of the matrix M .

6. For an upper or lower triangular matrix A = (aij)
n
i,j=1, the characteristic polynomial

is (x − a11)(x − a22) . . . (x − ann), since the matrix xI − A is also triangular and its
determinant is the product of the diagonal entries.

Using the characteristic polynomial we can prove the following fundamental result:

• Theorem. Any matrix M over the complex numbers has at least one eigenvalue.

Proof. Over the complex numbers any polynomial has a root, by the Fundamental Theorem
of Algebra.
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Note that this fact is not true when working over the real numbers. For example, the

matrix A =

(
0 1
−1 0

)
has no real eigenvalues. This difference is yet another reason why

the complex numbers are considered so useful and important in mathematics.

• Powers of matrices and the Fibonacci numbers. Let us illustrate the power of matrix
diagonalization by using these ideas to find a formula for the Fibonacci numbers1. These
numbers, named after an Italian mathematician of the 13th century, are defined by the
recursive equations

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n ≥ 2.

Here are the first few Fibonacci numbers:

n 0 1 2 3 4 5 6 7 8 9 10

Fn 0 1 1 2 3 5 8 13 21 34 55

We can represent the recursion in terms of matrix multiplication, as follows;(
Fn
Fn−1

)
=

(
1 1
1 0

)(
Fn−1
Fn−2

)
In other words, if we define vectors vn =

(
Fn
Fn−1

)
for n = 1, 2, 3, . . . and a matrix A =(

1 1
1 0

)
, then we have the equation

vn = Avn−1

which by iteration leads to

vn = An−1v1 = An−1
(

1
0

)
So, if we could easily compute powers of the matrix A we would be able to find a formula for
vn (and hence for Fn). The idea is to find the eigenvalues and eigenvectors of A. Following
the usual method, we compute the characteristic polynomial and look for its roots:

pA(x) = det(xI −A) = det

(
x− 1 −1
−1 x

)
= (x− 1)x− 1 = x2 − x− 1 = 0.

The solutions of this equation are λ1 = 1+
√
5

2 ≈ 1.61803 (a famous mathematical constant

known as the golden ratio) and λ2 = 1−
√
5

2 ≈ −0.61803. For each of them it is not difficult
to find an eigenvalue

e1 =

(
1+
√
5

2
1

)
(for λ1),

e2 =

(
1−
√
5

2
1

)
(for λ2).

1The Fibonacci numbers are well-known for their amusing mathematical properties and for appearing in na-
ture in connection with biological phenomena such as growth patterns of pine cones and sunflowers — see
https://en.wikipedia.org/wiki/Fibonacci number.
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Finally, to compute vn = An−1v1, we expand v1 in the basis B = {e1, e2} of eigenvectors:

v1 =

(
1
0

)
=

1√
5
e1 −

1√
5
e2

This allows us to write

vn = An−1
(

1
0

)
= An−1

(
1√
5
e1 −

1√
5
e2

)
=

1√
5

(An−1e1 −An−1e2)

=
1√
5

(λn−11 e1 − λn−12 e2) =
1√
5

(
λn1 − λn2

λn−11 − λn−12

)
So, we have derived the famous (and rather surprising) formula

Fn =
1√
5

(
1 +
√

5

2

)n
− 1√

5

(
1−
√

5

2

)n
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Lecture 22 (3/2/20)

• Final remarks on matrix diagonalization. To conclude the discussion on diagonaliza-
tion, I’ll illustrate another way of thinking about diagonalization of matrices. If a square
matrix A can be diagonalized, that means that we can find a basis v1, . . . , vn of eigenvec-
tors, with associated eigenvalues λ1, . . . , λn. If we create a matrix S whose columns are the
eigenvectors, then the equations Avj = λjvj translate into the matrix equation

AS = SD

where D is the diagonal matrix

D =


λ1

λ2
. . .

λn

 .

This can be written equivalently as

A = SDS−1 ⇐⇒ D = S−1AS

(recall that the columns of S form a basis, which is one of the equivalent conditions for a
matrix to be invertible; so we can be sure that S−1 exists). Thus, “diagonalizing a matrix”
can refer to the process of finding a basis of eigenvectors and their associated eigenvalues,
or, equivalently, as the process of finding a pair of matrices S and D, where S is invertible
and D is a diagonal matrix, such that the matrix equations A = SDS−1, D = S−1AS hold.
The implication also goes in the opposite direction: if we found such matrices S,D, then
working backwards through this reasoning we see that the columns of the matrix, regarded
as column vectors v1, . . . , vn, satisfy the eigenvector equation

Avj = λjvj ,

where λ1, . . . , λn are the diagonal entries of D.

As a final comment, the representation of A as SDS−1 is also convenient for computing the
matrix powers An of A:

An =

n times︷ ︸︸ ︷
(SDS−1)(SDS−1) · · · (SDS−1) = SD(S−1S)D(S−1S)D · · · (S−1S)DS−1

= SDnS−1 = S


λn1

λn2
. . .

λnn

 , S−1

where in the last step we exploited the useful property that when two diagonal matrices
are multiplied, the result is a diagonal matrix with the entries being the products of the
respective diagonal entries of the two matrices.

As an exercise, I suggest trying to use this alternative formalism for matrix diagonalization
to derive the formula for Fibonacci numbers we found earlier.
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• Inner product spaces. We now begin the new topic of inner product spaces.

An inner product space is a vector space with an additional “geometric” structure that en-
ables us to measure lengths of vectors, angles between vectors, and a notion of orthogonality
of vectors.

Definition. Let V be a vector space over the field F (= R or C). An inner product on V is
a function that takes two vectors u, v and returns a scalar 〈u, v〉, that satisfies the following
properties:

1. Linearity in the first argument: 〈u + v, w〉 = 〈u,w〉 + 〈v, w〉 and 〈au, v〉 = a〈u, v〉 for
all u, v, w ∈ V and a ∈ F.

2. Positivity: 〈u, u〉 ≥ 0 (and in particular, is a real number) for all v ∈ V .

3. Positive definiteness: 〈v, v〉 = 0 if and only if v = 0.

4. (Conjugate)-symmetry: if F = R then 〈u, v〉 = 〈v, u〉. If F = C then 〈u, v〉 = 〈v, u〉
(recall that z denotes the complex conjugate of a complex number z).

5. (Conjugate)-linearity in the second argument (follows from 1 and 4 above): if F = R
then 〈u, v + w〉 = 〈u, v〉 + 〈u,w〉 and 〈u, av〉 = a〈u, v〉 for all u, v, w ∈ V and a ∈ R.
If F = C then 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉 and 〈u, av〉 = a〈u, v〉 for all u, v, w ∈ V and
a ∈ C.

A vector space V equipped with an inner product is called an inner product space.
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Lecture 23 (3/4/20)

• Examples of inner product spaces.

1. On Rn, the usual dot product defined by

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + . . .+ xnyn

is an inner product.

2. On Cn, the product defined by

〈(x1, . . . , xn), (y1, . . . , yn)〉 = x1y1 + . . .+ xnyn =
n∑
j=1

xjyj

is an inner product.

3. On the space P of polynomials (say with complex coefficients), we can define an inner
product

〈f, g〉P =

∫ 1

0
f(x)g(x) dx.

4. On each of the above spaces we can define a non-standard inner product. For example,
on R2 we can define

〈(x1, y1), (x2, y2)〉 = x1x2 + 3y1y2.

It is not difficult to check that this function is an inner product.

• Orthogonality. Two vectors u, v in an inner product space V are called orthogonal if
〈u, v〉 = 0. This is denoted by u ⊥ v.

• Norm. The norm (a.k.a. length) of a vector v in an inner product space V is defined as

‖v‖ =
√
〈v, v〉.

For example, for the standard inner product in Rn we have

‖(x1, . . . , xn)‖ =
√
x21 + . . .+ x2n.

• Theorem. The norm satisfies the following properties:

1. ‖v‖ ≥ 0 for any v, and ‖v‖ = 0 if and only if v = 0.

2. ‖αv‖ = |α|‖v‖ for any v ∈ V , α ∈ F.

3. The triangle inequality: ‖u+ v‖ ≤ |u‖+ ‖v‖ for any u, v ∈ V .

Proof. The first two claims are immediate from the definition. The third requires first
proving the Cauchy-Schwartz inequality, which we’ll do shortly.
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• Theorem. (Pythagorean theorem.) If u ⊥ v then ‖u+ v‖2 = ‖u‖2 + ‖v‖2.
Proof. For general u, v we have

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u+ v〉+ 〈v, u+ v〉 = 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= ‖u‖2 + ‖v‖2 + 〈u, v〉+ 〈v, u〉 = ‖u‖2 + ‖v‖2 + 〈u, v〉+ 〈u, v〉
= ‖u‖2 + ‖v‖2 + 2 Re〈u, v〉.

If they are orthogonal then 〈u, v〉 = 0 so the Pythagorean theorem holds.

• Corollary. If v1, . . . , vk are pairwise orthogonal (i.e., each two of them are orthogonal) and
u = a1v1 + . . .+ akvk is a linear combination of u1, . . . , uk, then

‖u‖ =
√
a21‖v1‖2 + . . .+ a2k‖vk‖2.

Note that if also ‖v1‖ = . . . = ‖vk‖ = 1 then we get the simpler formula

‖u‖ =
√
a21 + . . .+ a2k.

• Orthogonal decomposition. Fix a vector v 6= 0 in an inner product space V . We claim
that any vector u can be decomposed as a sum u = u1 + u2 where u1 is parallel to v (i.e.,
u1 = av for some scalar a) and u2 ⊥ v. To find this decomposition, write u2 = u− av. The
fact that u2 ⊥ v leads to the equation

0 = 〈u− av, v〉 = 〈u, v〉 − a〈v, v〉 = 〈u, v〉 − a‖v‖2.

Solving for the unknown a we get

a =
〈u, v〉
‖v‖2

,

so the orthogonal decomposition is

u =
〈u, v〉
‖v‖2

v +

(
u− 〈u, v〉

‖v‖2
v

)
.

The vector u1 = av is called the orthogonal projection of u in the direction of v. Note that
u2 = 0 if and only if u = u1 = av, i.e., u is parallel to v.

• Angles between vectors. Let V be an inner product space over the real numbers. The
formula

‖u− v‖2 = ‖u‖2 + |v‖2 − 2〈u, v〉

is reminiscent of the law of cosines from plane geometry, which says that

‖u− v‖2 = ‖u‖2 + |v‖2 − 2‖u‖ · ‖v‖ cos θu,v,

where θu,v denotes the angle subtended between the two vectors u and v. The following
definition therefore seems like a natural generalization of the concept of angles to inner
product spaces:
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Definition. The angle 0 ≤ θu,v ≤ π between nonzero vectors u, v in a general inner product
space is defined by the formula

cos θu,v =
〈u, v〉
‖u‖ · ‖v‖

Note that in order for this to make sense, we need to convince ourselves that the number on
the right-hand side is between −1 and 1. A famous inequality (which is also true in complex
inner product spaces, where angles are not defined) will come to our rescue:

• The Cauchy-Schwartz inequality. For any u, v ∈ V , we have

|〈u, v〉| ≤ ‖u‖ · ‖v‖,

The two sides are equal if and only if u, v are linearly dependent, i.e., one of them is a scalar
multiple of the other.

Proof. Assume v 6= 0, since if v = 0 both sides are 0 so there’s nothing to prove. Let
u = u1 + u2 be the orthogonal decomposition of u with respect to v as described above.
Applying the Pythagorean theorem, we have

‖u‖2 = ‖u1‖2 + ‖u2‖2 =

∥∥∥∥〈u, v〉‖v‖2
v

∥∥∥∥2 + ‖u2‖2 ≥
∥∥∥∥〈u, v〉‖v‖2

v

∥∥∥∥2 =
‖v‖2|〈u, v〉|2

‖v‖4
=
|〈u, v〉|2

‖v‖2
.

Multiplying the extreme sides of this inequality by ‖v‖2 and taking square roots gives the
claim. The claim about when we have inequality follows from the remark above about u2
being 0 if and only if u is parallel to v.

Note that the Cauchy-Schwartz inequality can be rewritten as

−1 ≤ 〈u, v〉
‖u‖ · ‖v‖

≤ 1

so the definition of the angle θu,v indeed makes sense. The case when θu,v = π/2 corresponds
to orthogonal vectors u ⊥ v, and the case when the vectors are parallel u = av gives an
angle θu,v = 0 if a > 0 or θu,v = π if a < 0.
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Lecture 24 (3/6/20)

• The triangle inequality. ‖u + v‖ ≤ ‖u‖ + ‖v‖. Equality holds if and only if u = αv or
v = αu for some scalar α ≥ 0.

Proof. Write the inequality

‖u+ v‖2 = ‖u‖2 + |v‖2 + 2‖u‖ · ‖v‖ cos θu,v

≤ ‖u‖2 + |v‖2 + 2‖u‖ · ‖v‖ = (‖u‖+ ‖v‖)2

and take square roots. The verification of the condition for equality is left as an exercise to
the reader.

• The parallelogram law. Theorem. For any u, v ∈ V we have

‖u+ v‖2 + ‖u− v‖2 = 2
(
‖u‖2 + ‖v‖2

)
.

Note that the name comes from interpreting the quantities ‖u + v‖ and ‖u − v‖ as the
side lengths of a parallelogram with one corner in the origin and two of whose sides are
represented by the vectors u and v.

Proof. ...

• Orthogonal system and basis. A set of nonzero vectors {e1, . . . , en} of an inner product
space V is called an orthogonal system if ei ⊥ ej for any i 6= j. It is called an orthogonal
basis if it is a basis and an orthogonal system.

• Orthonormal system and basis. A set of nonzero vectors {e1, . . . , en} of an inner product
space V is called an orthonormal system if it is an orthogonal system and ‖ei‖ = 1 for
i = 1, . . . , n. It is called an orthonormal basis if it is a basis and an orthonormal system.

The two conditions for orthonormality ei ⊥ ej and ‖ei‖ = 1 can be unified into one equation

〈ei, ej〉 =

{
1 if i = j,

0 if i 6= j.

• The Kronecker delta. The quantity on the right-hand side of the above equation is often
denoted by the abbreviated notation δi,j and referred to as the Kronecker delta function (of
i and j). (You do not need to remember this term.)

• Properties of orthogonal/orthonormal bases.

1. If {e1, . . . , ek} is an orthogonal system and u = a1e1 + . . .+ ek zis a linear combination
of e1, . . . , ek, then we can recover the coefficients a1, . . . , ak by taking an inner product
of u with each of the vectors e1, . . . , ek:

〈u, ej〉 = 〈a1e1 + . . .+ ek, ej〉
= a1〈e1, ej〉+ a2〈e2, ej〉+ . . .+ aj〈ej , ej〉+ . . .+ ak〈ek, ej〉 = aj‖ej‖2,

so we get that aj =
〈u,ej〉
‖ej‖2 . In the case of an orthonormal system we get the even

simpler formula aj = 〈u, ej〉. (Note that this is exactly the scalar that appeared in the
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expression we called earlier the projection of u in the direction ej .) This is one of the
reasons orthonormal bases are useful: to find the coordinates of a vector u with respect
to an orthonormal basis, we don’t need to solve systems of linear equations, but can
instead compute the coefficients directly using the inner product.

2. As an immediate corollary of the property mentioned above, we get:

Proposition. Every orthogonal system is linearly independent.

Proof. If 0 = a1e1 + . . .+ akek then aj =
〈0,ej〉
‖ej‖2 = 0.

3. It follows from the above result that any orthonormal system with dim(V ) vectors is
a basis (since it is a linearly independent set of maximal size).

• Examples.

1. The standard basis in Rn is orthonormal.

2. The basis {(1, 1), (1,−1)} in R2 is orthogonal.

3. The basis
{(

1√
2
, 1√

2

)
,
(

1√
2
,− 1√

2

)}
in R2 is orthonormal.

• A surprisingly non-obvious result: Theorem. Every finite dimensional inner product
space has an orthonormal basis.

To prove the theorem, we need an interesting algorithm known under the (slightly bombas-
tic) name:

• The Gram-Schmidt orthogonalization procedure. Given linearly independent vectors
v1, . . . , vn, we construct a new set of vectors u1, . . . , un that satisfy

1. For each 1 ≤ k ≤ n, span(u1, . . . , uk) = span(v1, . . . , vk).

2. u1, . . . , un are orthogonal.

The idea is to define each uk by taking vk and subtracting from it some linear combination
of v1, . . . , vk−1 (or equivalently, of u1, . . . , uk) to cause the resulting vector to be orthogonal
to the ones already defined. More precisely, we define

u1 = v1,

u2 = v2 −
〈v2, u1〉
‖u1‖2

u1 (= v2 minus its projection in the direction u1),

u3 = v3 −
〈v3, u1〉
‖u1‖2

u1 −
〈v3, u2〉
‖u2‖2

u2 (= v3 minus its projections in the directions u1, u2),

...

un = vn −
n−1∑
j=1

〈vn, uj〉
‖uj‖2

uj (= vn minus its projections in the directions u1, . . . , un−1).

It is easy to verify that 〈uk, uj〉 = 0 for all j < k. To check the claim about the span being
preserved, note that

span(u1, . . . , uk) ⊂ span(v1, . . . , vk)
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since each uk is defined as a linear combination of vk and the previous uj ’s (which are by
induction linear combinations of v1, . . . , vk−1. Conversely, given u1, . . . , uk we can recover
vk as a linear combination of u1, . . . , uk by moving the linear combination of u1, . . . , uk−1 to
the other side of the equation in the definition of uk; then proceeding by induction we can
similarly represent each vk as a linear combination of u1, . . . , uk, proving that

span(v1, . . . , vk) ⊂ span(u1, . . . , uk).

• Normalizing the vectors. As a final step, we can replace u1, . . . , un with new vectors
e1, . . . , en which give an orthonormal basis, by defining

ek =
uk
‖uk‖

.

• Example. Take v1 = (1, 1, 0), v2 = (2, 1, 1) in R3. Applying the Gram-Schmidt procedure
we get: ...

• Proof that any IPS has an orthonormal basis. Start with an arbitrary basis (not
necessarily orthogonal) of the space, and apply the Gram-Schmidt procedure to get an
orthonormal system of the same size as the original basis, which therefore must be a basis.
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Lecture 25 (3/9/20)

• Orthogonal complement. Let V be a finite-dimensional inner product space, and let
U ⊂ V be a subspace of V . The orthogonal complement of U is the subspace U⊥ ⊂ V ,
defined by

U⊥ = {v ∈ V : v ⊥ u for all u ∈ U}.

• Properties of U⊥:

1. U⊥ is a linear subspace of V .

Proof. ...

2. {0}⊥ = V , V ⊥ = {0}.
3. U ∩ U⊥ = {0}.

Proof. if v ∈ U ∩U⊥ then v is orthogonal to itself, so ‖v‖2 = 〈v, v〉 = 0 and therefore
v = 0.

4. V = U + U⊥.

Proof. if e1, . . . , ek is an orthonormal basis for U , we define

v1 = 〈v, e1〉e1 + . . .+ 〈v, ek〉ek,
v2 = v − v1.

We have v = v1 + v2, and it is easy to check that v1 ∈ U, v2 ∈ U⊥.

5. Combining the last two properties we get: Theorem. V = U ⊕ U⊥.

6. (U⊥)⊥ = U .

Proof. Any vector u ∈ U is orthogonal to any vector w ∈ U⊥. This proves that
U ⊂ (U⊥)⊥. Conversely, if v ∈ (U⊥)⊥, write v = u+w where u ∈ U,w ∈ U⊥. We have

‖w‖2 = 〈w,w〉 = 〈w,w〉+ 0 = 〈w,w〉+ 〈u,w〉 = 〈u+ w,w〉 = 〈v, w〉 = 0

(the last equality holding since w ∈ U⊥ and v ∈ (U⊥)⊥). Thus w = 0 and v = u ∈ U .
This shows that U⊥ ⊂ (U⊥)⊥ and finishes the proof.

Alternative proof of the second part. By the direct sum decomposition (property
5) above,

dim(V ) = dim(U) + dim(U⊥),

and similarly (applying the same argument to U⊥ instead of U),

dim(V ) = dim(U⊥) + dim((U⊥)⊥).

Comparing the two equations we conclude that dim(U) = dim((U⊥)⊥). We also know
(from the easy part of the proof above) that U ⊂ (U⊥)⊥, so the two spaces have to be
equal.

• Orthogonal projections. If v ∈ V = U ⊕ U⊥, we can write v in a unique way as a sum
v = u+ w where u ∈ U and w ∈ U⊥. The vector u is called the orthogonal projection of v
onto U and is denoted u = PU (v). This generalizes the idea of the orthogonal decomposition
of a vector u in the direction of a vector v discussed in a previous lecture.

Note that PU : v 7→ PU (v) is a function from V to V . It is not hard to check that it is a
linear transformation. We call it the orthogonal projection operator associated with U .
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• Properties of PU .

1. range(PU ) = U .

2. null(PU ) = U⊥.

3. For any v ∈ V , we have v = PU (v) + PU⊥(v). Equivalently, this can be written as the
operator identity

PU + PU⊥ = I

4. Theorem. PU (v) is the vector in U that is closest to v. More precisely, for every
u ∈ U we have

‖v − u‖ ≥ ‖v − PU (v)‖,

with equality holding if and only if u = PU (v).

Proof.

‖v − u‖2 = ‖(v − PU (v)) + (PU (v)− u)‖2 = ‖v − PU (v)‖2 + ‖PU (v)− u‖2

≥ ‖v − PU (v)‖2

(note that v−PU (v) ∈ U⊥ and PU (v)−u ∈ U , which is why the second equality follows
from the Pythagorean theorem).

• Example. In R3, let us find the distance between the vector v = (1, 2, 3) and the plane U
where U = W⊥,W = span{(1, 1, 1)}, and the orthogonal projection PU (v). In this case we
have

PU (v) = v − PW (v) = (1, 2, 3)− 〈(1, 2, 3), (1, 1, 1)〉
‖(1, 1, 1)‖2

(1, 1, 1)

= (1, 2, 3)− 6

3
(1, 1, 1) = (1, 2, 3)− (2, 2, 2) = (−1, 0, 1).

Therefore the distance between v and U is

‖v − PU (v)‖ = ‖(2, 2, 2)‖ =
√

12.

Note that it was easier to compute PU⊥(v) than PU (v) since U is 2-dimensional and its
orthogonal complement is 1-dimensional. In general, to compute PU (v) one has to first find
an orthogonormal (or orthogonal) basis for the space.
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Lecture 26 (3/11/20)

[Note. The following lecture corresponds to parts of sections 11.1–11.3 in the textbook, but
covers only part of the material from those sections and follows a simplified approach that gives
a proof of the spectral theorem only for the case of self-adjoint operators.]

• Adjoint operators. Let T ∈ L(V ) be an operator on a finite-dimensional inner product
space V . We associate to T a new operator denoted T ∗ that will be called the adjoint
operator of T . The defining equation of T ∗ is

〈Tv,w〉 = 〈v, T ∗w〉

Theorem. There is a unique operator satisfying this equation for all v, w ∈ V .

Proof. For simplicity, assume that V = Cn equipped with the standard inner product, and
T (v) = Av where A is an n×n square matrix of complex numbers. The proof in the general
case is similar. Let e1, . . . , en be the standard orthonormal basis of Cn. Let S(v) = Bv be
a linear operator, and assume that the equation

〈Tv,w〉 = 〈v, Sw〉 = 〈Sw, v〉

holds for all v, w ∈ Cn. Applying it with v = ej and w = ei gives that the entry in the ith
row, jth column of the matrix A must be equal to the complex conjugate of the entry in
the jth row, ith column of the matrix B; i.e.,

bji = aij , i, j = 1, . . . , n.

This proves uniqueness: the matrix B is determined uniquely by the condition. The ex-
istence also follows, since we can define the matrix B according to the same rule and get
an operator for which the defining equation of the adjoint operator holds for vectors v, w
belonging to the standard basis, and hence (by linearity in the first argument and conjugate-
linearity in the second argument) it is easy to check that the same identity holds for general
vectors.

• The above definition also gives rise to an analogous concept in the language of matrices:

Definition. If A = (aij)
n
i,j=1 is a square matrix, the conjugate transpose matrix (a.k.a.

Hermitian conjugate) of A is the matrix A∗ = (bij)
n
i,j=1 whose entries are given by bji = aij .

Equivalently, we can write
A∗ = A>,

where A> is the transpose matrix and the “bar” · · · indicates that we take the complex
conjugate of each entry. In the case of matrices of real numbers, the concept of the
conjugate transpose matrix is identical to taking the transpose.

• Note. The conjugate transpose matrix is also sometimes called the adjoint matrix. This
creates a conflict with our earlier definition of the entirely different concept of the adjoint
matrix (which is also known as the adjugate matrix). Try not to get confused by this
sometimes inconsistent terminology...
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• Self-adjoint operators and matrices. An operator T ∈ L(V ) is called self-adjoint if
T = T ∗. A square matrix A is called self-adjoint if A = A∗. For matrices of real
numbers, a self-adjoint matrix is the same as a symmetric matrix, i.e., a matrix
satisfying A = A>.

• Properties of adjoint operators. The following properties are all easy to verify:

1. (S + T )∗ = S∗ + T ∗.

2. (aT )∗ = aT ∗ for any a ∈ C.

3. (T ∗)∗ = T .

4. I∗ = I (the identity operator is self-adjoint).

5. (ST )∗ = T ∗S∗.

• The eigenvalues of a self-adjoint operator are all real. Let λ ∈ C be an eigenvalue of
a self-adjoint operator T . That means that there is a nonzero eigenvector v ∈ V such that
the equation T (v) = λv holds. In this case, we can write

λ〈v, v〉 = 〈λv, v〉 = 〈Tv, v〉 = 〈v, T ∗v〉 = 〈v, Tv〉 = 〈v, λv〉 = λ〈v, v〉.

It follows that λ = λ, i.e., λ is a real number! We have proved:

Theorem. All the eigenvalues of a self-adjoint operator are real.

• Self-adjoint operators are extremely interesting and useful. The following two theorems
explain why.

Theorem. If u, v are eigenvectors of a self-adjoint operator T corresponding to two different
eigenvalues λ1 6= λ2, then u ⊥ v.

Proof.
λ1〈u, v〉 = 〈λ1u, v〉 = 〈Tu, v〉 = 〈u, Tv〉 = 〈u, λ2v〉 = λ2〈u, v〉.

Since at least one of λ1, λ2 is not zero, the above equation implies that 〈u, v〉 = 0.

Theorem. (The spectral theorem for self-adjoint operators). Any self-adjoint operator is
diagonalizable. Furthermore, we can choose the basis of eigenvectors to be an orthonormal
basis.

To prove the theorem, we need a lemma:

Lemma. Let T be a self-adjoint operator. If U ⊆ V is a linear subspace of V that is an
invariant subspace under T (i.e., if u ∈ U then T (u) ∈ U), then its orthogonal complement
U⊥ is also invariant under T .

Proof. If w ∈ U⊥ then w ⊥ u for any u ∈ U . Therefore, for any u ∈ U we have

〈T (w), u〉 = 〈w, Tu〉 = 0

since T (u) ∈ U by the fact that U is T -invariant.

Proof of the spectral theorem. Use induction on dimV . If dimV = 1 the claim is
obvious (an operator is just a number). Assume we proved it for spaces of dimension n− 1
and let V be n-dimensional. By the fundamental theorem of algebra, the characteristic

55



polynomial PT (x) has a root λn, which is an eigenvalue. Let vn be an associated eigenvector.
Consider now the subspace

U = span{vn}⊥,

the subspace of vectors which are orthogonal to vn. Since vn is an eigenvector, span(vn) is
an invariant subspace, and therefore (by the lemma), so is its orthogonal complement U .
It follows that we can restrict the operator T to the subspace U (this restricted operator
is usually denoted T|U ). The restricted operator T|U is a self-adjoint operator on U , which
is an (n − 1)-dimensional space. By the induction hypothesis, it has an orthonormal basis
v1, . . . , vn−1 of eigenvectors. Adding the vector vn (which is orthogonal to v1, . . . , vn gives
an orthonormal system of n eigenvectors (which must therefore be a basis).

• Example. Let A =

 1 1 0
1 0 −1
0 −1 1

. Since A is a symmetric real matrix, we immediately

know it is diagonalizable and has real eigenvalues. Let us diagonalize it. The characteristic
polynomial is

pA(x) = det(xI−A) = det

 x− 1 −1 0
−1 x 1
0 1 x− 1

 = x3−2x2−x+2 = (x−1)(x+1)(x−2),

so the eigenvalues are λ1 = −1, λ2 = 1, λ3 = 2. With a short computation we find corre-
sponding eigenvectors

v1 =

 −1
2
1

 ,

v2 =

 1
0
1

 ,

v3 =

 1
1
−1

 .

Note that these vectors are orthogonal (as predicted by the theorem we proved) but not
orthonormal. By normalizing them, we get a basis of orthonormal vectors:

u1 =
1√
6

 −1
2
1

 ,

u2 =
1√
2

 1
0
1

 ,

u3 =
1√
3

 1
1
−1

 .
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