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Introduction

The Navier-Stokes equations are a system of partial differential equations (PDEs)
describing the motion of a viscous fluid. They model a wide range of phenomena,
such as air flow around a wing or the spreading of a droplet under gravity. It is thus
somewhat surprising that there are many fundamental questions about this system
that remain unanswered. The rigorous mathematical theory for the Navier-Stokes
equations was founded by Jean Leray in his pioneering work of 1934. Since then,
important contributions have been made by E. Hopf, O.A. Ladyzhenskaya and L.
Caffarelli, R. Kohn and L. Nirenberg, to name but a few. However, to this date,
the question of finite-time blow-up of solutions is still open.

This dissertation will give an introduction to some aspects of the mathematical
theory of the Navier-Stokes equations, and describe how to analyse the regularity
of solutions for the particular case of axially symmetric flow without swirl. In
Chapter 1, we discuss the fundamental problem regarding the Navier-Stokes system
and give a heuristic argument for why this problem is so difficult. We introduce
Leray-Hopf weak solutions in Chapter 2 and prove their existence in Chapter 3
using the Galerkin method.

We will assume results from functional analysis, integration theory and the theory
of Sobolev spaces, as presented in the Part B courses Banach and Hilbert Spaces,
the Part A course Integration and the Part C course Functional Analytic Methods
for PDEs. Some of the more frequently used results are listed in Appendix B.
Notation will be introduced as required and collected in Appendix A.

Though the theory is usually presented by successively treating the stationary linear,
stationary nonlinear and non-stationary nonlinear problems, we will consider the
full problem from the outset. Consequently, a substantial portion of the material
is dedicated to motivating the definitions and results. Nonetheless, it will not be
possible to prove everything, and a list of references with details is provided.

In Chapter 4, we discuss the uniqueness and regularity of weak solutions. We derive
a sufficient condition for uniqueness, and show that a unique, smooth solution exists
at least for a short amount of time. A necessary condition for non-existence globally
in time is then derived, namely that of finite-time blow-up. This naturally leads to
local regularity theory and the famous Caffarelli-Kohn-Nirenberg Theorem, which
we give a brief description of in Chapter 5. Finally, in Chapter 6 we apply this
material to analyse regularity for axially symmetric flow without swirl.

1



1 Preliminaries

The Navier-Stokes equations governing the motion of a viscous, incompressible fluid
with viscosity ν in a domain Ω are, in the absence of external forces, given by

∂tu+ (u · ∇)u− ν∆u+∇p = 0, (1.1)

divu = 0, (1.2)

for any point in space-time (x, t) ∈ ΩT := Ω× (0, T ), with T > 0. Throughout this
dissertation, unless stated otherwise, we will assume Ω ⊂ R3 is a bounded open set
with smooth boundary ∂Ω.

We impose the boundary and initial conditions

u(x, t) = 0, ∀ (x, t) ∈ ∂Ω× (0, T ); (1.3)

u(x, 0) = u0(x), ∀x ∈ Ω. (1.4)

Together, (1.1)-(1.4) define the Navier-Stokes initial-boundary value problem.

A classical solution is a pair (u, p) satisfying (1.1)-(1.4) pointwise, with u and p
smooth enough for the equations to make sense i.e.

u ∈ C2
1(ΩT ) ∩ C(ΩT ) and p ∈ C1(ΩT ),

where

Ck(ΩT ) =
{
f : ΩT → R | ∇kf is continuous in ΩT

}
,

C2
1(ΩT ) =

{
f : ΩT → R | f , ∇f , ∇2f , ∂tf ∈ C(ΩT )

}
.

Here, u = u(x, t) is a vector valued function representing the velocity of the fluid;
p = p(x, t) is a scalar function representing the pressure field, and u0(x) is a vector
field vanishing on ∂Ω that satisfies divu0 = 0. We use the notation

∂t ≡
∂

∂t
and

∂

∂xi

to mean partial differentiation with respect to the time and space variables, respec-
tively. The operators∇, ∆ and div are the usual gradient, Laplacian and divergence
operators, respectively, and ∇2f denotes the Hessian matrix of f . The equations
(1.1) and (1.2) represent conservation of linear momentum and conservation of mass,
respectively (see [21] for a detailed derivation).

We do not need to prescribe initial or boundary data for the pressure, since we can
use (1.1) to solve for p once u is known. Specifically, we operate with div on both
sides of (1.1), interchange derivatives and use (1.2) and (1.3) to obtain p as the
solution to
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−∆p = div ((u · ∇)u), in Ω;

∂p

∂n
= n · (ν∆u), on ∂Ω,

where n is the unit outward normal to ∂Ω.

If ν 6= 0, then under the transformation

t̂ = ν−
1
3 t, x̂ = ν−

2
3x, û = ν−

1
3u, p̂ = ν−

2
3p,

the equation (1.1) takes the same form but with ν = 1. Thus, we may assume that
ν = 1. In Cartesian coordinates (x1, x2, x3), the equations in component form then
read

∂ui
∂t

+ uk
∂ui
∂xk
− ∂2ui
∂xk∂xk

+
∂p

∂xi
= 0, (1.5)

∂uk
∂xk

= 0, (1.6)

for each i = 1, 2, 3. Here we are employing the summation convention, where a
repeated free index in the same term implies summation over all values of that
index.

The fundamental question related to these equations is that of global existence in
time and uniqueness of a classical solution (u, p). One might ask why this question
is important, and indeed why we should expect it to be true. Since these equations
model physical phenomena, we should expect that smooth initial conditions give rise
to a unique, smooth velocity. A confirmation of this would provide solid evidence
towards the validity of the model, while a counterexample would suggest that the
model might need modification.

Moreover, this question is related to the problem of turbulence, described by Feyn-
man [7] as “the most important unsolved problem of classical physics”. A resolution
of the problem might come with advances in understanding turbulence, which would
have huge implications in mathematical modelling. On the other hand, this is an
important mathematical problem in its own right, and a solution will likely involve
new ideas and interesting mathematics.

However, we can already see a few difficulties in attempting to solve this problem.
Firstly, this is a set of four coupled equations, and there is no obvious way of
constructing a solution. Indeed, an explicit solution is known only in a few special
cases. Furthermore, as Galdi [10] points out, the variables u and p do not appear
in a “symmetric way” in the equations since (1.2) is not of the form

∂p

∂t
= F (u, p).
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Thus, the system does not belong to one of the classical categories of second-order
PDEs, though it is similar to a quasi-linear parabolic equation. The theory for the
classical categories of PDEs is well studied, and the problem obtained by dropping
the pressure term and the divergence-free condition can be solved completely (see
Galdi [10] §1). The solvability of this simpler problem is not much help to us since it
is a fundamentally different problem from (1.1)-(1.4), primarily because the energy
is of a different form.

On the other hand, the problem obtained by dropping the nonlinear term (u · ∇)u
can also be completely solved, as we will show in Chapters 3 and 4. Thus, it is the
combination of the lack of symmetry and the presence of the nonlinear term that
makes this problem so difficult.

The equation (1.1) describes primarily a conflict between the nonlinear term (u · ∇)u,
and the stabilising dissipative term ∆u. If the dissipative term dominates the non-
linear one then, as we said, we can expect existence and uniqueness of a smooth
solution. Conversely, if the nonlinear term is the dominating term, then we might
expect turbulent behaviour. However, existence and uniqueness results are known
for many other nonlinear PDEs, the two-dimensional Navier-Stokes problem among
them, so what is the issue here?

As we shall see, the problem reduces to the question of smoothness of solutions. To
see the issue, we follow Tao [28] and perform some dimensional analysis. Consider a
parcel of fluid with typical length L, rotating at a typical velocity U . The nonlinear
and dissipative terms scale like U2/L and U/L2, respectively. Hence, we can expect
linear behaviour if U � 1/L, and nonlinear behaviour if U � 1/L.

The most obvious way of controlling the behaviour of the velocity is through the
kinetic energy of the fluid:

E(t) =
1

2
ρ

∫
Ω

|u(x, t)|2 dx.

Since the system is dissipative, E(t) ≤ E(0) = O(1), ∀ t ≥ 0. For our parcel of
fluid, the kinetic energy scales like E ∼ U2L3, and we thus have an upper bound
U = O(L−3/2). Note that this is consistent with the dominant term being the
nonlinear term, as L → 0. Hence, if the length of this parcel is made smaller and
smaller and the kinetic energy is “squeezed” into this parcel, the behaviour is highly
nonlinear.

So suppose that at t = 0 all the kinetic energy is concentrated into this parcel i.e.
U ≈ L−3/2. Reduce the parcel to a size L/2, so that it is rotating with velocity
U ∼ (L/2)−3/2. Since time scales like L/U , this happens in a time t ∼ L5/2.
Using this argument n times, we find a parcel of size L/2n, rotating with velocity
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U ∼ (L/2n)−3/2, at a time

t ∼ L5/2 +

(
L

2

)5/2

+

(
L

22

)5/2

+ ...+

(
L

2n

)5/2

= L5/2

n∑
k=0

2−5k/2.

Sending n → ∞, we find that the velocity U → ∞ in a finite time. Indeed, Tao
[29] used this idea to demonstrate finite-time blow-up for an averaged form of the
3D Navier-Stokes equations.

The reason why this works is because at each iteration, the dissipative term is
negligible compared to the nonlinear term, so we can ignore the dissipation of
energy due to viscosity. The total cumulative dissipation of energy is

φ(t) =
1

2

∫ t

0

∫
Ω

|∇u(x, τ)|2 dx dτ.

When we reduce the size of the parcel we have that φ ∼ L1/2 � 1 ∼ E as L → 0.
This also explains why this argument cannot work in two dimensions. Here, the
kinetic energy scales like E ∼ U2L2, and hence the upper bound for the velocity
is U = O(L−1). This is precisely the situation where the nonlinear and dissipative
forces balance, and we therefore cannot neglect the viscous dissipation of energy.
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2 Weak Solutions

A key idea we will need is the concept of a weak solution, introduced by Leray [20].
The idea is to generalise the notion of a solution to a wider class of functions with
the expectation that the weaker requirements on the smoothness of solutions allows
one to more easily establish existence. We then hope that in fact a weak solution is
actually a classical solution, leading to the question of regularity of weak solutions.
Obviously, for this to work, any classical solution must be a weak solution.

Our goal in this chapter is to define Leray-Hopf weak solutions, and we will do this
with the following two ideas in mind:

1. A weak solution will have less regularity than a classical solution. Conse-
quently, we must derive conditions analogous to (1.1)-(1.4) that appropriately
capture the equations of motion, initial condition, boundary data, and energy
conservation, but with fewer assumptions regarding smoothness.

2. These conditions should be sufficiently stringent so as to ensure that any
function with enough regularity that does satisfy the conditions is a classical
solution.

Since we need a classical solution to also be a weak solution, we will motivate the
definition of a weak solution by assuming that u(x, t) is a classical solution, so u is
in particular square integrable, and then deriving conditions that u must satisfy.

Introduce Lp(Ω), the Banach space of of real-valued, measurable functions satisfying

‖f‖p,Ω :=

(∫
Ω

|f(x)|p dx

)1/p

<∞, if p ∈ [1,∞);

‖f‖∞,Ω := ess sup
x∈Ω

|f(x)| = inf {M ∈ R | |f(x)| ≤M a.e. in Ω } , if p =∞.

In particular, L2(Ω) is a Hilbert space with the inner product

(f, g) =

∫
Ω

f(x)g(x) dx.

When we say that a vector valued function f belongs to a function space X, we
will mean that each component fi belongs to X, and

‖f‖X = ‖ |f | ‖X =

∥∥∥∥∥
(∑

i

f 2
i

)1/2
∥∥∥∥∥
X

.

Recall now Hölder’s inequality : if f ∈ Lp(Ω), g ∈ Lp′(Ω), with 1 ≤ p, p′ ≤ ∞ and
1
p

+ 1
p′

= 1, then
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‖fg‖1,Ω ≤ ‖f‖p,Ω · ‖g‖p′,Ω . (2.1)

The case p = p′ = 2 is known as the Cauchy-Schwarz inequality.

By induction, we obtain the generalized Hölder inequality: if fi ∈ Lpi(Ω) with
1 ≤ p1 < . . . < pn ≤ ∞ and 1

p1
+ . . .+ 1

pn
= 1, then∥∥∥∥∥

n∏
i=1

fi

∥∥∥∥∥
1,Ω

≤
n∏
i=1

‖fi‖pi,Ω . (2.2)

2.1 Equations of Motion

Assume u(x, t) and p(x, t) are smooth i.e. infinitely differentiable with respect
to x and t in ΩT . This space of functions is denoted by C∞(ΩT ). Multiply the
momentum equation (1.5) by ϕi, where ϕ ∈ C∞0,0(ΩT ), and

C∞0,0(ΩT ) = {ϕ ∈ C∞0 (ΩT ) | divϕ = 0 } ,

C∞0 (ΩT ) = { f ∈ C∞(ΩT ) | ∃K ⊂ ΩT compact such that f = 0 outside K } .

Since u,ϕ ∈ L2(ΩT ), we can integrate over ΩT . Applying integration by parts, we
obtain the identities ∫∫

ΩT

∂ui
∂t
ϕi dx dt = −

∫∫
ΩT

ui
∂ϕi
∂t

dx dt,

∫∫
ΩT

∂p

∂xi
ϕi dx dt = 0,

∫∫
ΩT

∂2ui
∂xk∂xk

ϕi dx dt = −
∫∫

ΩT

∂ui
∂xk

∂ϕi
∂xk

dx dt.

Thus, u(x, t) satisfies

−
∫∫

ΩT

ui
∂ϕi
∂t

dx dt+

∫∫
ΩT

uk
∂ui
∂xk

ϕi dx dt+

∫∫
ΩT

∂ui
∂xk

∂ϕi
∂xk

dx dt = 0 (2.3)

for every ϕ ∈ C∞0,0(ΩT ). Notice that the pressure does not appear in this equation.

Furthermore, if φ(x, t) ∈ C∞0 (ΩT ), then (1.6) becomes∫∫
ΩT

ui
∂φ

∂xi
dx dt = 0. (2.4)
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If the assumption that u is smooth is now dropped, (2.3) only makes sense if
we assume some differentiability properties of u. Specifically, for each t ∈ [0, T ],
the function u(·, t) must belong to the Sobolev space W 1,2(Ω) consisting of those
functions in L2(Ω) for which the weak spatial derivatives exist for each component
and are in L2(Ω). The norm on W 1,2(Ω) is

‖f‖1,2,Ω := ‖f‖2,Ω + ‖∇f‖2,Ω .

It is not immediately clear what kind of integrability we need in time. Indeed, it
will be much easier to determine this from the energy equation (cf. §2.4). Drop the
time integral in (2.3). Then, by the Cauchy-Schwarz inequality, the quadratic terms
make sense. For the cubic-like term (cf. Lemma 3.2), we may use the generalized
Hölder inequality (2.2) and Sobolev embedding (B.10) to obtain∣∣∣∣∫

Ω

uk
∂ui
∂xk

ϕi dx

∣∣∣∣ ≤ ‖uk‖6,Ω · ‖ϕi‖3,Ω · ‖∇ui‖2,Ω

≤ C‖u‖1,2,Ω · ‖ϕ‖1,2,Ω · ‖u‖1,2,Ω <∞.

Thus, the equation∫
Ω

ui
∂ϕi
∂t

dx+

∫
Ω

uk
∂ui
∂xk

ϕi dx+

∫
Ω

∂ui
∂xk

∂ϕi
∂xk

dx = 0

makes sense for each t ∈ [0, T ].

Assume now that u is sufficiently smooth and satisfies (2.3) and (2.4). By con-
sidering those φ(x, t) = γ(t)ψ(x), where γ ∈ C∞0 ((0, T )) and ψ ∈ C∞0 (Ω), and
applying the Fubini-Tonelli theorem (B.2) and the fundamental lemma of calculus
of variations (B.7), we reduce (2.4) to∫

Ω

ui
∂ψ

∂xi
dx = 0

for every ψ ∈ C∞0 (Ω). By the divergence theorem, the divergence free condition
(1.6) holds.

Similarly, consider ϕ ∈ C∞0,0(ΩT ) such that ϕ(x, t) = γ(t)ψ(x), with γ ∈ C∞0 ((0, T ))
and ψ ∈ C∞0,0(Ω). Then∫

Ω

ψi

{
∂ui
∂t

+ uk
∂ui
∂xk
− ∂2ui
∂xk∂xk

}
dx = 0. (2.5)

By choosing ψ = ∇×Ψ ∈ C∞0,0(Ω), and applying the identity

∇ · (a× b) = b · (∇× a)− a · (∇× b),
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we find that∫
Ω

Ψ · ∇ ×
{
∂u

∂t
+ (u · ∇)u−∆u

}
dx = 0, ∀Ψ ∈ C∞0 (Ω).

Then, by Stokes’ theorem, there exists a function p such that (1.5) is satisfied.
Thus, a sufficiently smooth u(x, t) satisfying (2.3) and (2.4) yields the existence of
a function p(x, t) such that the equations of motion (1.1) and (1.2) are satisfied.

One might think that the above shows that we only need to consider u when
dealing with the existence of weak solutions, since the existence of a corresponding
p follows immediately from the above argument. However, we have to be careful
here; in general we do not know a priori that the term in the braces in (2.5) is
continuously differentiable. Instead, if u is sufficiently smooth to allow (2.5) to
hold, we can apply the following result due to Ladyzhenskaya [17].

Theorem 2.1. Let

G(Ω) :=
{
v ∈ L2(Ω) | v = ∇p for some p ∈ L2(Ω)

}
,

H(Ω) :=
{
v ∈ L2(Ω) | ∃ψn ∈ C∞0,0(Ω) such that ‖v −ψn‖2,Ω → 0

}
.

Then L2(Ω) = G(Ω)⊕H(Ω),

so any w ∈ L2(Ω) can be uniquely decomposed as w = u + ∇p with u ∈ H(Ω),
p ∈ L2(Ω).

Here, we have introduced (cf. §2.4) the “energy space” H = H(Ω), the closure of
C∞0,0(Ω) in L2(Ω). This is an important class of functions that plays a fundamental
role in the theory of the Navier-Stokes equations. We omit the proof of Theorem
2.1, and refer the reader to Seregin [25] Theorem 7.11, Temam [30] Proposition
I.1.1, Galdi [9] §III.1 and Ladyzhenskaya [17] §I.2 for the details.

By continuity, (2.5) must hold for every ψ ∈ H(Ω). Theorem 2.1 then implies that
the term in the braces is the gradient of some function p and (1.5) is satisfied. The
problem of finding a solution pair (u, p) is then reduced to finding only u.

2.2 Boundary Condition

We now derive a characterization of the boundary condition (1.3) in terms of test
functions. Since u(·, t) ∈ W 1,2(Ω) only, pointwise properties do not necessarily
make sense. Suppose then that u(·, t) is the limit of functions in C∞0 (Ω) in W 1,2(Ω).
Denote this space by

W 1,2
0 (Ω) =

{
f ∈ W 1,2(Ω) | ∃ fn ∈ C∞0 (Ω) s.t. ‖f − fn‖1,2,Ω → 0

}
.
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Recall that we also need u to be divergence free. Since the weak spatial derivatives
of u(·, t) exist, we replace (2.4) with the condition that u(·, t) is the limit of functions
in C∞0,0(Ω) in W 1,2(Ω). We denote this space by

V = V (Ω) :=
{
u ∈ W 1,2(Ω) | ∃ϕn ∈ C∞0,0(Ω) s.t. ‖u−ϕn‖1,2,Ω → 0

}
.

This, like H, is an “energy space”, and is one of the fundamental classes of functions
that we shall be working in.

Since Ω is bounded, Poincaré’s inequality (B.9) implies that the norms ‖ · ‖1,2,Ω and
‖∇( · )‖2,Ω are equivalent for V . We may thus equip V with the norm ‖∇( · )‖2,Ω

with respect to which it is a Hilbert space. We now introduce the trace operator in
the form of the following lemma.

Lemma 2.2. There exists a bounded linear operator

γ : W 1,2(Ω)→ L2(Ω)
such that:

(i) γ(f) = f |∂Ω , ∀ f ∈ W 1,2(Ω) ∩ C(Ω).

(ii) ‖γ(f)‖2,Ω ≤ C‖f‖1,2,Ω , ∀ f ∈ W 1,2(Ω), where C is a constant.

(iii) f ∈ W 1,2
0 (Ω) ⇐⇒ γ(f) = 0.

This is a classic result in the theory of Sobolev spaces. For a proof, see Evans [4]
§5.5.

Thus, the boundary condition is satisfied in a weak sense if u(·, t) ∈ V ⊂ W 1,2
0 (Ω).

Obviously, if u(·, t) is a classical solution then u(·, t) ∈ V . Conversely, if u(·, t) is
sufficiently smooth and satisfies γ(u(·, t)) = 0, then the above lemma shows that
u(·, t) |∂Ω = 0, as required.

2.3 Initial Condition

We impose a weak version of the initial condition (1.4) by requiring that

‖u(·, t)− u0(·)‖2,Ω → 0 as t→ 0+. (2.6)

It is clear that a classical solution must satisfy (2.6). Conversely, if u(x, t) is suf-
ficiently smooth, then (2.6) implies that u(x, 0) = u0(x) for almost all x ∈ Ω, and
we conclude from continuity of u(x, t) that u(x, 0) = u0(x) in Ω.

However, we will see1 that imposing this condition is actually unnecessary, since it
will follow from energy conservation and the following weak notion of continuity in

1cf. Remark 2.3.
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time. We impose that the mapping Sw : [0, T ]→ R is continuous on [0, T ] for each
w ∈ L2(Ω), where

Sw : t 7→
∫

Ω

u(x, t) ·w(x) dx. (2.7)

It is clear that if u is continuous in time, then this holds.

2.4 Energy Inequality

Suppose u is a smooth solution to (1.5) and (1.6). Multiply (1.5) by ui, sum over
i = 1, 2, 3, and integrate over Ω:∫

Ω

ui
∂ui
∂t

dx+

∫
Ω

ui
∂ui
∂xk

uk dx−
∫

Ω

ui
∂2ui

∂xk∂xk
dx+

∫
Ω

ui
∂p

∂xi
dx = 0. (2.8)

The first, third and fourth terms in (2.8) may be written as∫
Ω

ui
∂ui
∂t

dx =
1

2

d

dt

∫
Ω

u2
i dx, (2.9)

−
∫

Ω

ui
∂2ui

∂xk∂xk
dx =

∫
Ω

(
∂ui
∂xk

)2

dx −
∫

Ω

∂

∂xk

(
ui
∂ui
∂xk

)
dx, (2.10)

∫
Ω

ui
∂p

∂xi
dx =

∫
Ω

∂

∂xi
(pui) dx −

∫
Ω

p
∂ui
∂xi

dx, (2.11)

respectively. The second term in (2.8) vanishes since∫
Ω

ui
∂ui
∂xk

uk dx =
1

2

∫
Ω

∂

∂xk
(uku

2
i ) dx − 1

2

∫
Ω

u2
i divu dx︸ ︷︷ ︸

=0

=
1

2

∫
Ω

div (u2
i u) dx =

1

2

∫
∂Ω

u2
i u · n ds = 0.

By the divergence theorem and the zero boundary condition, (2.10) is∫
Ω

|∇u|2 dx −
∫

Ω

div (uT∇u) dx =

∫
Ω

|∇u|2 dx.

Similarly, (2.11) is identically zero. Thus, we are left with

1

2

d

dt

∫
Ω

|u|2 dx+

∫
Ω

|∇u|2 dx = 0.

Integrating with respect to time and applying the initial condition, we obtain the
energy equality :
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1

2

∫
Ω

|u(x, t)|2 dx+

∫ t

0

∫
Ω

|∇u(x, τ)|2 dx dτ =
1

2

∫
Ω

|u0(x)|2 dx, (2.12)

for every t ∈ [0, T ]. The first term represents the total kinetic energy of the fluid
at time t, while the second term represents the total dissipation of energy due to
viscosity over the time period [0, t]. By the law of conservation of energy, this must
equal the initial kinetic energy.

However, it turns out that imposing that a weak solution satisfies the energy equality
is too restrictive, essentially because we can only prove weak convergence, rather
than strong convergence (cf. §3.1). Thus, we instead impose that a weak solution
u must satisfy an energy inequality :

1

2

∫
Ω

|u(x, t)|2 dx+

∫ t

0

∫
Ω

|∇u(x, τ)|2 dx dτ ≤ 1

2

∫
Ω

|u0(x)|2 dx, (2.13)

for every t ∈ [0, T ]. It is clear now why we have emphasized that u(·, t) ∈ L2(Ω); the
presence of the quadratic terms in the energy equation suggests that the problem
should be formulated on a Hilbert space.

Remark 2.3. Condition (2.6) follows from the energy inequality (2.13) and the
weak continuity in time (2.7). Indeed, (2.7) implies that u(·, t) ⇀ u0 in L2(Ω) as
t→ 0+ i.e. u converges weakly to u0 in L2(Ω). By the Banach-Steinhaus theorem,
the sequence u(·, t) is norm bounded, and lim inft→0+ ‖u(·, t)‖2 exists. Note that

‖u0‖2
2,Ω = |(u0 ,u0)| = lim inf

t→0+
|(u0 ,u(· , t))| ≤ ‖u0‖2,Ω lim inf

t→0+
‖u(·, t)‖2,Ω

=⇒ lim inf
t→0+

‖u(·, t)‖2,Ω ≥ ‖u0‖2,Ω .

On the other hand, (2.13) implies

lim sup
t→0+

‖u(·, t)‖2,Ω ≤ ‖u0‖2,Ω.

This means that
lim
t→0+
‖u(· , t)‖2,Ω = ‖u0‖2,Ω.

Since weak convergence and norm convergence in a Hilbert space together imply
strong convergence, (2.6) holds.

From the energy inequality (2.13), we see that the kinetic energy ‖u(·, t)‖2
2,Ω must

be bounded as a function of time. This leads us to consider the function u(x, t)
as a mapping of time t into some Banach space X = X(Ω), by associating with
u(x, t) : Ω× (0, T ) the mapping u : (0, T )→ X.

12



We thus introduce the space Lp(0, T ;X), with the norm

‖u‖Lp(0,T ;X) =

(∫ T

0

‖u(·, t)‖X dt

)1/p

, if 1 ≤ p <∞,

‖u‖L∞(0,T ;X) = ess sup
t∈(0,T )

‖u(·, t)‖X , if p =∞.

These are known as Lebesgue-Bochner spaces. It is well known that many prop-
erties that hold for Lp(Ω) also hold for Lp(0, T ;X). For example, the dominated
convergence theorem, Minkowski’s inequality and Hölder’s inequality are all true.
Consequently, completeness of Lp(0, T ;X) can be proved using similar arguments
to the ones used to prove completeness of Lp(R).

Recall the space H introduced in Theorem 2.1. We need u to be bounded as a
function of time into this space, so we impose that u ∈ L∞(0, T ;H), with the norm

‖u‖L∞(0,T ;H) = ess sup
t∈(0,T )

‖u(·, t)‖2,Ω.

Similarly, we also need ‖∇u(·, t)‖2,Ω to be in L2(0, T ). Accordingly, we impose that
u ∈ L2(0, T ;V ), with the norm

‖u‖L2(0,T ;V ) =

(∫ T

0

‖∇u(·, t)‖2
2,Ω dt

)1/2

.

Returning to the momentum equation (2.3), we now see that it makes sense if
u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ).

2.5 Leray-Hopf Weak Solutions

Definition 2.4. Let u0 ∈ H. A function u is called a Leray-Hopf weak solution to
the initial-boundary value problem (1.1)-(1.4) if it satisfies:

1. u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ).

2. Sw : t 7→
∫

Ω
u(x, t) ·w(x) dx is continuous on [0, T ] for each w ∈ L2(Ω).

3. For every ϕ ∈ C∞0,0(ΩT ),

−
∫∫

ΩT

ui
∂ϕi
∂t

dx dt+

∫∫
ΩT

uk
∂ui
∂xk

ϕi dx dt+

∫∫
ΩT

∂ui
∂xk

∂ϕi
∂xk

dx dt = 0.

4. ‖u(·, t)− u0(·)‖2 → 0 as t→ 0+;

5. For every t ∈ [0, T ] the weak energy inequality is satisfied:

1

2

∫
Ω

|u(x, t)|2 dx +

∫ t

0

∫
Ω

|∇u(x, τ)|2 dx dτ ≤ 1

2

∫
Ω

|u0(x)|2 dx.

13



The definition of weak solutions is somewhat arbitrary in the sense that one could
define a “weak solution” in a different way, as long as it incorporated the equations
of motion, initial condition, boundary data and energy equality in an appropriate
way. The point is that this definition is the one that allows us to prove the existence
theorem (relatively) easily. However, as we shall see in Chapter 4, proving unique-
ness for this class of solutions is extremely difficult. In this sense, the definition
needs to be “weak” enough to prove existence, but also “strong” enough to prove
uniqueness.
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3 Existence

In this chapter, we will state and prove an existence theorem regarding weak solu-
tions. The case Ω = R3 was proved by Leray [20], while the case Ω ⊂ R3 bounded
was proved by Hopf [13].

Theorem 3.1 (Existence of weak solutions).
There exists a Leray-Hopf weak solution to the initial-boundary value problem (1.1)-
(1.4).

Before we proceed with a proof, we give an equivalent formulation of the equation
of motion (2.3). Introduce the operator b on the space V × V × V , defined by

b(u ,v ,w) =

∫
Ω

uk
∂vi
∂xk

wi dx = ((u · ∇)v ,w). (3.1)

Lemma 3.2.

(i) b is a trilinear continuous form.

(ii) b(u ,v ,w) = −b(u ,w ,v), ∀u,v,w ∈ V .

(iii) b(u ,v ,v) = 0, ∀u,v ∈ V .

Proof.
(i) Linearity is clear. For continuity, the generalized Hölder inequality (2.2), Sobolev
embedding (B.10) and Poincaré’s inequality (B.9) imply that

|b(u ,v ,w)| ≤ ‖u‖4,Ω · ‖∇v‖2,Ω · ‖w‖4,Ω ≤ C ‖∇u‖2,Ω · ‖∇v‖2,Ω · ‖∇w‖2,Ω ,

for every u, v, w ∈ V .

(ii) By continuity, it is enough to prove this for u, v, w ∈ C∞0,0(Ω). By integration
by parts,

b(u ,v ,w) =

∫
Ω

uk
∂vi
∂xk

wi dx

=

∫
Ω

∂

∂xk
(uk viwi) dx−

∫
Ω

∂uk
∂xk

viwi dx−
∫

Ω

uk
∂wi
∂xk

vi dx.

The first integral is zero by the divergence theorem and the boundary conditions;
the second integral is zero since divu = 0; the last integral is −b(u ,w ,v). Note
that (iii) is an immediate consequence of (ii).

Introduce the dual spaces of V and H, denoted by V ′ and H ′. Note that the
inclusion operator i : V ↪→ H is linear and continuous by Poincaré’s inequality
(B.9), that i(V ) = V ⊂ H and i(V ) = V = H.
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Lemma 3.3. [Folland [8] Exercise 5.22.] Let X and Y be normed spaces with dual
spaces X ′ and Y ′, respectively. Let T ∈ B(X, Y ) a bounded linear operator and
T ∗ ∈ B(Y ′, X ′) be the adjoint operator. Then:

(i) T ∗ is injective ⇐⇒ T (X) = Y ;

(ii) If T ∗(Y ′) = X ′, then T is injective. The converse is true if X is reflexive.

Proof.
(i) Suppose T (X) 6= Y , so that there exists y ∈ Y \ T (X). Since y 6= 0, by the
Hahn-Banach theorem (B.3) there exists f ∈ Y ′ such that f(y) 6= 0 but f(z) = 0
for all z ∈ T (X). Thus, T ∗f = f ◦ T = 0, so T ∗ is not injective.

Conversely, suppose T ∗ is not injective, so that there exists f ∈ Y ′ such that f 6= 0
but T ∗f = 0. Then there exists y ∈ Y such that f(y) 6= 0. By continuity, there
exists δ > 0 such that f(y′) 6= 0 for any y′ ∈ B(y, δ), where

B(y, δ) = { y′ ∈ Y | ‖y − y′‖Y < δ } .

Clearly, B(y, δ) /∈ T (X), and T (X) ⊂ Y \B(y, δ) ( Y .

(ii) Suppose T is not injective, so Tx = 0 with x 6= 0 and ‖x‖X = 1. By the
Hahn-Banach theorem (B.3), there exists f ∈ X ′ such that

f(x) = ‖x‖X , ‖f‖X′ = 1.

We claim now that BX′(f, 1) /∈ T ∗(Y ′), which then proves that T ∗(Y ′) 6= X ′.
Indeed, if g ∈ BX′(f, 1), then

|g(x)− 1| = |g(x)− f(x)| ≤ ‖g − f‖X′‖x‖X < 1,

so that g(x) 6= 0, and hence g /∈ T ∗(Y ′).

Conversely, suppose X is reflexive and T ∗(Y ′) 6= X ′. There exists f ∈ X ′ \ T ∗(Y ′),
and hence x̂ ∈ X ′′ such that x̂(f) 6= 0 but x̂(g) = 0 for every g ∈ T ∗(Y ′). By
reflexivity, f(x) 6= 0, so that x 6= 0, and g(x) = 0 for every g ∈ T ∗(Y ′). If we
can show that Tx = 0, then the result follows. But if Tx 6= 0, then by the Hahn-
Banach theorem (B.3) there exists h ∈ Y ′ such that g(x) := h(Tx) 6= 0, which is
the required contradiction.

Following Temam [30] §III.1, we argue as follows. Set X = V , Y = H, and
T = i : V ↪→ H in Lemma 3.3. Since i(V ) is dense in H, then i∗ is injective. Since
i is injective and V is reflexive, i∗(H ′) = H ′ is dense in V ′. We can thus identify H ′

with a dense subspace of V ′. By the Riesz representation theorem (B.4), we arrive
at the identifications

V ⊂ H ≡ H ′ ⊂ V ′. (3.2)
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In particular, we can identify the action of a linear functional in V ′ acting on an
element of V with the scalar product of the two in H, whenever they both make
sense. More precisely, if 〈· , ·〉V ′,V denotes the action of a linear functional in V ′ on
an element of V , and (· , ·) is the inner product on H inherited from L2(Ω), then

〈i∗(f) ,u〉V ′,V = 〈f ,u〉V ′,V = (f ,u), ∀f ∈ H, ∀u ∈ V. (3.3)

Remark 3.4. [Brezis [2] §5.2.] Since V is also a Hilbert space, we could use the
Riesz representation theorem (B.4) to identify V ′ with V . The point is that the dual
space is defined to be the set of all bounded linear functionals, and we then choose
how to characterize this space. For a Hilbert space X, one way to do this is with
the Riesz representation theorem, where the isometry from X to X ′ is viewed as
the identity map. However, it doesn’t have to be done in this way. If we do choose
to identify V with V ′ in this way, then obviously (3.2) is false. Consequently, we
cannot identify H with H ′ and V with V ′ simultaneously. In this case, we choose
to identify H with H ′. Note that there is still an isometry from V to V ′, but in this
case it is not viewed as the identity map.

Now, if u is a weak solution, by considering those ϕ(x, t) = φ(t)ψ(x), we see that
u must satisfy

−
∫ T

0

(u(t) ,ψ)φ′(t) dt +

∫ T

0

(∇u(t) ,∇ψ)φ(t) dt

+

∫ T

0

b(u(t) ,u(t) ,ψ)φ(t) dt = 0. (3.4)

In fact, the converse is also true. It follows from the fact that any ϕ ∈ C∞0,0(ΩT ) can
be approximated by a finite linear combination of functions of the form φ(t)ψ(x).
The proof, while not difficult, is lengthy. We omit it and refer the reader to Galdi
[10] Lemma 2.3.

3.1 Proof of Theorem 3.1

Let us now prove Theorem 3.1. The idea, due to Hopf [13], is to apply the Galerkin
method. We construct a sequence of approximate solutions on nested finite dimen-
sional subspaces where we can apply known theory, and then attempt to pass to
the limit, using energy estimates and compactness arguments to prove the required
convergence to a full solution. We give our own version of the proof, using ideas
from Temam [30], Ladyzhenskaya [17], Seregin [25] and Galdi [10].

Proof (of Theorem 3.1).
Step 1: (Construction of approximations).
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Since H is a separable Hilbert space, and C∞0,0(Ω) is dense in H, there exists2 a set
{ψm}∞m=1 ⊂ C∞0,0(Ω) that is dense in H and orthonormal with respect to the inner
product on L2(Ω). For each m ≥ 1, define an approximate solution on the finite
dimensional subspace spanned by {ψ1, . . . ,ψm} by:

um =
m∑
i=1

fi,m(t)ψi, (3.5)

with

d

dt
(um ,ψj) + (∇um ,∇ψj) + b(um ,um ,ψj) = 0 (3.6)

for each j = 1, . . . ,m, and

um(0) = u0,m =
m∑
i=1

(u0 ,ψi). (3.7)

Note that u0,m → u0 in H.

Plugging (3.5) into (3.6) and using the orthonormality of ψi, we obtain a system of
ordinary (nonlinear) differential equations:

f ′j,m(t) +
m∑
i=1

(∇ψi ,∇ψj) fi,m(t) +
m∑

i, l=1

b(ψi ,ψl ,ψj) fi,m(t) fl,m(t) = 0. (3.8)

The initial condition is fj,m(0) = j-th component of u0,m.

By Picard’s existence theorem for ordinary differential equations3, there exists a
unique solution to the system defined on [0, tmax). If tmax < T , then |fj,m(t)| → ∞
as t→ tmax, for some j. We claim that this is not possible.

Step 2: (Energy estimates).
Multiply (3.6) by fj,m(t) and sum over j = 1, . . . ,m, to obtain

(u′m ,um) + (∇um ,∇um) + b(um ,um ,um) = 0.

By Lemma 3.2,

1

2

d

dt
‖um‖2

2,Ω + ‖∇um‖2
2,Ω = 0. (3.9)

In particular,

d

dt
‖um‖2

2,Ω ≤ 0,

2Technically, this basis is only in H. However, it is possible to show that we can take this
basis to be in C∞

0,0(Ω), and we thus assume this fact for simplicity. See Galdi [10] Lemma 2.3 for
details.

3See, for example, Walter [32] §6.
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which we may then integrate from 0 to t to obtain

‖um(t)‖2
2,Ω ≤ ‖u0,m‖2

2,Ω ≤ ‖u0‖2
2,Ω (3.10)

=⇒ sup
t∈[0,T ]

‖um(t)‖2,Ω ≤ ‖u0‖2,Ω . (3.11)

Thus, there exists a constant M such that

sup
t∈[0,T ]

|fj,m(t)| ≤M, ∀ j = 1, . . . ,m.

It follows that tmax = T . Since (3.11) is true for any m, the sequence {um}∞m=1 is
bounded in L∞(0, T ;H).

Integrate (3.9) from 0 to T to obtain

‖um(T )‖2
2,Ω − ‖u0,m‖2

2,Ω + 2

∫ T

0

‖∇um(t)‖2
2,Ω dt = 0

=⇒
∫ T

0

‖∇um(t)‖2
2,Ω dt ≤ ‖u0,m‖2

2,Ω ≤ ‖u0‖2
2,Ω , (3.12)

and the sequence {um}∞m=1 is bounded in L2(0, T ;V ).

By the Banach-Alaoglu theorem (B.5), and by passing to subsequences if necessary,
there exists u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) such that um converges to u weak-star
in L∞(0, T ;H) and weakly in L2(0, T ;V ). That is,

um ⇀ u in L2(0, T ;V ),

um
?−⇀ u in L∞(0, T ;H).

(3.13)

Thus, condition 1 of Definition 2.4 holds.

The first condition in (3.13) is∫ T

0

〈v(t) ,um(t)− u(t)〉V ′,V dt→ 0, ∀v ∈ L2(0, T ;V ′).

By the identification (3.3),∫ T

0

(um(t)− u(t) ,v(t)) dt→ 0, ∀v ∈ L2(0, T ;H)

=⇒ um ⇀ u in L2(0, T ;H). (3.14)
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Step 3: (Passing to the limit).
We now want to show that u given by (3.13) satisfies condition 3 of Definition 2.4.
To do this, we will need to pass to the limit in (3.6). However, the convergence
proved so far will not be enough, in particular for the nonlinear term b(um ,um ,ϕj).
In fact, we will need that um → u strongly in L2(0, T ;H), which we will assume
for now, and prove in Proposition 3.6.

Multiply (3.6) by φ(t) ∈ C∞0 ((0, T )), and integrate by parts:

−
∫ T

0

(um(t) ,ψj)φ
′(t) dt +

∫ T

0

(∇um(t) ,∇ψj)φ(t) dt

+

∫ T

0

b(um(t) ,um(t) ,ψj)φ(t) dt = 0. (3.15)

We can pass to the limit in the first term using the weak convergence (3.14). For
the second term, we can put the spatial derivatives onto ψj using integration by
parts, pass to the limit using (3.14), then put the spatial derivative back onto u.
For the nonlinear term, we use the Cauchy-Schwarz inequality, estimate (3.11), and
the fact um → u in L2(0, T ;H), proved in Proposition 3.6. Explicitly,∫ T

0

∫
Ω

|(um)i(um)k − uiuk|
∣∣∣∣∂(ψj)i
∂xk

φ

∣∣∣∣ dx dt

≤ ‖φ · ∇ψj‖∞,ΩT

∫ T

0

∫
Ω

|(um)i(um)k − (um)iuk|+ |(um)iuk − uiuk| dx dt

≤ C ‖u0‖2,Ω · ‖um − u‖L2(0,T ;H) → 0.

Thus,∫ T

0

b(um(t) ,um(t) ,ψj)φ(t) dt = −
∫ T

0

b(um(t) ,ψj ,um(t))φ(t) dt

= −
3∑

i,k=1

∫ T

0

∫
Ω

(um)i
∂(ψj)i
∂xk

(um)k φ(t) dx dt→ −
3∑

i,k=1

∫ T

0

∫
Ω

ui
∂(ψj)i
∂xk

uk φ(t) dx dt

=

∫ T

0

b(u(t) ,u(t) ,ψj)φ(t) dt.

Now, we pass to the limit in (3.15) to obtain
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−
∫ T

0

(u(t) ,ψj)φ
′(t) dt +

∫ T

0

(∇u(t) ,∇ψj)φ(t) dt

+

∫ T

0

b(u(t) ,u(t) ,ψj)φ(t) dt = 0. (3.16)

By linearity, this is valid for each finite linear combination of the ψj. Then, by
continuity, it is valid for every ψ ∈ V and (3.4) holds, and thus so does condition
3 of Definition 2.4.

Now, Proposition 3.6 will also imply that um(·, t) ⇀ u(·, t) in L2(Ω) uniformly
in t ∈ [0, T ]. In other words, um(·, t) converges weakly to u(·, t) in L2(Ω) for
each t ∈ [0, T ], and this convergence is independent of the specific value of t. In
particular, we will show in Proposition 3.6 that condition 2 of Definition 2.4 holds.

It remains to verify that the weak energy inequality holds. Integrating (3.9), we
find that

1

2
‖um(t)‖2

2,Ω +

∫ t

0

‖∇um(τ)‖2
2,Ω dτ =

1

2
‖u0,m‖2

2,Ω. (3.17)

On the one hand, ‖u0,m‖2,Ω → ‖u0‖2,Ω. On the other hand, since um(·, t) ⇀ u(·, t)
in L2(Ω) uniformly in t ∈ [0, T ] (proved in Proposition 3.6), we know that (cf.
Remark 2.3)

‖u(t)‖2
2,Ω ≤ lim inf

m→∞
‖um(t)‖2

2,Ω , ∀ t ∈ [0, T ].

Similarly, by (3.13),∫ T

0

‖∇u(τ)‖2
2,Ω dτ ≤ lim inf

m→∞

∫ T

0

‖∇um(τ)‖2
2,Ω dτ.

Thus, taking the lim infm→∞ of (3.17), we obtain

1

2
‖u(t)‖2

2,Ω +

∫ t

0

‖∇u(τ)‖2
2,Ω dτ ≤ 1

2
‖u0‖2

2,Ω, ∀t ∈ [0, T ]. (3.18)

We thus conclude that the weak energy inequality holds for all t ∈ [0, T ], and
condition 5 of Definition 2.4 holds. By Remark 2.3, condition 4 of Definition 2.4
also holds. Theorem 3.1 is proved.

It remains to prove that um → u strongly in L2(0, T ;H). To show this, we will
need the following Friedrichs-type inequality.

Lemma 3.5. [Galdi [9] Lemma II.4.2.]
Let v ∈ V . For any ε > 0, there exists N ∈ N and functions ω1, . . . ,ωN ∈ H such
that
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‖v‖2
2,Ω ≤

N∑
j=1

|(v ,ωj)|2 + ε ‖∇v‖2
2,Ω.

Proof. By density arguments, it is enough to prove the result for v ∈ C∞0,0(Ω).

By extending v to be zero outside of Ω, and considering a cube that contains Ω, it
is enough to prove the statement when the domain is a cube Q with side length L.

Suppose first that Qi is a cube with side length a. By translation and rotation, we
can assume one of the corners is located at the origin and the edges lie along the
positive Cartesian axes. For any x = (x1, x2, x3), y = (y1, y2, y3) ∈ Qi,

v(x)−v(y) =

∫ x1

y1

∂

∂ξ
v(ξ, x2, x3) dξ+

∫ x2

y2

∂

∂η
v(y1, η, x3) dη+

∫ x3

y3

∂

∂ζ
v(y1, y2, ζ) dζ.

Take the R3 inner product of this equation with itself, use the Cauchy-Schwarz
inequality and apply the inequality4

(α1 + α2 + α3)2 ≤ 3 (α2
1 + α2

2 + α2
3)

to find that

|v(x)|2−2|v(x)||v(y)|+|v(y)|2 ≤ 3

∣∣∣∣∫ x1

y1

∂

∂ξ
v(ξ, x2, x3) dξ

∣∣∣∣2+ 3

∣∣∣∣∫ x2

y2

∂

∂η
v(y1, η, x3) dη

∣∣∣∣2

+ 3

∣∣∣∣∫ x3

y3

∂

∂ζ
v(y1, y2, ζ) dζ

∣∣∣∣2 .
By the Cauchy-Schwarz inequality and the fact that |xi − yi| ≤ a, we can bound
the right-hand side by

3a

[∫ a

0

∣∣∣∣ ∂∂ξv(ξ, x2, x3)

∣∣∣∣2 dξ +

∫ a

0

∣∣∣∣ ∂∂ηv(y1, η, x3)

∣∣∣∣2 dη +

∫ a

0

∣∣∣∣ ∂∂ζ v(y1, y2, ζ)

∣∣∣∣2 dζ

]
.

Integrating with respect to x and y over Qi, we see that

2a3‖v‖2
2,Qi
− 2

(∫
Qi

|v(x)| dx
)2

≤ 3a5‖∇v‖2
2,Qi

.

We thus obtain the Poincaré-type inequality

‖v‖2
2,Qi
≤ 1

a3

(∫
Qi

|v(x)| dx
)2

+
3

2
a2‖∇v‖2

2,Qi
. (3.19)

4This is just the Cauchy-Schwarz inequality in R3.
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Now subdivide the original cube Q into N = K3 identical smaller cubes Qi each
with side length a = L/K. By (3.19),

‖v‖2
2,Qi
≤ K3

L3

(∫
Qi

|v(x)| dx
)2

+
3L2

2K2
‖∇v‖2

2,Qi
.

Summing over i = 1, . . . , N , we obtain

‖v‖2
2,Q ≤

N∑
i=1

K3

L3

(∫
Qi

|v(x)| dx
)2

+
3L2

2K2
‖∇v‖2

2,Q .

Choose

wi(x) =

(
K3

L3

) 1
2

1Qi
(x) ∈ L2(Q),

where 1Qi
is the indicator function on Qi. By Theorem 2.1, we can decompose wi

as wi = ωi +∇pi, with ωi ∈ H. Since v ∈ V ⊂ H, then (v ,wi) = (v ,ωi). The
result follows by choosing N = K3 so large such that K ≥ L

√
3/2ε.

Proposition 3.6. [Ladyzhenskaya [17] Theorem VI.13.]
The sequence um defined in (3.13) has a subsequence, also denoted by um, that
satisfies um → u strongly in L2(0, T ;H).

Proof. We know that um ⇀ u in L2(0, T ;H). By (3.10), we have that um ⇀ u
in L2(Ω) for each fixed t ∈ [0, T ]. Fix i ≥ 1. By (3.11), the coefficients fi,m(t) are
uniformly bounded on [0, T ]. Integrate (3.6) from t to t + δ and repeatedly apply
the Cauchy-Schwarz inequality to obtain

|fi,m(t+ δ)− fi,m(t)| ≡
∣∣∣∣∫ t+δ

t

d

dτ
(um(τ) ,ψi) dτ

∣∣∣∣
≤
∫ t+δ

t

‖∇um(τ)‖2,Ω · ‖∇ψi‖2,Ω dτ

+ ‖ψi‖∞,Ω
∫ t+δ

t

‖um(τ)‖2,Ω · ‖∇um(τ)‖2,Ω dτ

≤ Ci
√
δ

(∫ t+δ

t

‖∇um(τ)‖2
2,Ω dτ

) 1
2

+ Ci
√
δ ‖um‖L∞(0,T ;H)

(∫ t+δ

t

‖∇um(τ)‖2
2,Ω dτ

) 1
2

,

where Ci = max {‖ψi‖∞,Ω , ‖∇ψi‖2,Ω}.
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By (3.11) and (3.12), the right-hand side converges to zero as δ → 0, independent
of m. Hence, for fixed i ≥ 1, fi,m(t) forms a sequence of uniformly bounded and
uniformly equicontinuous functions.

By the Arzelà-Ascoli theorem (B.6), for each i there exists a uniformly convergent
subsequence, also denoted by fi,m(t). This sequence depends on i. However, by
using the standard diagonalization argument5, we extract a subsequence such that
fi,m(t) converges uniformly to fi(t), for every i ≥ 1. This then implies

(um ,ψ)→ (u ,ψ) (3.20)

uniformly for t ∈ [0, T ], for any ψ ∈ span {ψ1, . . . ,ψk}. Since {ψj}∞j=1 is dense in
H, then um converges weakly in H, uniformly for t ∈ [0, T ]. To see this, take any
v ∈ H, approximate by ψ ∈ span {ψ1, . . . ,ψk}, apply Cauchy-Schwarz, use (3.11)
and pass to the limit.

In particular, condition 2 of Definition 2.4 holds. Indeed, for w ∈ L2(Ω), consider
the continuous functions

Sw,m(t) =

∫
Ω

um(x, t) ·w(x) dx.

By Theorem 2.1, w = ψ +∇q, with ψ ∈ H and q ∈ L2(Ω). Since um ∈ H, and H
is orthogonal to G(Ω), then (um ,∇q) = 0 for every m. By the weak convergence
in H,

Sw,m(t) =

∫
Ω

um(x, t) ·ψ(x) dx→
∫

Ω

u(x, t) ·ψ(x) dx

=

∫
Ω

u(x, t) ·w(x) dx = Sw(t),

and the uniformity in time of this convergence ensures that Sw is continuous. By
the same argument, um converges to u weakly in L2(Ω), uniformly in t ∈ [0, T ].

By Lemma 3.5,

∫ T

0

‖un(τ)− um(τ)‖2
2,Ω dτ ≤

N∑
j=1

∫ T

0

(un(τ)− um(τ) ,ωj)
2 dτ

+ ε

∫ T

0

‖∇un(τ)−∇um(τ)‖2
2,Ω dτ. (3.21)

By estimate (3.12) and the uniformity in t of the weak convergence, the right-hand
side of (3.21) is arbitrarily small for sufficiently large m and n. Thus, um is Cauchy
in L2(0, T ;H), and so converges strongly to u in L2(0, T ;H).

5See, for example, Bartle [1] §17.16.
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Remark 3.7. We have omitted details about the uniqueness of limits of the sequence
um under different forms of convergence. However, it can be shown that u is the
unique limit up to an arbitrary null set in ΩT , see Heywood [12] and Temam [30]
III.1.

3.2 Comments

There are many different ways to prove Theorem 3.1, for example with fixed-point
methods (Seregin [25] Theorem 3.5) or by semi-discretization in time (Temam [30]
Theorem III.4.1). However, the basic idea of using the energy estimates and a
compactness argument remains the same. Note that the solution u we obtained is
unique in the sense that there can only be one solution obtained using the Galerkin
method. This, however, says nothing about the uniqueness of solutions in general.

The proof is independent of the dimension of the space, except when using the
Sobolev embedding theorem to prove continuity of the operator b(u ,v ,w). In
particular, this proof holds in dimension two. Furthermore, clearly it is the nonlinear
term that is the main difficulty in this proof, and neglecting it means that we do
not need Proposition 3.6 to prove the existence of Leray-Hopf weak solutions to the
corresponding linear problem. It is also clear that the addition of an external force
F ∈ L2(0, T ;V ′) in the equation of motion also does not cause any problems with
the formulation or the proof.

Finally, it can be shown that there exists a function P ∈ C(0, T ;L2(Ω)) such that

u(t)− u0 +

∫ t

0

(u(τ) · ∇)u(τ) dτ −∆

(∫ t

0

u(τ) dτ

)
+∇P (t) = 0

for each t ∈ [0, T ]. Differentiating this expression in the sense of distributions and
setting p = ∂tP , we obtain a distribution p such that

∂tu+ (u · ∇)u−∆u+∇p = 0

is satisfied in the sense of distributions. The details of this can be found in Temam
[30] Ch.III §3.

25



4 Uniqueness and Regularity

Throughout this chapter, we use the letter C to denote any constant that can be
found using quantities already known, so that its value may change from line to
line.

4.1 Three-dimensional Case

Having proved the existence of Leray-Hopf weak solutions in Chapter 3, we now
consider the question of their uniqueness. We first start with the simplest case that
the velocity u and pressure p are smooth. Suppose (v, q) is another smooth solution
pair. Let w = u− v and r = p− q. Then

∂tw + (u · ∇)w + (w · ∇)v = −∇r + ∆w.

Taking the L2(Ω) inner product with w, we obtain

(w , ∂tw) + b(u ,w ,w) + b(w ,v ,w) = −(w ,∇r) + (w ,∆w)

=⇒ (w , ∂tw) + b(u ,w ,w) + b(w ,v ,w) = −(w ,∇r)− (∇w ,∇w). (4.1)

The second and fourth terms vanish by Lemma 3.2 and the fact that divw = 0.
Thus,

1

2

d

dt
‖w‖2

2,Ω + ‖∇w‖2
2,Ω = |b(w ,v ,w)| (4.2)

=⇒ 1

2

d

dt
‖w‖2

2,Ω ≤ C ‖∇v‖∞,Ω · ‖w‖2
2,Ω . (4.3)

Since v is smooth, ‖∇v‖∞,Ω <∞, and we can apply Gronwall’s inequality (B.1) to
find that

‖w(t)‖2
2,Ω ≤ ‖w0‖2

2,Ω e
Ct, ∀ t ≥ 0.

Since w0 ≡ 0, it follows that w(x, t) = 0 in ΩT . Thus, if a smooth solution exists,
it is unique.

Note that we did not use the full smoothness of w to deduce its uniqueness. In-
deed, the two places where we have used regularity properties not already attained
by Leray-Hopf weak solutions are (4.1) in writing down (w , ∂tw), and (4.3) in
estimating the nonlinear term with ‖∇v‖∞,Ω. The latter can be dealt with by esti-
mating |b(w ,v ,w)| in a different way. Following Seregin [25] Proposition 7.15, the
Cauchy-Schwarz inequality implies

|b(w ,v ,w)| ≤ ‖∇v‖2,Ω · ‖w2‖2,Ω = ‖∇v‖2,Ω · ‖w‖2
4,Ω . (4.4)

Lemma 4.1 (Ladyzhenskaya’s inequality). Let u ∈ W 1,2
0 (Ω). Then there exists a
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constant C independent of u such that

‖u‖4,Ω ≤ C ‖u‖
1
4
2,Ω · ‖∇u‖

3
4
2,Ω (4.5)

Proof. By Sobolev embedding (B.10) and Poincaré’s inequality (B.9),

‖u‖6,Ω ≤ C ‖∇u‖2,Ω. (4.6)

In addition, we have an interpolation inequality in Lr(Ω): if 1 ≤ q < r < s ≤ ∞,
then there exists θ ∈ (0, 1) such that 1

r
= θ

q
+ 1−θ

s
and

‖u‖r,Ω ≤ ‖u‖θq,Ω · ‖u‖1−θ
s,Ω . (4.7)

To prove this, apply Hölder’s inequality (2.1) to

f = |u|rθ, g = |u|r(1−θ), p =
q

rθ
, p′ =

s

r(1− θ)
.

Now, with r = 4, q = 2, s = 6 and θ = 1/4 in (4.7), we find that

‖u‖4,Ω ≤ ‖u‖
1
4
2,Ω · ‖u‖

3
4
6,Ω.

From this and (4.6), the result follows.

By Lemma 4.1, we can estimate the right-hand side of (4.4) by

|b(w ,v ,w)| ≤ C ‖∇v‖2,Ω · ‖w‖
1
2
2,Ω · ‖∇w‖

3
2
2,Ω. (4.8)

Apply Young’s inequality (B.8) with

a = C1 ‖∇v‖2,Ω · ‖w‖
1
2
2,Ω , b = C2 ‖∇w‖

3
2
2,Ω , p = 4 , p′ = 4/3 , C1C2 = C.

Then

|b(w ,v ,w)| ≤ 1

4

(
C1 ‖∇v‖2,Ω · ‖w‖

1
2
2,Ω

)4

+
3

4

(
C2 ‖∇w‖

3
2
2,Ω

) 4
3

= C3 ‖∇v‖4
2,Ω · ‖w‖2

2,Ω + C4 ‖∇w‖2
2,Ω .

Choose C1 and C2 such that C4 = 1 and let C(t) = C3 ‖∇v(t)‖4
2,Ω.

We now make the following assumption:

∇v ∈ L∞(0, T ;L2(Ω)). (4.9)

Then there exists C such that C(t) ≤ C, and hence

|b(w ,v ,w)| ≤ C ‖w‖2
2,Ω + ‖∇w‖2

2,Ω . (4.10)
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We now show that the term (w , ∂tw) also makes sense.

Lemma 4.2. Suppose that a Leray-Hopf weak solution w satisfies

∇w ∈ L∞(0, T ;L2(Ω)).

Then

∂tw ∈ L2(0, T ;V ′). (4.11)

Proof. By definition,

∂tw ∈ L2(0, T ;V ′) ⇐⇒
∫ T

0

‖∂tw‖2
V ′ dt <∞

⇐⇒
∫ T

0

[
sup { |(∂tw ,ψ)| | ψ ∈ V , ‖∇ψ‖2,Ω = 1}

]2

dt <∞.

Using the equation of motion (3.4), this is true if∫ T

0

sup
{
|b(w ,w ,ψ)|2 | ψ ∈ V , ‖∇ψ‖2,Ω = 1

}
dt <∞, (4.12)

and ∫ T

0

sup
{
|(∇w ,∇ψ)|2 | ψ ∈ V , ‖∇ψ‖2,Ω = 1

}
dt <∞. (4.13)

Condition (4.13) is true by the Cauchy-Schwarz inequality and the assumption
∇w ∈ L∞(0, T ;L2(Ω)). In fact, (4.13) is true for any Leray-Hopf weak solution,
since we only require ∇w ∈ L2(0, T ;L2(Ω)), and any Leray-Hopf weak solution
satisfies w ∈ L2(0, T ;V ) =⇒ ∇w ∈ L2(0, T ;L2(Ω)).

To see that the condition (4.12) also holds, we use the generalized Hölder inequality
(2.2), Sobolev embedding (B.10) and Poincaré’s inequality (B.9) to estimate

|b(w ,w ,ψ)| = |b(w ,ψ ,w)| ≤ C ‖w‖2
4,Ω · ‖∇ψ‖2,Ω

≤ C ‖∇w‖2
2,Ω . (4.14)

For condition (4.12) to hold, we need ∇w ∈ L4(0, T ;L2(Ω)). By assumption, we
know ∇w ∈ L∞(0, T ;L2(Ω)) ⊂ L4(0, T ;L2(Ω)), and the result follows.

Using Lemma 4.2 and (3.4), we know that∫ T

0

[
(∂tw ,ψ) + (∇w ,∇ψ) + b(w ,w ,ψ)

]
φ(t) dt = 0 (4.15)

for every ψ ∈ C∞0,0(Ω) and φ ∈ C∞0 ((0, T )). By the fundamental lemma of calculus
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of variations (B.7) and continuity arguments, it follows that

(∂tw ,ψ) + (∇w ,∇ψ) + b(w ,w ,ψ) = 0, ∀ψ ∈ V.

Now, we employ the same argument used to prove the uniqueness of smooth solu-
tions. Using (4.2) and (4.10), we find that

1

2

d

dt
‖w‖2

2,Ω + ‖∇w‖2
2,Ω ≤ C ‖w‖2

2,Ω + ‖∇w‖2
2,Ω

=⇒ 1

2

d

dt
‖w‖2

2,Ω ≤ C ‖w‖2
2,Ω ,

and we can apply Gronwall’s inequality (B.1) to conlcude that w ≡ 0.

This result motivates the following definition:

Definition 4.3. A Leray-Hopf weak solution u is called a strong solution if it
satisfies

∇u ∈ L∞(0, T ;L2(Ω)). (4.16)

We have thus proved the following proposition:

Proposition 4.4. Let u and v be two strong solutions to the initial-boundary value
problem, with initial data u0 ∈ V . Then u ≡ v.

However, we can do better. Equation (4.2) suggests that it suffices for just v to be a
strong solution, with u a Leray-Hopf weak solution. Indeed, the nonlinear term can
then be estimated in exactly the same fashion. It is not immediately clear that the
term (w , ∂tw) makes sense since we do not know whether u has enough regularity
in time. Nonetheless, the result holds, though the proof is long and technical. We
assume the result here and refer the reader to Seregin [25] Theorem 7.14 for the
details.

Theorem 4.5 (Weak-Strong Uniqueness).
Let u and v be Leray-Hopf weak solutions to the initial-boundary value problem with
initial data u0 ∈ V . If v is a strong solution, then u ≡ v.

There are many other similar results regarding uniqueness. For example, see Temam
[30] Theorem III.3.4, or Giga [11] Lemma 5.2 for the Ladyzhenskaya-Prodi-Serrin
condition, which guarantees uniqueness in any dimension.

4.2 Linear and Two-dimensional Case

We now briefly discuss the question of uniqueness for two different cases. First,
suppose u and v are Leray-Hopf weak solutions to the linear problem in three
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dimensions and as usual let w = u − v. If we drop the nonlinear term from the
equation of motion, Lemma 4.2 implies that ∂tw ∈ L2(0, T ;V ′), and the proof of
uniqueness goes through as before.

Suppose instead that u and v are Leray-Hopf weak solutions to the full problem in
two dimensions. The two dimensional version of Ladyzhenskaya’s inequality reads

‖u‖2
4,Ω ≤ C ‖u‖2,Ω · ‖∇u‖2,Ω . (4.17)

Thus, instead of (4.8), we obtain

|b(w ,v ,w)| ≤ C ‖∇v‖2,Ω · ‖w‖2,Ω · ‖∇w‖2,Ω . (4.18)

Apply Young’s inequality (B.8) with

a = C1 ‖∇v‖2,Ω · ‖w‖2,Ω , b = C2 ‖∇w‖2,Ω , p = p′ = 2 , C1C2 = C

=⇒ |b(w ,v ,w)| ≤ C3 ‖∇v‖2
2,Ω · ‖w‖2,Ω + C4 ‖∇w‖2

2,Ω .

Choose C1 and C2 such that C4 = 1, and let C(t) = C3 ‖∇v‖2
2,Ω. Then C(t) is

integrable, since v ∈ L2(0, T ;V ) =⇒ ∇v ∈ L2(0, T ;L2(Ω)).

To show that ∂tw ∈ L2(0, T ;V ′), we proceed as in the proof of Lemma 4.2. Using
(4.18), we see that (4.12) holds, since∫ T

0

sup
{
|b(w ,w ,ψ)|2 | ψ ∈ V , ‖∇ψ‖2,Ω = 1

}
dt ≤

∫ T

0

C ‖w‖2
2,Ω · ‖∇w‖2

2,Ω dt

≤ C ‖w‖2
L∞(0,T ;H) · ‖w‖2

L2(0,T ;V ) .

The proof of uniqueness now carries though as usual.

Thus, the questions of existence and uniqueness of Leray-Hopf weak solutions for
both the linear problem and the full two-dimensional problem are answered in a
satisfactory manner.

4.3 Regularity

We now return to the three-dimensional case. Theorem 4.5 gave a sufficient condi-
tion for the uniqueness of Leray-Hopf weak solutions in the class of weak solutions.
We now examine the regularity of solutions to see if they do satisfy this condition.

Proposition 4.6. [Temam [30] Theorem III.3.3]
Let w be a Leray-Hopf weak solution with initial data w0 ∈ V . Then

w ∈ L8/3(0, T ;L4(Ω)) and ∂tw ∈ L4/3(0, T ;V ′). (4.19)

30



Proof. By Ladyzhenskaya’s inequality (4.5), we know that

‖w(t)‖4,Ω ≤ C ‖w(t)‖
1
4
2,Ω · ‖∇w(t)‖

3
4
2,Ω , a.e in t ∈ [0, T ]. (4.20)

Since ∫ T

0

‖w(t)‖
2
3
2,Ω · ‖∇w(t)‖2

2,Ω dt ≤ ‖w‖
2
3

L∞(0,T ;H) · ‖w‖
2
L2(0,T ;V ) <∞,

the right-hand side of (4.20) belongs to L8/3(0, T ), and thus so does the left-hand
side. Furthermore,

∂tw ∈ L4/3(0, T ;V ′) ⇐⇒
∫ T

0

[
sup { |(∂tw ,ψ)| | ψ ∈ V, ‖∇ψ‖2,Ω = 1 }

]4/3

dt <∞ .

This is true if∫ T

0

sup
{
|b(w ,w ,ψ)|4/3 | ψ ∈ V , ‖∇ψ‖2,Ω = 1

}
dt <∞,

and ∫ T

0

sup
{
|(∇w ,∇ψ)|4/3 | ψ ∈ V , ‖∇ψ‖2,Ω = 1

}
dt <∞.

The second condition is true by the Cauchy-Schwarz inequality and the fact that
∇w ∈ L2(0, T ;L2(Ω)) ⊂ L4/3(0, T ;L2(Ω)). The first is also true since (4.14)
implies

|b(w ,w ,ψ)|4/3 ≤ ‖w‖8/3
2,Ω ∈ L

1(0, T ) .

So it is not clear that Leray-Hopf weak solutions satisfy the regularity criteria
needed to be strong solutions. Alternatively, we could prove the existence of a
strong solution. Specifically, we have the following theorem due to Leray [20]:

Theorem 4.7 (Local existence of strong solutions). Let u0 ∈ V . Then there exists
T ∗ ∈ (0, T ] such that the initial-boundary value problem has a strong solution in
ΩT ∗.

Proof. The proof requires knowledge of solutions to the linear steady-state Navier-
Stokes equations, so we provide a sketch, referring the reader to Galdi [10] for the
details. Consider the Galerkin approximation (3.5) in the proof of Theorem 3.1.
It can be shown6 that the set of basis functions {ψi}∞i=1 ⊂ H can be taken as the
eigenfunctions of

−∆ψi +∇pi = λiψi , divψi = 0 , ψi|∂Ω = 0.

6See Galdi [10] Lemma 5.2.
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Multiplying (3.6) by λjfj,m(t) and summing over j = 1, . . . ,m, we obtain

1

2

d

dt
‖∇um‖2

2,Ω + ‖P∆um‖2
2,Ω = b(um ,um , P∆um), (4.21)

where P is the orthogonal projection of L2(Ω) onto H. It can be shown7 that we
can estimate the right-hand side using the generalized Hölder inequality (2.2) and
Sobolev embedding (B.10) by

|b(um ,um , P∆um)| ≤ ‖um‖6,Ω · ‖∇um‖3,Ω · ‖P∆um‖2,Ω

≤ C ‖∇um‖
3
2
2,Ω · ‖P∆um‖

3
2
2,Ω .

Apply Young’s inequality (B.8) with

a = C1 ‖∇um‖
3
2
2,Ω , b = C2 ‖P∆um‖

3
2
2,Ω , p = 4 , p′ = 4/3 , C1C2 = C.

Then

|b(um ,um , P∆um)| ≤ C3 ‖∇um‖6
2,Ω + C4 ‖P∆um‖2

2,Ω .

Choose C1 and C2 such that C4 = 1, and plug this into (4.21) to find that

d

dt
‖∇um‖2

2,Ω ≤ C ‖∇um‖6
2,Ω ,

for some constant C.

Let ym(t) = ‖∇um‖2
2,Ω. Then

dym
dt
≤ Cy3

m

=⇒
∫ t

0

dym
y3
m

=
1

2y2
m(0)

− 1

2y2
m(t)

≤ Ct.

Thus, there exists a constant C such that

y2
m(t) ≤ y2

m(0)

C − t · y2
m(0)

.

Hence,

‖∇um(t)‖4
2,Ω ≤

‖∇u0‖4
2,Ω

C − t ‖∇u0‖4
2,Ω

. (4.22)

This estimate shows that the sequence ∇um is bounded in L∞(0, T1− ε ;L2(Ω)) for
every ε ∈ (0, T1), where T1 = C/‖∇u0‖4

2,Ω. Along with estimates (3.11) and (3.12),

7See Galdi [10] Lemma 5.3 and 5.4.
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this allows us to conclude the result. From (4.22), we see that T ∗ satisfies

T ∗ ≥ C/‖∇u0‖4
2,Ω .

We can thus say that there exists a strong solution u to the initial-boundary value
problem in the interval [0, T ∗) and that in this time period the solution is unique.
If we can show that this strong solution in fact exists for all time, then we are done.
In other words, the problem of uniqueness is translated into the following problem
of regularity: do strong solutions to the initial-boundary value problem develop
singularities in a finite time? This is, quite literally8, the million-dollar question.
The problem is open.

It is known that a strong solution is in fact at least as smooth as the initial data
is. In particular, if we assume u0 ∈ C∞(Ω), as we shall from now, it can be
shown that a strong solution is smooth. The technique used to do this is known as
“bootstrapping”, and the basic idea is as follows. We first show that our solution
u is equal almost everywhere to some function v. We then show that v has more
regularity than was assumed for u. From this, we deduce that u must have more
regularity, and thus v must have more regularity, and so on. This is the other
reason why strong solutions are so important. For the details, we refer the reader
to Galdi [10] Ch.V or Temam [30] Theorem III.3.8. For a nice explanation of the
bootstrap technique, see Tao [27].

Theorem 4.7 implies that the first instant that blow-up might occur is at

T ∗ ≥ C/‖∇u0‖2
2,Ω.

From this, we deduce that a necessary condition for blow-up is

lim sup
t↗T ∗

‖∇u‖2,Ω →∞. (4.23)

Indeed, suppose that this were not the case. Then there exists C such that

‖∇u(t)‖2,Ω ≤ C

for all t sufficiently close to T ∗. Theorem 4.7 then implies that there exists a strong
solution ũ starting at time t = T ∗−ε, with initial velocity ũ0 = u(T ∗−ε) satisfying
‖∇ũ0‖2,Ω ≤ C. This upper bound establishes a lower bound on the time from T ∗−ε
that blow-up can occur, independent of ε. But this contradicts the requirement that
blow-up occurs at T ∗.

A Leray-Hopf weak solution u, which exists for all time, necessarily coincides with
the strong solution on [0, T ∗) by Theorem 4.5. Since u ∈ L2(0, T ;V ) for all T > 0,
then (4.23) implies that the set of all times that blow-up occurs has Lebesgue

8The Clay Mathematics Institute lists this problem as one of seven Millennium problems [6];
a solution, either in the affirmative or in the negative, is rewarded with a prize of $1 million.
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measure zero. While this estimate is a start, there are two things which we wish
to improve on. Firstly, though it gives an indication of when blow-up might occur,
it gives no information on where this might happen. That is, we wish to classify
the space-time singularities, not just the time singularities. Secondly, the Lebesgue
measure suffers from the obvious deficiency that it does not give a good indication
of the size of “small” sets. For example, a curve and a plane both have Lebesgue
measure zero in R3, though one is obviously “smaller” than the other. These two
points naturally lead us to the concept of local regularity and the Hausdorff measure.
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5 Local Regularity Theory

5.1 Hausdorff Measure

Definition 5.1. Let 0 ≤ α <∞, 0 < δ ≤ ∞, E ⊂ Rn. Define

Hα
δ (E) := inf

{
∞∑
k=1

(diamFk)
α | E ⊂

∞⋃
k=1

Fk, diamFk ≤ δ ∀k

}
,

where diamA = sup { |x− y| | x, y ∈ A }. Notice that Hα
δ1

(E) > Hα
δ2

(E) if δ1 < δ2.
Thus, Hα

δ (E) increases as δ decreases, and this allows us to define

Hα(E) := lim
δ→0
Hα
δ (E) ∈ [0,∞].

Hα is the α-dimensional Hausdorff measure on Rn.

The motivation for this definition is as follows. Notice that the measure of a set E
scales like its dimension. For example, if E is a sphere in Rn, then the measure,
or volume, of E scales like V ∼ rn. This is the basic property that the definition
attempts to capture. We take the limit as δ → 0 in order to capture the small-scale
behaviour of the set.

For our purposes, we shall be interested in the parabolic Hausdorff measure, defined
in an entirely analogous manner, but with parabolic cylinders replacing the sets Fk.
To state the definition, it is convenient to introduce the notation:

• z = (x, t) ∈ R3 × R.

• B(x0, r) = {x ∈ R3 | |x− x0| < r } is the ball of radius r at x0.

• Q(z0, r) = B(x0, r)× (t0 − r2, t0) is the parabolic cylinder at z0 = (x0, t0).

• Q∗(z0, r) = B(x0, r)× (t0 − r2, t0 + r2).

Definition 5.2. Let 0 ≤ α <∞, 0 < δ ≤ ∞, E ⊂ R3 × R. Define

Pαδ (E) = inf

{
∞∑
k=1

rαk | E ⊂
∞⋃
k=1

Q∗(zk, rk) , rk < δ

}
.

The α-dimensional parabolic Hausdorff measure Pα on R3 × R is defined as

Pα(E) = lim
δ→0
Pαδ (E).

If r < 1, then r2 ≤ r, so any parabolic cylinder Q(z0, r) with r < δ ≤ 1 satisfies
diamQ(z0, r) ≤ Cδ. Thus, it follows that

Hα ≤ C(α)Pα.
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Note that

Pα(E) = 0 ⇐⇒ ∀ ε > 0, ∃
∞⋃
k=1

Q∗(zk, rk) ⊃ E such that
∞∑
k=1

rαk < ε. (5.1)

5.2 Caffarelli-Kohn-Nirenberg Theorem

The basic idea of local regularity theory is to analyse the behaviour of solutions at
a local level by dropping the boundary and initial conditions and focusing on the
equations of motion. The goal is to show that a weak solution to the equations of
motion in a canonical domain is smoother in subdomains. There are two cases to
consider: the first is the case of interior regularity, while the second is the case of
boundary regularity. We shall only consider the first.

Definition 5.3. Let u be a Leray-Hopf weak solution. A point z0 = (x0, t0) ⊂ ΩT

is called regular if u is bounded on Q(z0, r) for all sufficiently small r. A point z0

is singular if it is not regular.

Remark 5.4. With higher regularity results, the “bounded” condition is equivalent
to Hölder continuity.

Let S be the set of all singular points in ΩT . The term partial regularity refers
to an estimate on the size of S. Partial regularity theory for the Navier-Stokes
equations was studied by Scheffer [22],[23],[24] in a series of papers, in which he
proved that there exists a weak solution whose singular set satisfies H5/3(S) <∞.
This was then improved upon by Caffarelli, Kohn and Nirenberg [3] in their famous
paper where they proved, among other things, that P1(S) = 0, which is the optimal
result to date. They proved this by introducing suitable weak solutions, which are
the analogue of Leray-Hopf weak solutions in the local setting.

Definition 5.5. A pair (u, p) is called a suitable weak solution to the Navier-Stokes
system in the space-time domain ω × (t1, t2) if:

1. u ∈ L∞(t1, t2 ;L2(ω)) ∩ L2(t1, t2 ;W 1,2(ω)).

2. p ∈ L3/2(ω × (t1, t2)).

3. The equation (1.2) is satisfied in the sense of distributions:∫∫
ω×(t1,t2)

uk
∂φ

∂xk
dx dt = 0, ∀φ ∈ C∞0 (ω × (t1, t2)).

4. The equation (1.1) is satisfied in the sense of distributions:∫∫
ω×(t1,t2)

{
ui
∂ϕi
∂t

+ uk
∂ϕi
∂xk

ui + ui
∂2ϕi
∂xk∂xk

}
dx dt = 0, ∀ϕ ∈ C∞0,0(ω×(t1, t2)).
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5. The local energy inequality∫
ω

φ(x, t)|u(x, t)|2 dx+ 2

∫ t

t1

∫
ω

φ(x, τ)|∇u(x, τ)|2 dx dτ

≤
∫ t

t1

∫
ω

{(
∂φ

∂t
+ ∆φ

)
|u(x, τ)|2 +

(
|u|2 + 2p

)
u · ∇φ

}
dx dτ

holds for almost all t ∈ (t1, t2) and for every φ ∈ C∞0 (ω× (t1,∞)) with φ ≥ 0.

In [3], Caffarelli et al. proved the global existence of suitable weak solutions as a
subclass of Leray-Hopf weak solutions. The proof that they give is different from
the Galerkin method presented in Chapter 3. Indeed, it is not known whether the
solutions obtained from the Galerkin method are suitable. The method of their
proof, based upon a regularization of the nonlinear term, is similar to both Leray’s
original proof [20] and the semi-discretization method used by Temam [30] to prove
existence of Leray-Hopf weak solutions. We refer the reader to [3] Theorem A.1 and
Seregin [25] Theorem 6.11 for the proof.

The main results of Caffarelli et al. were regarding the smoothness of suitable weak
solutions. In particular, they proved the following theorem (we give a rescaled
version due to Seregin [25], Lemma 6.1):

Theorem 5.6. There exists a constant ε0 > 0 with the following property. Suppose
(u, p) is a suitable weak solution in Q(z0, r) satisfying

1

r2

∫∫
Q(z0,r)

(
|u|3 + |p|

3
2

)
dx dt < ε0. (5.2)

Then ∇k−1u is Hölder continuous in Q(z0, r/2) for all k ∈ N. That is, there exists
α ∈ (0, 1] and constants Ck such that

|∇k−1u(z)−∇k−1u(z′)| ≤ Ck ‖z − z′‖αpar , ∀ k ∈ N, z, z′ ∈ Q(z0, r/2),

where ‖z‖par = |x|+
√
|t|.

Remark 5.7. To see why we only get smoothness in the spatial variables, let h(x)
satisfy ∆h = 0, and consider u(x, t) = a(t)∇h(x). Then u is a suitable weak
solution even if a(t) is only in L∞(0, T ). As a result, we cannot get any more
smoothness in time. Note that u is smooth in space, since h satisfies Laplace’s
equation, and is thus smooth (since h is the real part of a holomorphic function).

A consequence of this result is the following theorem (Proposition 2 in [3]):
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Theorem 5.8. There exists a constant ε1 > 0 with the following property. Suppose
(u, p) is a suitable weak solution near the point z0 satisfying

lim sup
r→0

1

r

∫∫
Q∗(z0,r)

|∇u|2 dx dt < ε1. (5.3)

Then z0 is a regular point.

Remark 5.9. In condition (5.3) we could also integrate over Q(z0, r).

The proofs of these results are beyond the scope of this dissertation, but we shall
provide some motivation for why we might expect them to be true.

The Navier-Stokes equations obey an important scaling property: if (u, p) is a
solution to (1.1)-(1.4) in the canonical domain B(0, 1) × (0, 1], then (uλ, pλ) is a
solution in B(0, 1/λ)× [0, 1/λ2], where λ > 0 and

uλ : B(0, 1/λ)×
(
0, 1/λ2

]
→ R3, uλ(x, t) = λu

(
λx, λ2t

)
(5.4)

pλ : B(0, 1/λ)×
(
0, 1/λ2

]
→ R, pλ(x, t) = λ2p

(
λx, λ2t

)
. (5.5)

Consider the case when λ � 1. The mapping from u to uλ “zooms in” on the
origin, since events occurring in the “small” domain B(0, ε) × (0, ε2] now occur in
the larger domain B(0, ε/λ)× (0, ε2/λ2].

One obvious way which we might try to control u is through the kinetic energy
E(t) = 1

2
ρ‖u(·, t)‖2

2,Ω. The problem, however, is that the velocity can seemingly
blow up in finite time with E(t) remaining bounded, as we showed in Chapter 1.
This is because E(t) scales like 1/λ, so that as we shift down to smaller scales, the
control over u gets increasingly worse. In this sense, the energy is a supercritical
quantity. This is in contrast with subcritical quantities, which are “small at small
scales”, and critical quantities, which are invariant under scaling.

Following Caffarelli et al. [3], we formalize this by assigning each quantity a “di-
mension” that indicates their behaviour at small scales:

dimx = 1, dim t = 2, dimu = −1,

dim∇ = −1, dim ∂t = −2, dim p = −2.

Note that since dim t = 2, it is natural to work with parabolic cylinders.

Quantities with which we might wish to control u include

Energy : dim

∫
Ω

|u(x, t)|2 dx = 1.

L3 norm : dim

∫
Ω

|u(x, t)|3 dx = 0.
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Dissipation : dim

∫
Ω

|∇u(x, t)|2 dx = −1.

Note that the quantities u, ∇u and ∂tu all have negative dimension. Thus, if
we wish to establish regularity of u, we need to control quantities with negative
dimension or impose that a quantity with dimension zero be “small”. This is
essentially the idea behind Theorem 5.6. The quantity (5.2) has dimension zero, and
Theorem 5.6 says that smallness of this is enough to establish regularity. Similarly,
Theorem 5.8 says that smallness at small scales of the critical quantity in condition
(5.3) is enough to establish regularity.

Condition (5.3) is reminiscent of the Lebesgue differentiation theorem from classical
measure theory (see Jones [14] §15). The Lebesgue set of a function f ∈ L1(Rn) is
defined as

Leb(f) =

{
x ∈ Rn | ∃α ∈ R such that lim

r→0

1

|B(x, r)|

∫
B(x,r)

f(y) dy = α

}
.

Then the Lebesgue differentiation theorem states that Rn\Leb(f) has Lebesgue
measure zero.

Now, in R3 × R we have that |Q∗(z0, r)| = Cr5. It follows that (5.3) is a much
weaker condition than the one needed for a point to belong to the Lebesgue set of a
function. As a result, we might expect that “more” points satisfy (5.3), and thus the
set of points that do not satisfy this, namely the singular points, is “smaller” than
any set of Lebesgue measure zero. More precisely, we have the famous Caffarelli-
Kohn-Nirenberg Theorem (Theorem B in [3]):

Theorem 5.10 (Caffarelli-Kohn-Nirenberg Theorem).
For any suitable weak solution of the Navier-Stokes equations on a bounded open
set in space-time, the singular set S satisfies P1(S) = 0.

To prove this, we will need the following result, which is the analogue of the classical
Vitali covering lemma:

Lemma 5.11. Given a family of parabolic cylinders F = {Q∗(z, r)}, there exists a
finite or countable subfamily G = {Q∗(zi, ri)}∞i=1 such that

Q∗(zi, ri) ∩Q∗(zj, rj) = ∅,

∀Q∗(z, r) ∈ F , ∃ j ∈ N such that Q∗(z, r) ⊂ Q∗(zj, 5rj).

Proof. We adapt the proof in [5] §1.5.1 (see also [3] Lemma 6.1). Let

R = sup { r | Q∗(z, r) ∈ F } ,

Fk =
{
Q∗(z, r) ∈ F | R/2k < r ≤ R/2k−1

}
.
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Let G1 be any maximal disjoint subcollection of parabolic cylinders in F1. Proceed
inductively by choosing Gk to be any maximal disjoint subcollection of

Jk =

{
Q∗(z, r) ∈ Fk | Q∗(z, r) ∩Q∗(z′, r′) = ∅, ∀Q∗(z′, r′) ∈

k−1⋃
j=1

Gj

}
.

Define G =
⋃∞
k=1 Gk. Then G ⊂ F is disjoint and countable. Take Q∗(z, r) ∈ F .

We may assume Q∗(z, r) /∈ G, since otherwise the result is obvious. Note that
{ (R/2j, R/2j−1] }∞j=1 is a partition of (0, R], so that Q∗(z, r) ∈ Fk for some k ∈ N.

If Q∗(z, r) /∈ Jk, then Q∗(z, r) ∩ Q∗(z′, r′) 6= ∅ for some Q∗(z′, r′) ∈ ∪k−1
j=1Gj. If

Q∗(z, r) ∈ Jk, then Q∗(z, r)∩Q∗(z′, r′) 6= ∅ for some Q∗(z′, r′) ∈ Gk, since otherwise
the maximality of Gk would imply that Q∗(z, r) ∈ Gk ⊂ G. Either way, we can find
a parabolic cylinder Q∗(z′, r′) such that

Q∗(z′, r′) ∈
k⋃
j=1

Gj, (5.6)

Q∗(z, r) ∩Q∗(z′, r′) 6= ∅. (5.7)

Then (5.6) implies that r′ > R/2k. Since Q∗(z, r) ∈ Fk, we know that r ≤ R/2k−1,
so that r < 2r′. This, (5.7) and the triangle inequality imply the result.

Proof (of Theorem 5.10). The proof, following [3], is based on a covering argu-
ment. Let (u, p) be a suitable weak solution in ω × (t1, t2), D a neighbourhood of
S and δ > 0. By Theorem 5.8,

z ∈ S =⇒ lim sup
r→0

1

r

∫∫
Q∗(z,r)

|∇u|2 dx dt ≥ ε1.

Thus, given z ∈ S, we can find r < δ such that Q∗(z, r) ⊂ D, and

1

r

∫∫
Q∗(z,r)

|∇u|2 dx dt ≥ ε1. (5.8)

We do this for each z ∈ S, and then select a countable disjoint subfamily of parabolic
cylinders {Q∗(zi, ri)}∞i=1 such that

S ⊂
∞⋃
i=1

Q∗(zi, 5ri).

From (5.8), we see that

∞∑
i=1

ri ≤
1

ε1

∞∑
i=1

∫∫
Q∗(zi,ri)

|∇u|2 dx dt ≤ 1

ε1

∫∫
D

|∇u|2 dx dt
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=⇒ P1(S) ≤
∞∑
i=1

5 ri ≤
5

ε1

∫∫
D

|∇u|2 dx dt. (5.9)

Since ∇u ∈ L2(t1, t2 ;L2(ω)) ⊂ L2(D), then
∑
i

ri <∞. Thus, if m(S) denotes the

Lebesgue measure of S, we find that

m(S) ≤ C

∞∑
i=1

(5ri)
5 ≤ Cδ4

∞∑
i=1

ri → 0, as δ → 0.

Since (5.9) holds for every neighbourhood D of S, and m(S) = 0, we can make
the right-hand side of (5.9) arbitrarily small by choosing D such that m(D\S) is
sufficiently small, and the result follows from (5.1).
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6 Axially Symmetric Flow Without Swirl

Our goal in this chapter is to describe how one can use the results discussed earlier
to analyse regularity for the special case of axially symmetric flow without swirl.

6.1 Formulation

Let {e1, e2, e3} be an orthonormal basis for Cartesian coordinates (x1, x2, x3), and
{er, eθ, e3} an orthonormal basis for cylindrical polar coordinates (r, θ, x3) with

er = cos θ e1 + sin θ e2, eθ = − sin θ e1 + cos θ e2.

Then, for any vector u ∈ R3, we define the radial ur and axial uθ components via

u = ukek = u1e1 + u2e2 + u3e3 = urer + uθeθ + u3e3.

Suppose that the flow is axially symmetric i.e. the velocity and pressure are inde-
pendent of θ. Assume further that there is no swirl i.e. uθ(r, z) ≡ 0.

It is natural to expect better behaviour of solutions when we have this additional
symmetry. Indeed, Ukhovskii and Iudovich [31] and, independently, Ladyzhenskaya
[16] proved global existence of smooth solutions for the case Ω = R3, see also
Leonardi et al. [19]. However, it is not known whether the same result holds for
the case Ω ⊂ R3 bounded. For the half-space Ω = R3

+, Kang [15] showed that there
are no singular points, except possibly at the origin. A stronger result was given by
Seregin and Sv̌erák ([26], Theorem 1.3), namely of local regularity: for any domain
Ω, there are no singular points away from the boundary ∂Ω. We now show how one
might prove this result.

Firstly, we know that there exists a Leray-Hopf weak solution that is also a suitable
weak solution in ΩT . By Theorem 4.7, there exists a strong solution defined on a
time interval [0, T ∗). Since u0 is smooth, this strong solution is smooth in both the
spatial and time variables. By Theorem 4.5, it is unique in the class of Leray-Hopf
weak solutions, and thus coincides with the suitable weak solution on [0, T ∗).

By Theorem 5.10 and the fact that the flow is axially symmetric, any singular
points must lie on the axis symmetry. Otherwise, a ring of singular points would
exist, which would imply that P1(S) 6= 0. Seek a contradiction by supposing
x0 = (0, 0, x0,3) ∈ Ω is a point on the axis of symmetry with z0 = (x0, T0) a singular
point. There are two cases to consider: T0 = T ∗ and T0 > T ∗.

6.2 Case I: T0 = T ∗

Suppose T0 = T ∗. Take r > 0 sufficiently small such that B(x0, r) ⊂ Ω and r2 < T0,
and consider the domain B(x0, r)× [T0− r2, T0]. Using the scaling invariance of the
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Navier-Stokes equations (cf. §5.2), we can translate and scale this domain to the
canonical domain B(0, 1)× [−1, 0], with z0 = 0 the singular point and u smooth in
Qε := B(0, 1)× [−1,−ε2] for every ε ∈ (0, 1].

Lemma 6.1. There exists α ∈ (0, 1) and δ′ > 0 such that u is Hölder continuous
on {

z ∈ B(0, 1)× {t = 0}
∣∣ |x| ∈ [α− δ′, α + δ′]

}
.

Proof (See Figure 1). Since all the singular points lie on the x3 axis, this is
equivalent to the claim that there exists α′ ∈ (0, 1) such that z = (0, 0,±α′, 0) is
a regular point. But the existence of such an α′ is immediate, since P1(S ′) = 0,
where

S ′ = { (0, 0, β, 0) ∈ S | (0, 0,−β, 0) ∈ S } .

t ∈ R

x ∈ R3

t = −1

−1 +1x3 = −α x3 = +αz0 = 0

Figure 1: u is Hölder continuous on the boundary of the shaded region and smooth
in the interior of the parabolic cylinder Q(0, 1).

Now consider the domain B(0, α+ δ′)× [−(α+ δ′)2, 0]. Again, by rescaling, we find
that

u is a suitable weak solution in B(0, 1)× [−1, 0]. (6.1)

u is smooth in Qε for every ε ∈ (0, 1]. (6.2)
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u is Hölder continuous on ∂B(0, 1)× [−1, 0]. (6.3)

6.2.1 Vorticity Equation

Note that the following formal calculations are allowed, since u is smooth in Qε for
ε ∈ (0, 1].

Define the vorticity w by w := ∇×u. Taking the curl of the momentum equation,
we obtain the vorticity transport equation:

∂w

∂t
+ (u · ∇)w = (w · ∇)u+ ∆w (6.4)

Since uθ = 0, then w = wθeθ = (∂zur − ∂ruz) eθ and (6.4) reduces to a scalar
equation and may be written in component form as

∂wθ
∂t

+ ur
∂wθ
∂r

+ uz
∂wθ
∂z

=
1

r
wθur +

∂2wθ
∂r2

+
1

r

∂wθ
∂r

+
∂2wθ
∂z2

− 1

r2
wθ.

Define η := wθ/r. Substituting this into the above equation gives

∂η

∂t
+ ur

∂η

∂r
+ uz

∂η

∂z
−
[
∂2η

∂r2
+
∂2η

∂z2
+

3

r

∂η

∂r

]
. (6.5)

We now extend η to a function of five spatial variables, say x1, x2, x3, x4, z, and
time. Let η(r, z, t) = U(x1, x2, x3, x4, z, t), with

x1 = r cos θ1,

x2 = r sin θ1 cos θ2,

x3 = r sin θ1 sin θ2 cos θ3,

x4 = r sin θ1 sin θ2 sin θ3,

where r2 = x2
1 + x2

2 + x2
3 + x2

4 and 0 ≤ θ1, θ2 ≤ π and 0 ≤ θ3 ≤ 2π.

Using the expression for the gradient and Laplace operators in 4-d spherical coor-
dinates, we find that U(x1, x2, x3, x4, z, t) satisfies the equation

∂tU + b · ∇5U −∆5U = 0, (6.6)

in Q5,ε := B5(0, 1)× (−1,−ε2) ⊂ R5 × R.

Here, ∇5 and ∆5 are the usual gradient and Laplace operators with respect to
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Cartesian coordinates in R5, and b ∈ R5 is given by

b = b(x1, x2, x3, x4, z, t) = biei

bi =
ur(r, z, t)

r
xi , i = 1, 2, 3, 4

b5 = uz(r, z, t).

(6.7)

We have thus obtained a 5-dimensional heat equation with drift, an equation to
which we can apply results from the theory of parabolic equations.

6.2.2 Maximum Principle Argument

Theorem 6.2. Let Ω ⊂ Rn be a bounded domain, and T > 0. Suppose that
F ∈ C(ΩT ) ∩ C2

1(ΩT ) satisfies

∂tF +B · ∇F −∆F ≤ 0 in ΩT , (6.8)

where B is continuous. Then

sup
ΩT

F ≤ sup
∂∗ΩT

F,

where ∂∗ΩT =
(
Ω× {t = 0}

)
∪ (∂Ω× [0, T ]) is the parabolic boundary of ΩT .

Proof (Evans [4], §7.1.4). Since F ∈ C(ΩT ), the supremum exists and is attained
at some point. We proceed by contradiction. Assume first that

∂tF +B · ∇F −∆F < 0 in ΩT . (6.9)

Suppose there exists (x0, t0) with x0 ∈ Ω and 0 < t0 ≤ T such that

F (x0, t0) = sup
ΩT

F (x, t).

Then

∂tF (x0, t0) = 0, if t0 < T ;

∂tF (x0, t0) ≥ 0, if t0 = T ;

∇F (x0, t0) = 0 and ∆F (x0, t0) ≤ 0,

which contradicts (6.9). Thus, the maximum is attained on ∂∗ΩT .

Now assume (6.8) holds. Let F ε(x, t) := F (x, t)− εt, with ε > 0. Then

∂tF
ε +B · ∇F ε −∆F ε < 0 in ΩT ,
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so F ε attains its maximum on ∂∗ΩT . Let ε→ 0 to conclude the result.

Return now to equation (6.6). To apply Theorem 6.2, we need to verify that U and
b satisfy

U ∈ C2
1(Q5,ε) ∩ C(Q5,ε), (6.10)

b ∈ C(Q5,ε). (6.11)

Note that

0 = divu =
1

r
ur +

∂ur
∂r

+
∂uz
∂z

=⇒ 1

r
ur = −∂ur

∂r
− ∂uz

∂z
.

Since the right-hand side is in C(Q5,ε), then so is the left-hand side. It follows then
from (6.7) that (6.11) holds.

Assumption (6.10) is also true since w is smooth in Qε, so that

∇w =
∂w

∂r
⊗ er +

1

r

∂w

∂θ
⊗ eθ +

∂w

∂z
⊗ ez

=
∂wθ
∂r
eθ ⊗ er − ηer ⊗ eθ +

∂wθ
∂z
eθ ⊗ ez

is smooth in Qε, and thus η is smooth in Qε. Here, ⊗ is the tensor product. Thus,
U , ∂tU , ∇5U and ∆5U all exist and are continuous in Q5,ε so that (6.10) holds.

Now we can apply Theorem 6.2 to find that U is bounded on Q5,ε by its values on

∂∗Q5,ε = (∂B5(0, 1)× [−1,−ε2]) ∪ (B5(0, 1)× {t = −1}),

see Figure 2. Since U is bounded on B5(0, 1)×{t = −1} and on ∂B5(0, 1)× [−1, 0],
we see that U is bounded in Q5,ε. Thus, η and hence w are bounded in Qε,
independent of ε.
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t ∈ R

x ∈ R5
z0

t = −1

−1 +1

t = −ε2

Figure 2: The picture for the maximum principle argument. U is bounded in the
shaded region by its values on the parabolic boundary indicated by thick lines.

To bound u, we will need the following variant of Korn’s inequality :

Lemma 6.3. Let the matrix ε(v) be given by

εi,j(v) =
∂vj
∂xi
− ∂vi
∂xj

. (6.12)

Let x0 ∈ R3 and div v = 0. Then there exists a constant C such that:

(i) ‖∇v‖2,B(x0,r) ≤ C ‖ε(v)‖2,B(x0,r) , ∀v ∈ W 1,2
0 (B(x0, r));

(ii) ‖∇v‖2,B(x0,r/2) ≤ C
[
‖ε(v)‖2,B(x0,r) + ‖v‖2,B(x0,r)

]
, ∀v ∈ W 1,2(B(x0, r)).

Proof. By density arguments, it is enough to prove this for v ∈ C∞0,0(B(x0, r)).
(i) We apply integration by parts. Since v is divergence free and has compact
support in B(x0, r),

‖ε(v)‖2
2,B(x0,r)

=

∫
B(x0,r)

(
∂vj
∂xi
− ∂vi
∂xj

)2

dx

= 2 ‖∇v‖2
2,B(x0,r)

− 2

∫
B(x0,r)

∂vi
∂xj

∂vj
∂xi

dx

= 2 ‖∇v‖2
2,B(x0,r)

− 2

∫
B(x0,r)

∂

∂xi

(
vj
∂vi
∂xj

)
− ∂

∂xj

(
vj
∂vi
∂xi

)
+
∂vj
∂xj

∂vi
∂xi

dx

= 2 ‖∇v‖2
2,B(x0,r)

− 2

∫
∂B(x0,r)

vj
∂v

∂xj
· n dx+ 2

∫
B(x0,r)

∂

∂xj
(vj div v) dx
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− 2

∫
B(x0,r)

(div v)2 dx

= 2 ‖∇v‖2
2,B(x0,r)

.

So if C ≥ 1
2
, then

‖∇v‖2
2,B(x0,r)

≤ C ‖ε(v)‖2,B(x0,r)

(ii) Apply (i) to ϕv, where ϕ is a cut-off function i.e.
ϕ ∈ C∞0 (B(x0, r))

ϕ ≡ 1, in B(x0, r/2)

0 ≤ ϕ ≤ 1, in B(x0, r)

Then

‖∇(ϕv)‖2,B(x0,r) ≤ C ‖ε(ϕv)‖2,B(x0,r) .

By the properties of ϕ,∫
B(x0,r)

|∇(ϕv)|2 dx =

∫
B(x0,r)

|ϕ∇v + vT∇ϕ|2 dx

≥
∫
B(x0,r/2)

|ϕ∇v + vT∇ϕ|2 dx

=

∫
B(x0,r/2)

|∇v|2 dx.

Now, we have that

εi,j(ϕv) = ϕ · εi,j(v) +
∂ϕ

∂xi
vj −

∂ϕ

∂xj
vi.

By the equivalence of norms in finite dimensions and the fact that ϕ ∈ C∞0 (B(x0, r)),
we have that

|εi,j(ϕv)| ≤ |ϕ| · |εi,j(v)|+ 2 · max
i=1,2,3

∣∣∣∣ ∂ϕ∂xi
∣∣∣∣ · max

i=1,2,3
|vi|

≤ |εi,j(v)|+ C0|v|

=⇒ |εi,j(ϕv)|2 ≤ |εi,j(v)|2 + C2
0 |v|2 + 2C0|εi,j(v)| · |v| .

Thus,

‖ε(ϕv)‖2
2,B(x0,r)

≤ ‖ε(v)‖2
2,B(x0,r)

+ C2
0‖v‖2

2,B(x0,r)
+ 2C0

∫
B(x0,r)

|εi,j(v)| · |v| dx
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≤ |ε(v)‖2
2,B(x0,r)

+ C2
0‖v‖2

2,B(x0,r)
+ 2C0 · ‖ε(v)‖2,B(x0,r) · ‖v‖2,B(x0,r)

≤ C2
[
‖ε(v)‖2,B(x0,r) + ‖v‖2,B(x0,r)

]2
,

where C = max {1, C0}. Consequently,

‖ε(ϕv)‖2,B(x0,r) ≤ C
[
‖ε(v)‖2,B(x0,r) + ‖v‖2,B(x0,r)

]
,

and the result follows.

Now, in Cartesian coordinates, the vorticity w = ∇× u is given by

w = (w1, w2, w3) =

(
∂u3

∂x2

− ∂u3

∂x3

,
∂u1

∂x3

− ∂u3

∂x1

,
∂u2

∂x1

− ∂u1

∂x2

)
,

so that

ε(u) =

 0 w3 −w2

−w3 0 w1

w2 −w1 0

 .

Consequently, we have that

‖ε(u)‖2,B(0,ε) =
√

2‖w‖2,B(0,ε) .

By Lemma 6.3, for every t ∈ (−1, 0),

‖∇u(t)‖2,B(0,ε/2) ≤ C
[
‖w(t)‖2,B(0,ε) + ‖u(t)‖2,B(0,ε)

]
≤ C,

since w is bounded and u ∈ L∞(−1, 0 ;L2(B(0, 1))).

Hence,

1

ε

∫∫
Q(z0,ε/2)

|∇u|2 dx dt ≤ Cε→ 0, as ε→ 0.

By Theorem 5.8, the point z0 = 0 is regular, a contradiction.

Notice that if Ω = R3, then we have proved that every point is regular. Conse-
quently, ∇k−1u is Hölder continuous for all k ∈ N. One can then show that

lim sup
t↗T ∗

‖∇u‖2,Ω <∞,

so that the strong solution can be extended beyond T ∗.
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6.3 Case II: T0 > T ∗

If T0 > T ∗, the situation is more complicated since the solution is not necessarily
smooth for all t < T0. We use the same argument to reduce to the canonical domain,
and assumptions (6.1) and (6.3) still hold, but (6.2) is replaced by

∇k−1u is Hölder continuous in Qε for every ε ∈ (0, 1] and k ∈ N. (6.13)

Since w only involves terms that appear in ∇u, we know that w, ∇w and ∇2w
are bounded in Qε.

Assumption (6.11) is replaced by

b ∈ L∞(−1, 0 ;L2(B(0, 1))). (6.14)

The same argument as before implies that η is bounded in Qε. Furthermore, we
find that (after some algebra) one of the terms in ∇2w is of the form(

1

r

∂wθ
∂r
− wθ
r2

)
(eθ ⊗ eθ − er ⊗ er)⊗ eθ.

Note that

∂η

∂r
=

∂

∂r
(wθ/r) =

1

r

∂wθ
∂r
− wθ
r2
.

Since

∂U

∂xi
=
xi
r

∂η

∂r
,

and xi/r is bounded in Q5,ε, we conclude that U and ∇5U are bounded in Q5,ε.

We define a weak solution to (6.6) by∫∫
Q5(0,1)

[−U∂tφ+ φb · ∇5U +∇5U · ∇5φ] dx dt = 0, ∀φ ∈ C∞0 (Q5(0, 1)).

Now, we also have a maximum principle for functions in the class

L∞(−1, 0 ;L2(B(0, 1))) ∩ L2(−1, 0 ;W 1,2(B(0, 1))),

see Ladyzhenskaya et al. [18] Theorem III.7.2. Assumption (6.14) and the fact
that U and ∇5U are bounded allow us to apply this maximum principle. The same
argument as before now implies that z0 = 0 is regular.
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Conclusion

Over the course of this dissertation, we have investigated some aspects of the math-
ematical theory of the Navier-Stokes equations. In Chapters 2 and 3 we introduced
Leray-Hopf weak solutions and proved, using the Galerkin method, the existence of
such solutions. In Chapter 4, we turned to the questions of uniqueness and regu-
larity of solutions. We introduced the notion of a strong solution, and showed that
a strong solution exists, at least for a short amount of time. We also described
the importance of strong solutions by showing that they are unique in the class of
Leray-Hopf weak solutions and are as smooth as the given data.

In Chapter 5, we introduced the theory of local regularity in order to analyse sin-
gularities in the flow. We introduced suitable weak solutions and presented the
Caffarelli-Kohn-Nirenberg Theorem, which gives the estimate P1(S) = 0. Finally,
in Chapter 6, we analysed regularity of solutions for axially symmetric flow without
swirl, and showed how to use the vorticity equation and a clever change of variables
to reduce the problem to a heat equation with drift.

The theory of the Navier-Stokes equations is vast, and we have only very briefly
touched upon some of the interesting topics that one could study further. Though
we have mainly focused on the three-dimensional problem, along the way we proved
existence and uniqueness of weak solutions to both the linear and two-dimensional
problems. I am now particularly interested in treating the equations as a dynamical
system, and analysing the long-term behaviour of solutions.

One extension for the material in Chapter 6 is to see what happens when there is
swirl. Another possible extension is to consider the problem of boundary regularity
of solutions. In fact, one can show that there are no singular points on the boundary
except possibly at points on the axis of symmetry. The question of regularity at these
points is open.

The ultimate question of finite-time blow-up for the Navier-Stokes equations in
three dimensions is still far from being answered. Since Leray’s ground-breaking
work of 1934, progress has been relatively slow. To settle this problem, it seems
that some new, revolutionary ideas are needed.
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Appendices

A Notation

A.1 Domains and Sets

• Rn is n-dimensional Euclidean space.

• N is the set of positive integers.

• Ω is a bounded open set in R3 with smooth boundary ∂Ω. If T > 0, then
ΩT := Ω× (0, T ), and ΩT = Ω× [0, T ].

• B(x0, r) = {x ∈ R3 | |x− x0| < r }.

• Q(z0, r) ≡ Q(x0, t0, r) = Br(x0)× (t0 − r2, t0).

• Q∗(z0, r) = B(x0, r)× (t0 − r2, t0 + r2).

• Qε = B(0, 1)× [−1,−ε2], with ε ∈ (0, 1].

• B5(0, 1) = {x ∈ R5 | |x| < 1 }.

• Q5,ε = B5(0, 1)× (−1,−ε2).

A.2 Function Spaces

• Ck(ΩT ) = { f : ΩT → R | f is k-times continuously differentiable in x }.

• C2
1(ΩT ) = { f : ΩT → R | f , ∇f , ∇2f , ∂tf ∈ C(ΩT ) }.

• C∞(Ω) =
{
f : Ω→ R | f ∈ Ck(Ω) ∀k ∈ N

}
.

• C∞0 (Ω) = { f ∈ C∞(Ω) | ∃ compact K ⊂ Ω such that f = 0 in Ω \K }.

• C∞0,0(Ω) = {ϕ ∈ C∞0 (Ω) | divϕ = 0 }.

• Lp(Ω) = { f : Ω→ R | f is measurable and ‖f‖p,Ω <∞}.

• W 1,p(Ω) = { f ∈ Lp(Ω) | the weak derivative of f exists and is in Lp(Ω) }.

• W 1,p
0 (Ω) = { f ∈ W 1,p(Ω) | ∃ fn ∈ C∞0 (Ω) such that ‖f − fn‖1,2,Ω → 0 }.

• H = H(Ω) =
{
u ∈ L2(Ω) | ∃ϕn ∈ C∞0,0 such that ‖u−ϕn‖2,Ω → 0

}
.

• V = V (Ω) =
{
u ∈ W 1,2(Ω) | ∃ϕn ∈ C∞0,0 such that ‖∇(u−ϕn)‖2,Ω → 0

}
.

• For 1 ≤ p <∞, Lp(0, T ;X) =
{
u ∈ X | ‖u‖L2(0,T ;X) <∞

}
, where

‖u‖Lp(0,T ;X) =

(∫
Ω

‖u(· , t)‖pX dt

)1/p

.

53



• L∞(0, T ;X) =
{
u ∈ X | ‖u‖L∞(0,T ;X) <∞

}
, where

‖u‖L∞(0,T ;X) = ess sup
t∈(0,T )

‖u(· , t)‖X .

B Calculus and Functional Analysis

B.1 Gronwall’s Inequality

Let f(t) be integrable and differentiable on [0, T ), β(t) be integrable on [0, T ).
Suppose that

f ′(t) ≤ β(t)f(t), ∀ t ∈ [0, T ).

Then

f(t) ≤ f(0) exp

(∫ t

0

β(τ) dτ

)
, ∀ t ∈ [0, T ).

B.2 Fubini-Tonelli Theorem

Suppose that f : R2 → R is measurable, and suppose that either of the following
repeated integrals exists and is finite:∫

R

(∫
R
|f(x, y)| dx

)
dy,

∫
R

(∫
R
|f(x, y)| dy

)
dx.

Then f ∈ L1(R2), and∫∫
R2

f(x, y) dx dy =

∫
R

(∫
R
f(x, y) dx

)
dy =

∫
R

(∫
R
f(x, y) dy

)
dx.

B.3 Hahn-Banach Theorem

Let X be a normed space, M a proper subspace, and f ∈ M ′. Then there exists
g ∈ X ′ such that

g|M = f and ‖g‖X′ = ‖f‖M ′ .

B.4 Riesz Representation Theorem

Let X be a Hilbert space with inner product (· , ·), X ′ be the dual space. The
mapping Ψ : X → X ′ defined by [Ψ(x)](y) = (y , x), ∀ y ∈ X is a conjugate-linear
isometry. Thus, every T ∈ X ′ has a unique representative x such that T (y) = (y , x),
∀ y ∈ X.
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B.5 Banach-Alaoglu Theorem

Let X be a separable Banach space, {fn}∞n=1 a sequence of functions in X ′. If
supn ‖fn‖X′ < ∞, then there exists f ∈ X ′ and a weak-? convergent subsequence
fnk

such that

fnk

?−⇀ f

i.e. fnk
(x)→ f(x) for each x ∈ X. If X is reflexive, the corresponding result is the

existence of a weakly convergent subsequence i.e. g(fnk
)→ g(f) for every g ∈ X ′.

B.6 Arzelà-Ascoli Theorem

Let {fn}∞n=1 ⊂ C(Ω). Then there exists a uniformly convergent subsequence if and
only if:

1. Uniform boundedness: sup
n
‖fn‖∞,Ω <∞.

2. Uniform equicontinuity: ∀ ε > 0 there exists δ > 0 such that for any x , y ∈ Ω
with |x− y| < δ, we have that |fn(x)− fn(y)| < ε for every n.

B.7 Fundamental lemma of Calculus of Variations

Let f ∈ L2(Ω). Then∫
Ω

f(x) · ϕ(x) dx = 0 ∀ϕ ∈ C∞0 (Ω) =⇒ f ≡ 0 a.e. in Ω.

B.8 Young’s Inequality

Let a , b ∈ R be non-negative. Suppose 1 < p , p′ <∞ with 1
p

+ 1
p′

= 1. Then

ab ≤ ap

p
+
bp
′

p′
.

B.9 Poincaré’s Inequality

There exists a constant C independent of u such that

‖u‖2,Ω ≤ C ‖∇u‖2,Ω , ∀u ∈ W 1,2
0 (Ω).

B.10 Sobolev Embedding Theorem

Let 1 ≤ p ≤ n. Then W 1,p(Ω) is continuously embedded into Lq(Ω) for every
q ∈ [1, np

n−p ].
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