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Planar Dirichlet eigenproblem

Normal modes of elastic membrane or ‘drum’ (Helmholtz, Germain, 19t"C)
Eigenfunctions ¢, of Laplacian A := 92 +92, in bounded cavity QCR?

—A¢] — j¢j ¢j’8§2 — () Dirichlet BC fQ ¢i¢jdX = 52']'
mode 3 =1---00

discrete eigenvalues
Fi1<BEo<F3<---00

1/2
wavenumber kj =F j/

wavelength \; := 2~
J

e Time-harmonic solns of wave eqn (acoustics, optics, quantum, etc)
e Asymptotics of ¢, as eigenvalue £/, — o0o? Depends on shape. . .
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(Some favorite) eigenmode topics

I. Background, chaotic billiards

II. Quantum ergodicity:
how uniform are eigenmodes?

III. Scarring and the mushroom:
how do periodic ray orbits affect mode statistics?



Some history of (related) eigenmodes

Ernst Chladni (1756—-1827) sprinkles sand on metal plates
‘Plays’ them with violin bow: visualizes nodal lines (¢; = 0)




Some history of (related) eigenmodes

Ernst Chladni (1756—-1827) sprinkles sand on metal plates
‘Plays’ them with violin bow: visualizes nodal lines (¢; = 0)

e popular lectures all over Europe

e Napoleon impressed: offers 1 kg
gold to explain patterns

e Napoleon realised: 1irregularly
shaped plate harder to understand
(first funding for quantum chaos!)

e Sophie Germain got prize in 1816

Note: rigid plate * membrane
(biharmonic A? rather than Laplacian A)
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Recall in separable domains (ellipse, rect.): ¢; products of 1D modes
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For single-valued ¢ to exist and satisfy BCs:
1) rays reflect off boundary, giving ray families which must close
ii) quantization: round-trip phase = 27n + 7 (# focal points) + 7 (# reflections)
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Recall in separable domains (ellipse, rect.): ¢; products of 1D modes

EBK: semiclassical approx. for certain non-separable modes
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S.m = phase function __—.__:_::,:%} %ﬂi’ﬁ?::.
A, = amplitude function Sy R

Insert into —A¢ = E¢ gives |VS,,| =1 phase grows along straight rays

For single-valued ¢ to exist and satisfy BCs:
1) rays reflect off boundary, giving ray families which must close
ii) quantization: round-trip phase = 27n + 7 (# focal points) + 7 (# reflections)

But, do bouncing ray paths always form closed families. .. ?
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free motion: Hamiltonian dynamical system
energy H(x, &) = |£|* conserved

trajectory x(¢) launched at x(0) = xg



Bouncing rays: the game of billiards

62) =1 (%,6)

full phase space (x1, xs,

free motion: Hamiltonian dynamical system
energy H(x, &) = |£|* conserved

trajectory x(¢) launched at x(0)

I
X
=

TWO BROAD CLASSES OF MOTION

integrable: ergodic:

d conserved quantities (d=2) only H cbnééréd: haos!



Properties of chaotic rays

Defn. of ergodic: Given A(x) test func, for a.e. trajectory X,

time average =  spatial average

jlgrgo%/o A(x(t))dt = VOll(Q)/QA(X)dX =: A
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time average =  spatial average
lim — /TA( (t))dt : /A( Vix = A
11 — X — X)ax =:
e ‘hyperbolic’: |x;(t) — xo(t)| ~ ceM 0 < A = Lyapunov exponent
e ‘Anosov’: uniformly hyperbolic (all periodic orbits unstable, 1solated)

e.g. Bunimovich stadium ergodic but not Anosowv. ..

‘QUANTUM CHAOS'’: study of eigenmodes when (2 ergodic (Einstein 1917)

e Apps: quantum dots, nano-scale devices, molecular phys/chem

Why chaos important? Generic shapes have some chaotic phase space

Modes ¢; irregular: ...say more?
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Weakly in L1
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e measure |¢;|*dx

j=1 j =10 j = 102 j =103 j =5 x10%

Of practical importance: At what rate 1s limit reached?
How fast does the density of excluded subsequence vanish?
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Quantum Unique Ergodicity (QUE)

Conj. (Rudnick-Sarnak "94): There 1s no excluded subsequence in QET

e context: negatively curved manifolds (Anosov)

Recent analytic results:

e Proven to hold for arithmetic manifold SLo(7Z) \ H (Lindenstrauss "03)
... very special system, symmetries, all A = 1

e Proven not to hold for some quantum Arnold cat maps (Faure et al *03)

But there are no analytic results for planar cavities. ..



Numerical experiments

dispersing cavity, proven Anosov (Sinai *70)
desymmetrized, generic A exponents

1 1n € A,
0 otherwise

test function A =

(B, Comm. Pure Appl. Math. *06)
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Numerical experiments (B. Comm. Pure Appl. Math. *06)

dispersing cavity, proven Anosov (Sinai *70)
desymmetrized, generic A exponents

1 1 QA,

test function A = ,
0 otherwise

Large-scale study, 30,000 modes in range j ~ 10* to 10°, enabled by:

1. Efficient boundary-based numerics for ¢; (‘scaling method’)

2. Matrix elements |, ¢7dx via boundary integrals on 024

e 100 times higher in j than any previous studies (e.g. Bicker "98)
e only a few CPU-days total

n. 10



Typical high-frequency ergodic mode

999, 905975623 zsc = 0,1729 dizgp:2

225 wavelengths
across system

level number

J~ 5 x 104

Stringiness

unexplained. ..




(compare: random sum of plane waves)

Re > a,,ekm™

all wavenumbers
k.| = vV E = const.

similarly stringy. ..
interesting
to the eye only?




Raw matrix element data
To reach high F, only use modes in intervals £, € |[E, E + L(FE)|

diagonal elements
—— classical mean

e No outliers = strong evidence for QUE (exceptional density < 3 x 107°)

—n. 13



At what rate condense to the mean?
interval I = |[E, E + L(F)] choose width L(E)
eigenvalue count in interval N (/ ) #{j: B, € Ilg}

L Ags) — |

‘quantum variance’ V4 (F)

EE[E

= O(E'/?)

n. 14



At what rate condense to the mean?
interval I = |[E, E + L(F)] choose width L(E) = O(E/?)
eigenvalue count in interval N (/ ) #{j: B, € Ilg}

‘quantum variance’ V4 (F)

L Agj) — |

EE[E

e Random-wave statistical model for ¢; gives: Va(E) ~ agy E~/?



At what rate condense to the mean?
interval I = |[E, E + L(F)] choose width L(E) = O(E/?)
eigenvalue count in interval N (/ ) #{j: B, € Ilg}

‘quantum variance’ V,(F)

L Ags) — |

EE[E

e Random-wave statistical model for ¢; gives: Va(E) ~ agy E~/?

géA(O) —1/2
E
vol(€2)

where g = 2 from statistical independence of nearby ¢; (heuristic)

® Conj. (Feingold-Peres ’86): VA(E) ~

C4(w) := FT of autocorrelation #(Q) Jo A(x0)A(x(7))dx — A’



Results on quantum ergodicity rate

o Mmeasured VA(E)

- — = Conj. 1.2 (best fit)

o 5‘;‘;’;’2“;” fFVS)mOde' consistent with
power law model
Va (E) —abE ™7
fit

very close to y = 1/2

prefactor:
e RW model fails
e FP Conj. succeeds

e large numbers of modes — unprecedented accuracy (< 1%)
e asymptotic regime seen for first time (but more data needed!)
o consistent with FP Conj., convergence very slow: 7% off at j = 10°

—n. 15



II1. Scars: shadows of periodic ray orbits

Some high-j modes |¢;|* localize on unstable periodic orbits (UPO)
e discovered by numerical study of quarter-stadium modes (Heller *84)

i

1
i
e

N

k. .u.--n:.""M;I:"'.'.;_".;;_l::‘iq:r‘x.
R e ]

e Note also exceptional ‘bouncing ball’ BB modes (since not Anosov)
e Apps of scars: dielectric micro-lasers (Tureci et al), tunnel diodes. . .

—-n 16



Why do modes show scars?

Statistics of modes < Greens function < wave propagation
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‘Local Density Of States’ Greens func for Helmholtz eqn in {2
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e In distributional sense in k£ (wavenumber), for x € (),

2k
Z\@(X)]%(k—/@) =  lim Im G(x,x; k* + ic)
P 7w e—0
‘Local Density Of States’ Greens func for Helmholtz eqn in {2

e Then use semiclassical ray theory (heuristic):

G(x,x; k*) ~ (free space) + Z (geometric factor) i ot

returning
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Why do modes show scars?

Statistics of modes < Greens function < wave propagation

e In distributional sense in k£ (wavenumber), for x € (),

o
2k
Z|¢j(x)]25(k—kj) =  lim Im G(x,x; k* + ic)
P 7w e—0
‘Local Density Of States’ Greens func for Helmholtz eqn in {2

e Then use semiclassical ray theory (heuristic):

G(x,x; k*) ~ (free space) + Z (geometric factor) i ot

returning
orbits x—x

Outcome: k-periodic LDOS enhancement along each periodic orbit
(Gutzwiller, Heller, Bogomolny, Berry, Kaplan, *80-90s)

—-n 17



Mushroom cavity modes (B-Betcke, n1in/0611059)

Unusually simple
divided phase space
(Bunimovich '01)

ergodic rays

regular rays
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Mushroom cavity modes (B-Betcke, n1in/0611059)

Unusually simple
divided phase space First calculation of high-freq modes: j ~ 2000

(Bunimovich ’01)

e Percival ’73 conjecture verified (Percival *73):
modes localize to either regular or chaotic region

regular rays

—n 18



Very high freq mushroom modes

(I

ergodic, equidistributed

rmmﬂl'ﬂ

MIH%M. i i)
i i

ergodic, strongly scarred

—n. 19



New phenomenon: a ‘moving scar’

0,6,(q)|?, boundary location g:

R Rl

|

e sloping streak effect
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New phenomenon: a ‘moving scar’

0,6,(q)|?, boundary location g: take FT along k axis, gives:
= ——— wave autocorrelation in time

J

PR

lf |'|

lHE b

Illllll

|I I|I |I' |I' | |

e refocused returning orbits
e sloping streak effect e return length varies with ¢

—n. 20



Conclusion

High frequency asymptotic properties of chaotic modes ¢;:
o |¢,;(x)|* tends to spatially uniform at conjectured rate
e Scarring on unstable periodic orbits, enhanced by refocusing

Topics not covered:
e Bouncing ball mode leakage (ongoing w/ A. Hassell)
o Quasi-orthogonality of boundary functions 9,¢;(s)

Find out how the numerical method works: Fri am: KOL F 121

Thanks: P, Deift (NYU) Funding: NSF (DMS-0507614)

A. Hassell (ANU)
P. Sarnak (Princeton)
T. Betcke (Manchester)

S. Zelditch (JHU) made with: Linux, ISTEX, Prosper

Preprints, talks, movies:
http://math.dartmouth.edu/~ahb
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High-eigenvalue quarter-stadium scar

measure o

ie,

e Our numerical evidence for QUE = scars d
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Husimi distributions on mushroom boundary

|
| }
| 1
r integrabte
0.5 ergodic _—
| -
! | ergodic
|
|

classical boundary PSOS:

regular ergodic, strongly scarred

—n. 23



IV. Bouncing Ball modes

(ongoing work w/ A. Hassell)

—n. 24
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