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Machine Learning — high dimensional data (100-D).

Typical problems: clustering, classification,
dimensionality reduction.

Graphics/CG - low-dimensional data (2-D).

Typical problems: identify, match and process
surfaces.
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Machine learning:

Probability Distribution Data
Manifold —— Graph
Graphics/CG:
Underlying Spatial Object ——— Data

2-D Surface — Mesh
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Plan of the talk

Laplacian is a powerful geometric analyzer.
(As evidenced by Nobel prizes!)

Want practical algorithms with theorems.

Will discuss algorithms/theory for ML/CG.



Laplace-Beltrami operator

0° f (exp,(x))

Generalization of Fourier analysis.



Algorithmic framework: Laplacian

L =
0 0 -1 3 -1 -1
1; o 0 0 -1 2 -1
\ 0 0 0 -1 -1 2

Natural smoothness functional (analogue of grad):

S(F) = (fi—fo)?+(fr—f3)*+(fa—f3)° +(fs—fa)* +(fa—f5)° +(fa—f5)* +(fs— fs)?

Basic fact:

S(f) = Z(ﬁ—fj)2 — %fth

1~
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Data representation

f:G—-R

Minimize 37, wi;(fi — f;)

Preserve adjacency.

Solution: Lf = \f (slightly better Lf = AD)
Lowest eigenfunctions of L (L).

Laplacian Eigenmaps
Belkin Niyogi 01

Related work: LLE: Roweis, Saul 00; Isomap: Tenenbaum, De Silva, Langford 00

Hessian Eigenmaps: Donoho, Grimes, 03; Diffusion Maps: Coifman, et al, 04



Laplacian Eigenmaps

» Visualizing spaces of digits and sounds.

Partiview, Ndaona, Surendran 04

» Machine vision: inferring joint angles.

Corazza, Andriacchi, Stanford Biomotion Lab, 05, Partiview, Surendran

EERE -
L 'E‘P

Isometrically invariant representation. [link]

» Reinforcement Learning: value function
approximation. manadevan, Maggioni, 05
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> Unlabeled data is everywhere. Need to use it.
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Semi-supervised learning

Learning from labeled and unlabeled data.
> Unlabeled data is everywhere. Need to use it.
> Natural learning is semi-supervised.

ldea:
construct the Laplace operator using unlabeled data.

Fit eigenfunctions using labeled data.
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Toy example

Laplacian SVM Laplacian SVM

SVM

0.03125 y, = 1
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Experimental comparisons

Dataset — g50c Coil20 | Uspst || mac-win | WebKB | WebKB WebKB
Algorithm | (link) (page) | (page+link)
SVM (full labels) 3.82 0.0 3.35 2.32 6.3 6.5 1.0
SVM (I labels) 8.32 24.64 | 23.18 18.87 25.6 22.2 15.6
Graph-Reg 17.30 6.20 21.30 11.71 22.0 10.7 6.6
TSVM 6.87 26.26 | 26.46 7.44 14.5 8.6 7.8
Graph-density 8.32 6.43 16.92 10.48 - - -
VTSVM 5.80 1756 | 17.61 5.71 - - -
LDS 5.62 4.86 15.79 5.13 - - -
LapSVM 5.44 3.66 12.67 10.41 18.1 10.5 6.4




Key theoretical question

What is the connection between point-cloud Laplacian
L and Laplace-Beltrami operator A ,,?

Analysis of algorithms:

Eigenvectors of .~ ——  Eigenfunctions of A,



Convegence

Theorem [convergence of eigenfunctions]

Eig[Ly] — Eig[Apm]

n

(Convergence in probabillity)

number of data points n — oo
width of the Gaussian ¢,, — 0

Previous work. Point-wise convergence.
Belkin, 03; Belkin, Niyogi 05,06; Lafon Coifman 04,06;Hein Audibert Luxburg, 05; Gine
Kolchinskii, 06, Singer, 06

Convergence of eigenfunctions for a fixed  t:

Kolchniskii Gine 00, Luxburg Belkin Bousquet 04



Heat equation in R":

u(x,t) — heat distribution at time ¢.

u(x,0) = f(z) — Initial distribution. » € R", ¢ € R.

du
Arnu(x,t) = E(x,t)

Solution — convolution with the heat kernel:

2
_ ==yl

fly)e™ 7 ~dy
Rn

|3

u(x,t) = (4nt)™

Recall



Proof idea (pointwise convergence)

Functional approximation:
Taking limit as ¢t — 0 and writing the derivative:

2
llz—=yll© yll

Awf(@) = 5 |(m) 7 [ s dy]o




Proof idea (pointwise convergence)

Functional approximation:
Taking limit as ¢t — 0 and writing the derivative:

|3

Agn f(z) = — | (4mt)~

d |z—y|2
— T ar (]

Mg f(x) & 1 (4t) (f(:v) - f(y)e%—fdy)

Rn



Proof idea (pointwise convergence)

Functional approximation:
Taking limit as ¢t — 0 and writing the derivative:

2
_ Mz—yll* yll

M (o) = g7 |0ty [ e |

ARnﬂx)w—%th)—% (f(as)— fly)e “dy)

Rn

Empirical approximation:
Integral can be estimated from empirical data.

B (1) 5 —(4)” ( - S )



Some difficulties

Some difficulties arise for manifolds:

» Do not know distances.
» Do not know the heat kernel.

X M
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|Ix=yIl




Some difficulties

Some difficulties arise for manifolds:

» Do not know distances.
» Do not know the heat kernel.

X M

dist, (x,y)
|Ix=yIl

Careful analysis required.
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Mesh Laplacian

Mesh K.
Triangle t. Area A(t).

Vertices v, w.

P-‘f.
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Belkin Sun Wang, 07



Mesh Laplacian

Mesh K.
Triangle t. Area A(t).

Vertices v, w.

Licf(u WZ IS e () — £

VETL

Belkin Sun Wang, 07



Mesh Laplacian

Mesh K.
Triangle t. Area A(t).
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Convergence
K Is a “nice” mesh (does not fold onto itself).

Theorem:
L — Am/f
as mesh size ¢ (biggest triangle) tends to zero.
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Convergence

K Is a “nice” mesh (does not fold onto itself).

Theorem:

L — Am/f
as mesh size ¢ (biggest triangle) tends to zero.

= €2.5+0.001 _
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Eig #1 0.003 0.0009
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Mesh Laplacian
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Mesh Laplacian

Existing work: several methods, including
Desbrun, et al 99, Meyer, et al 02, Xu 04. Numerous

applications (smoothing, quadrangulations, deformations, etc).
None converge even in R2.
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Conclusions

> Laplacian carries extensive geometric information.

> Theoretically grounded and practical methods.
(Yes, it is possible!)

> Interesting connections between machine learning
and graphics.

> More things should be possible now.
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