Constructing Laplace Operators from Data

Mikhail Belkin

The Ohio State University, Dept. of Computer Science and Engineering

Collaborators: Partha Niyogi, Jian Sun, Yusu Wang, Vikas Sindhwani

Machine Learning/Graphics,CG

a caveman's view

Machine Learning – high dimensional data (100-D).

Typical problems: clustering, classification, dimensionality reduction.

Machine Learning – high dimensional data (100-D).

Typical problems: clustering, classification, dimensionality reduction.

Graphics/CG – low-dimensional data (2-D).

Typical problems: identify, match and process surfaces.

Machine Learning/Graphics, CG

Machine learning:

Probability Distribution — Data

Manifold — Graph

Machine Learning/Graphics, CG

Machine learning:

Probability Distribution — Data

Manifold — Graph

Graphics/CG:

Underlying Spatial Object — Data

2-D Surface — Mesh

Laplacian is a powerful geometric analyzer.

Laplacian is a powerful geometric analyzer. (As evidenced by Nobel prizes!)

Laplacian is a powerful geometric analyzer. (As evidenced by Nobel prizes!)

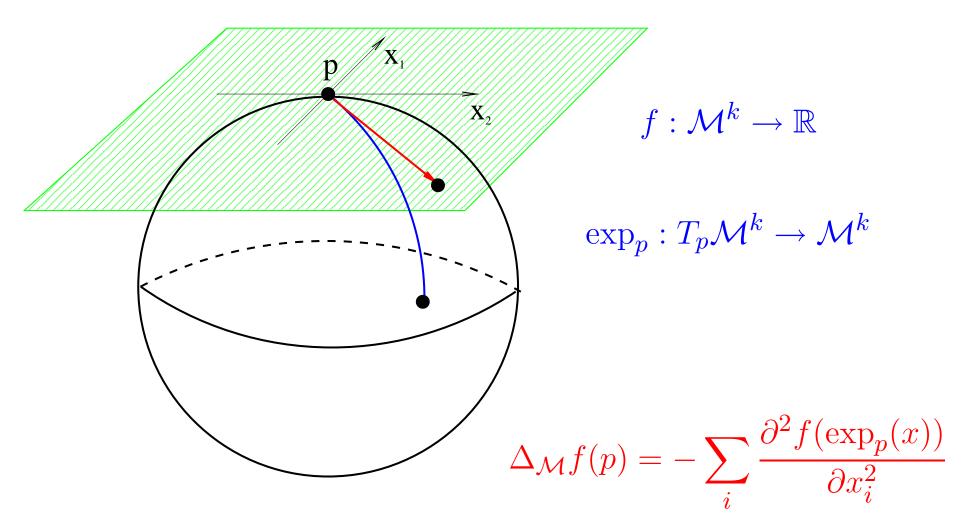
Want practical algorithms with theorems.

Laplacian is a powerful geometric analyzer. (As evidenced by Nobel prizes!)

Want practical algorithms with theorems.

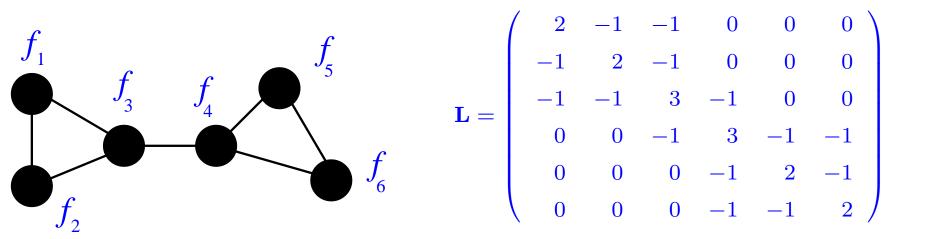
Will discuss algorithms/theory for ML/CG.

Laplace-Beltrami operator



Generalization of Fourier analysis.

Algorithmic framework: Laplacian



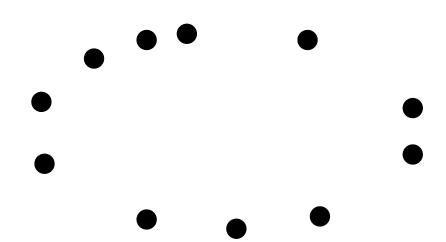
Natural smoothness functional (analogue of grad):

$$S(\mathbf{f}) = (f_1 - f_2)^2 + (f_1 - f_3)^2 + (f_2 - f_3)^2 + (f_3 - f_4)^2 + (f_4 - f_5)^2 + (f_4 - f_5)^2 + (f_5 - f_6)^2$$

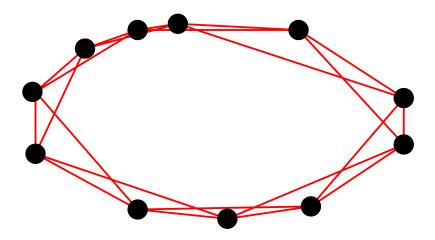
Basic fact:

$$\mathcal{S}(\mathbf{f}) = \sum_{i \sim j} (f_i - f_j)^2 = \frac{1}{2} \mathbf{f}^t \mathbf{L} \mathbf{f}$$

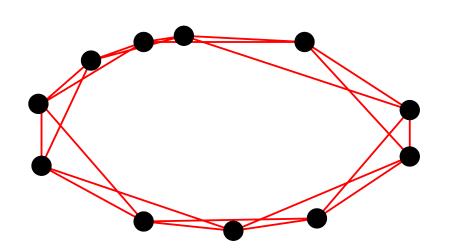
Algorithmic framework

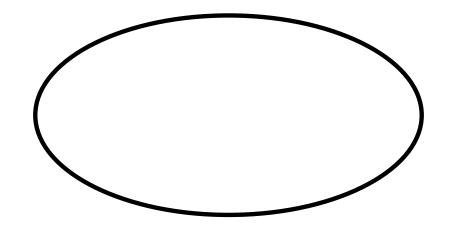


Algorithmic framework



Algorithmic framework





$$W_{ij} = e^{-\frac{\|x_i - x_j\|^2}{t}}$$

$$Lf(x_i) = f(x_i) \sum_{j} e^{-\frac{\|x_i - x_j\|^2}{t}} - \sum_{j} f(x_j) e^{-\frac{\|x_i - x_j\|^2}{t}}$$

$$\mathbf{f}^t \mathbf{L} \mathbf{f} = 2 \sum_{i \sim j} e^{-\frac{\|x_i - x_j\|^2}{t}} (f_i - f_j)^2$$

Data representation



$$f:G\to\mathbb{R}$$

Minimize $\sum_{i \sim j} w_{ij} (f_i - f_j)^2$

Preserve adjacency.

Solution: $Lf = \lambda f$ (slightly better $Lf = \lambda Df$) Lowest eigenfunctions of $L(\tilde{L})$.

Laplacian Eigenmaps

Belkin Niyogi 01

Related work: LLE: Roweis, Saul 00; Isomap: Tenenbaum, De Silva, Langford 00

Hessian Eigenmaps: Donoho, Grimes, 03; Diffusion Maps: Coifman, et al, 04

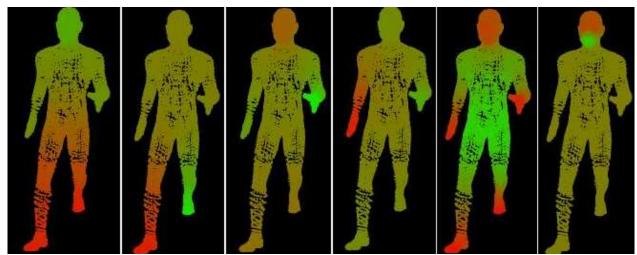
Laplacian Eigenmaps

Visualizing spaces of digits and sounds.

Partiview, Ndaona, Surendran 04

Machine vision: inferring joint angles.

Corazza, Andriacchi, Stanford Biomotion Lab, 05, Partiview, Surendran



Isometrically invariant representation. [link]

► Reinforcement Learning: value function approximation. Mahadevan, Maggioni, 05

Semi-supervised learning

Learning from labeled and unlabeled data.

- Unlabeled data is everywhere. Need to use it.
- Natural learning is semi-supervised.

Semi-supervised learning

Learning from labeled and unlabeled data.

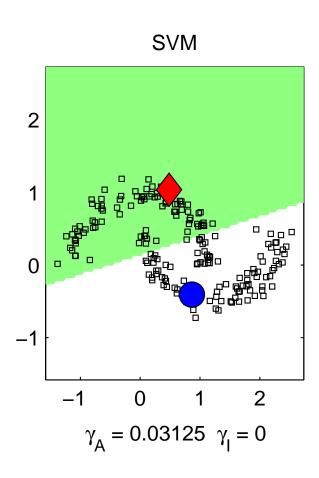
- Unlabeled data is everywhere. Need to use it.
- Natural learning is semi-supervised.

Idea:

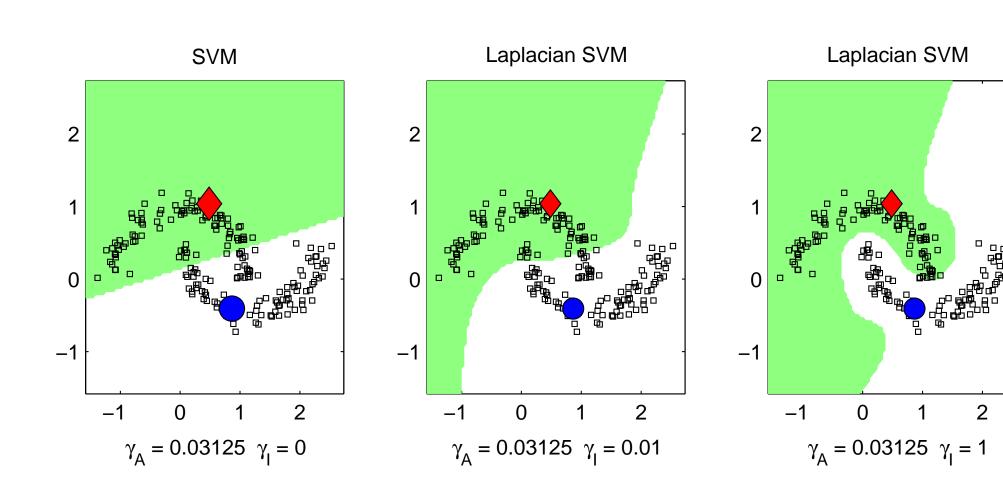
construct the Laplace operator using unlabeled data.

Fit eigenfunctions using labeled data.

Toy example



Toy example



Experimental comparisons

Dataset →	g50c	Coil20	Uspst	mac-win	WebKB	WebKB	WebKB
Algorithm ↓					(link)	(page)	(page+link)
SVM (full labels)	3.82	0.0	3.35	2.32	6.3	6.5	1.0
SVM (I labels)	8.32	24.64	23.18	18.87	25.6	22.2	15.6
Graph-Reg	17.30	6.20	21.30	11.71	22.0	10.7	6.6
TSVM	6.87	26.26	26.46	7.44	14.5	8.6	7.8
Graph-density	8.32	6.43	16.92	10.48	-	-	-
∇TSVM	5.80	17.56	17.61	5.71	-	-	-
LDS	5.62	4.86	15.79	5.13	-	-	-
LapSVM	5.44	3.66	12.67	10.41	18.1	10.5	6.4

Key theoretical question

What is the connection between point-cloud Laplacian L and Laplace-Beltrami operator $\Delta_{\mathcal{M}}$?

Analysis of algorithms:

Eigenvectors of L $\stackrel{?}{\longleftrightarrow}$ Eigenfunctions of $\Delta_{\mathcal{M}}$

Convegence

Theorem [convergence of eigenfunctions]

$$Eig[L_n^{t_n}] \to Eig[\Delta_{\mathcal{M}}]$$

(Convergence in probability)

number of data points $n \to \infty$ width of the Gaussian $t_n \to 0$

Previous work. Point-wise convergence.

Belkin, 03; Belkin, Niyogi 05,06; Lafon Coifman 04,06; Hein Audibert Luxburg, 05; Gine Kolchinskii, 06, Singer, 06

Convergence of eigenfunctions for a fixed t:

Kolchniskii Gine 00, Luxburg Belkin Bousquet 04

Heat equation in \mathbb{R}^n :

u(x,t) – heat distribution at time t. u(x,0)=f(x) – initial distribution. $x\in\mathbb{R}^n, t\in\mathbb{R}$.

$$\Delta_{\mathbb{R}^n} u(x,t) = \frac{du}{dt}(x,t)$$

Solution – convolution with the heat kernel:

$$u(x,t) = (4\pi t)^{-\frac{n}{2}} \int_{\mathbb{R}^n} f(y)e^{-\frac{\|x-y\|^2}{4t}} dy$$

Proof idea (pointwise convergence)

Functional approximation:

Taking limit as $t \to 0$ and writing the derivative:

$$\Delta_{\mathbb{R}^n} f(x) = \frac{d}{dt} \left[(4\pi t)^{-\frac{n}{2}} \int_{\mathbb{R}^n} f(y) e^{-\frac{\|x-y\|^2}{4t}} dy \right]_0$$

Proof idea (pointwise convergence)

Functional approximation:

Taking limit as $t \to 0$ and writing the derivative:

$$\Delta_{\mathbb{R}^n} f(x) = \frac{d}{dt} \left[(4\pi t)^{-\frac{n}{2}} \int_{\mathbb{R}^n} f(y) e^{-\frac{\|x-y\|^2}{4t}} dy \right]_0$$

$$\Delta_{\mathbb{R}^n} f(x) \approx -\frac{1}{t} (4\pi t)^{-\frac{n}{2}} \left(f(x) - \int_{\mathbb{R}^n} f(y) e^{-\frac{\|x-y\|^2}{4t}} dy \right)$$

Proof idea (pointwise convergence)

Functional approximation:

Taking limit as $t \to 0$ and writing the derivative:

$$\Delta_{\mathbb{R}^n} f(x) = \frac{d}{dt} \left[(4\pi t)^{-\frac{n}{2}} \int_{\mathbb{R}^n} f(y) e^{-\frac{\|x-y\|^2}{4t}} dy \right]_0$$

$$\Delta_{\mathbb{R}^n} f(x) \approx -\frac{1}{t} (4\pi t)^{-\frac{n}{2}} \left(f(x) - \int_{\mathbb{R}^n} f(y) e^{-\frac{\|x-y\|^2}{4t}} dy \right)$$

Empirical approximation:

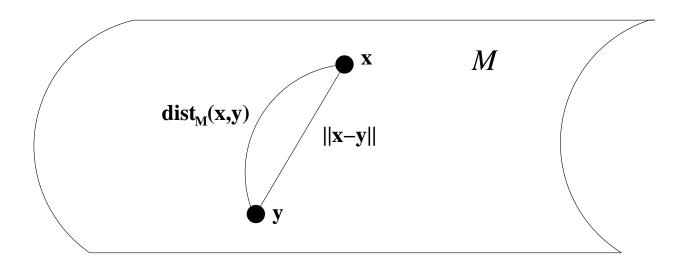
Integral can be estimated from empirical data.

$$\Delta_{\mathbb{R}^n} f(x) \approx -\frac{1}{t} (4\pi t)^{-\frac{n}{2}} \left(f(x) - \sum_{x_i} f(x_i) e^{-\frac{\|x - x_i\|^2}{4t}} \right)$$

Some difficulties

Some difficulties arise for manifolds:

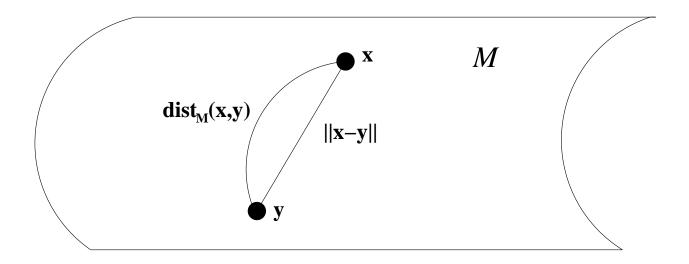
- Do not know distances.
- Do not know the heat kernel.



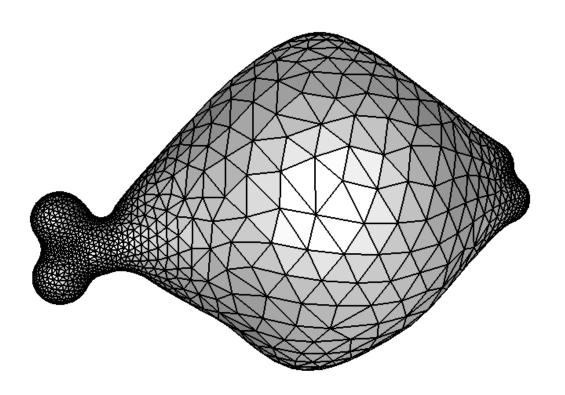
Some difficulties

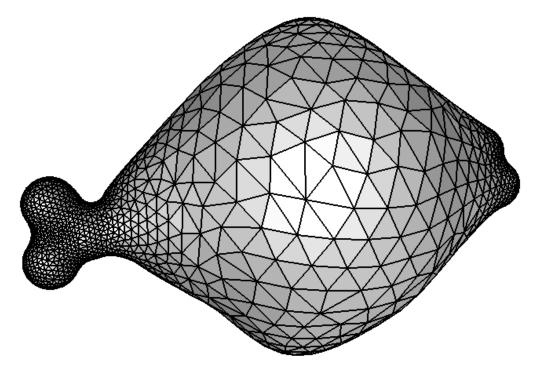
Some difficulties arise for manifolds:

- Do not know distances.
- Do not know the heat kernel.



Careful analysis required.



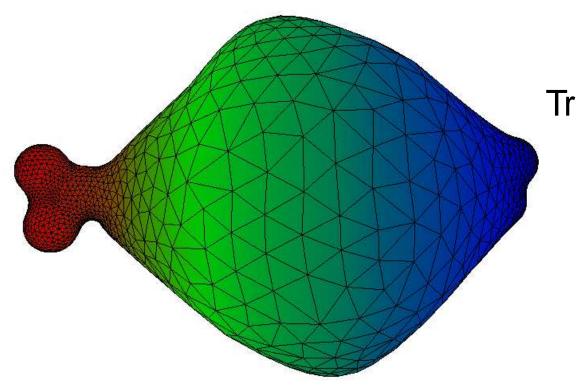


Mesh K.

Triangle t. Area A(t).

Vertices v, w.

$$L_K f(w) = \frac{1}{4\pi t^2} \sum_{t \in K} \frac{A(t)}{3} \sum_{v \in t} e^{-\frac{\|p-w\|^2}{4t}} (f(v) - f(v))$$

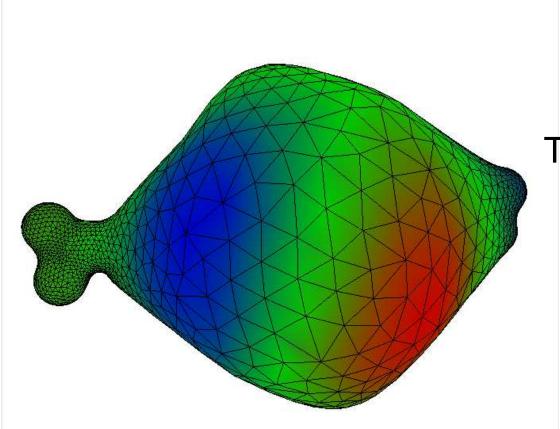


Mesh K.

Triangle t. Area A(t).

Vertices v, w.

$$L_K f(w) = \frac{1}{4\pi t^2} \sum_{t \in K} \frac{A(t)}{3} \sum_{v \in t} e^{-\frac{\|p-w\|^2}{4t}} (f(v) - f(v))$$



Mesh K.

Triangle t. Area A(t).

Vertices v, w.

$$L_K f(w) = \frac{1}{4\pi t^2} \sum_{t \in K} \frac{A(t)}{3} \sum_{v \in t} e^{-\frac{\|p-w\|^2}{4t}} (f(v) - f(v))$$

Convergence

K is a "nice" mesh (does not fold onto itself).

Theorem:

$$L_K f \to \Delta_{\mathcal{M}} f$$

as mesh size ϵ (biggest triangle) tends to zero.

$$t = e^{\frac{1}{2.5 + 0.001}}$$

Convergence

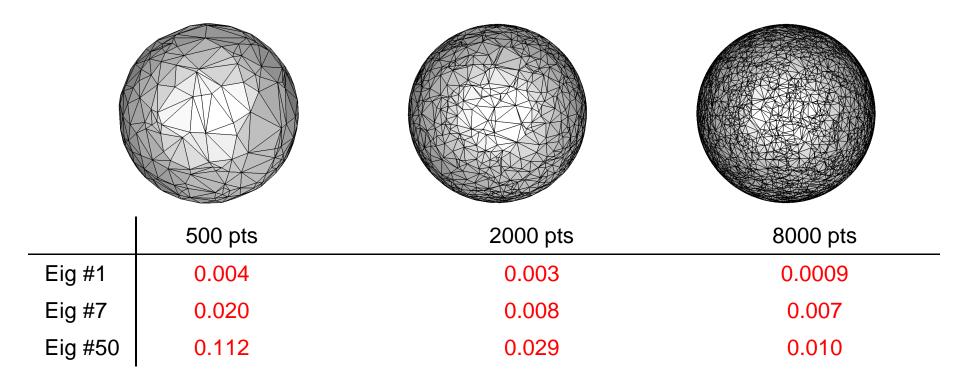
K is a "nice" mesh (does not fold onto itself).

Theorem:

$$L_K f \to \Delta_{\mathcal{M}} f$$

as mesh size ϵ (biggest triangle) tends to zero.

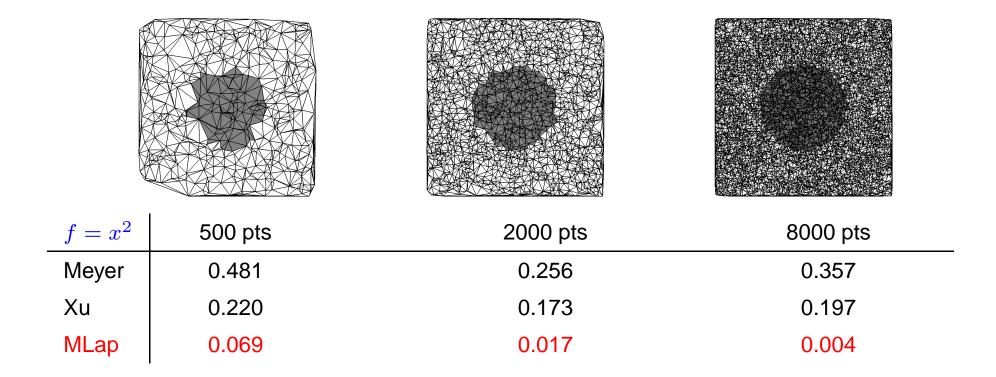
$$t = e^{\frac{1}{2.5 + 0.001}}$$



Existing work: several methods, including Desbrun, et al 99, Meyer, et al 02, Xu 04. Numerous applications (smoothing, quadrangulations, deformations, etc).

Existing work: several methods, including Desbrun, et al 99, Meyer, et al 02, Xu 04. Numerous applications (smoothing, quadrangulations, deformations, etc). None converge even in \mathbb{R}^2 .

Existing work: several methods, including Desbrun, et al 99, Meyer, et al 02, Xu 04. Numerous applications (smoothing, quadrangulations, deformations, etc). None converge even in \mathbb{R}^2 .



► Laplacian carries extensive geometric information.

- Laplacian carries extensive geometric information.
- Theoretically grounded and practical methods.

- Laplacian carries extensive geometric information.
- Theoretically grounded and practical methods. (Yes, it is possible!)

- Laplacian carries extensive geometric information.
- Theoretically grounded and practical methods. (Yes, it is possible!)
- Interesting connections between machine learning and graphics.

- Laplacian carries extensive geometric information.
- Theoretically grounded and practical methods. (Yes, it is possible!)
- Interesting connections between machine learning and graphics.
- More things should be possible now.