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Random walks in random environment on 7.8

There are two common models for random walk in a random emmient inZ2:

‘Random walk in random environment’ (RWRE).  1.i.d. random transition

probabilities out of each point € Z<. This model is hard, because in general it is
not symmetric (i.e. reversible). There are still many opeybfems. | will not talk
about this model.

‘Random conductance model’ (RCM). As we’ll see, now quite well understood.

Intuitive description: puti.i.d. random conductancesweights)w. € [0, 00) on

the edges of the Euclidean latti¢g?, E,). Look at a continuous time Markov
chain X, with jump probabilities proportional to the edge conductsm

So if Xy = x then the jump probability from toy ~ x is

> Wz
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Example
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Bond conductivitiesblue <« 1, black~ 1, red > 1.
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Definitions

Environment. Fix a probability measure on [0, co). LetQ = [0, oo]¥ be the
space of environments, and [ebe the probability law o2 which makes the
coordinatesv,, e € E; 1.i.d. with law k.

Choose a ‘speed measurg'(w), z € Z%. (How? See next slide....)

Random walk. Let )’ = D([0, 00),Z?) be the space of (right cts left limit) paths.
For eachw € ) let P? be the probability law 02" which makes the coordinate
processX; = X;(w’) a Markov chain with generator

Lof(@) = o= 3 wa(f(0) ~ £(a)).

Write wy,, = 0if = o4 y, andp, = Zy Wiy -
Thenv is a stationary measure fof, X is reversible (symmetric) with respect to
v, and the overall jump rate out afis p,. /v,
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Choice of the ‘speed measure’ v

Any choice ofv is possible, but there are two particularly natural ones:

l.v, =ty = Zy wzy. This makes the times spent at each siteefore a jump

.i.d. exp(1). (Providedu, > 0). Call this theconstant speed random walk
(CSRW).

Minor nuisance: ifu,, = 0 then each edge out eafhas conductivity zero. Note

that X never jumps into such a point. We will soon remove these pdioin the
state space.

2. v, =60, = 1forall . This makes the times spentat.i.d. exp(u,). Call this
thevariable speed random walk or (VSRW).

For either choicer = 1 or v = 1 define the heat kernel (transition density with
respect ta’) by

PI(X:=vy)

Vy

¢ (z,y) = =q; (y,x).

Questions. Long time behaviour o andgy’.
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Percolation and positive conductance bonds

If w. = 0thenX cannot jump across the edgeDefine a percolation process
associated with the environmentby taking

{z,y}isopen & wyy, > 0,

and letC, = C,(w) be the open cluster containing- i.e. the set of ¢ Z< such
thatz andy are connected by a path of open edges. So

P*(X; eC,forallt >0) =1.

Let
P+ = P(we > O)

If p,. < p.(d), the critical probability for bond percolation i, then all the
open clusters are finite, SO is trapped in a small finite region.
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Bond percolation with  p, = 0.2.
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GB and QFCLT

Assumption. From now on assume

P+ > pc(d)-

Write C. (w) for the (P-a.s. unique) infinite cluster of the associated percaiatio
process, and considéf started only at points il (w).

Problems. What we would like to have (but may not):
Gaussian bounds (GBI ¢y (x, y).

Quenched functional CLT with diffusivity: Let X™ = n=1/2X,,,, andW be a
BM(RY). Then forP-a.a.w, underP?,

X = oW.

(In particular iso? > 0?)
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Gaussian bounds in the random context

For GB one wants:

For eachr € Z? there exist r.vI, (w) > 1 with
P(T, > n,z € Cx) < cexp(—n?) (T)

and (non-random) constants= c¢;(d, p) such that the transition density &f
satisfies,
C1

We—(:glw—yIQ/t < ¢¥(z,y) < 0_36—04|f19—y|2/t7 (GB)

td/2
forz,y € Coo(w), t > max(T,(w), clx — yl|).

1. The randomness of the environment is taken care of bytfie), which will
be small for most points, and large for the rare points indébgd regions’.
2. Good control of the talls of the r.¢Z., as in (T), is essential for applications.
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Conseqguences of GB and QFCLT

GB lead to Harnack inequalities, which imply Holder conttgwf harmonic
functions, solutions of the heat equation@g, and Green'’s functions.

However: define thelabSy = {z = (x1,...,24) € Z¢ : |21| < N}. We would
guess that

lim PY(X leavesSy upwards, i.e. iz : z; > 0} ) =

N —oo %7 (*)

but (GB) do not imply this.

QFCLT does imply (*), but on its own does not give good conafoharmonic
functions.

If one has both GB and QFCLT then one obtains a local limit teewofor
¢ (z,y) (MB + B. Hambly) and good control of Green’s functions.
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Averaged FCLT

Recall that
XM =n"12x,,

For eventsF' C 2 x Q' define
E*(1r) = EE21r, and writeP* for the associated probability.

Theorem A. (De Masi, Ferrari, Goldstein, Wick 1989). Let.,e € E;) be a
general stationary ergodic environment. Assumelthat < co. UnderP*,

X = 5, wherelV is a BM, ands2 > 0.
This gives a FCLT, but one where we average over all envirorsne

This paper used the Kipnis-Varadhan approach of ‘the enment seen from the
particle’.

We have no example of a environment satisfying the conditadiheorem A for
which the QFLCT fails. But work in progress (MB-Burdzy-Timahows that
more generally it is possible to have AFCLT without QFCLT.
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Special cases for the law of w,.

1. “E”iptiC” 0< ) <w, <0y < .

2. “Percolation” w, € {0,1} (andp, > p..)

3. “Bounded above’w, € [0,1] (andpy > p..)
4. “Bounded below? w, € [1, c0).

In Cases 1-3 there is little difference between the CSRW lamy ERW.

1. Elliptic case.GB follow from general results of Delmotte (1999).
QFCLT was only proved in full generality by Sidoravicius a@zhitman (2004).

2. Percolation. GB proved by MB (2004). QFCLT proved by Sidoravicius and
Sznitman (2004), Berger and Biskup (2007), Mathieu andchiRgkti (2007).

3. Bounded abovea3erger, Biskup, Hoffmann, Kozma (2008) showed GB may

fail. (We will see why later.) QFCLT holds with? > 0: Biskup and Prescott
(2007), Mathieu (2007).

4, Bounded belowGB for VSRW, and QFCLT for both VSRW and CSRW
proved by MB, Deuschel (2010).

Call the VSRWY and the CSRWX.
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General case

Theorem 1. (S. Andres, MB, J-D. Deuschel, B.M. Hambly). Assumepthat p..
Then a QFLT holds both for the VSRW and for the CSRW (withsthfiu

constantsri,, of,). Furthero?, > 0 always, and ifEw. < oo then

2
ov

Eipo

o2 =
HereE,(-) = E(:|0 € Co).

In general GB fall, for the reason identified by Berger, Bigkdoffmann, Kozma.
However, whenl > 3 we do have bounds on Green'’s functions.
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Green’s functions

Let d > 3 and define the Green’s function

go(x,y) = / q; (x,y)dt.
0

(9, (x, -) is harmonic orZ? — {z} and is the same for the CSRW and the VSRW.)
Theorem 2. (ABDH)d > 3, and assume,. > 1. There exists a constant such
that for anye > 0 there exists\l = M (e, w) withP(M < oo) = 1 such that

(1—¢)C

|£IZ|d_2

(1+¢)C

22 for |x| > M (e, w).

< gw(0,2) <
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Why are the CSRW and VSRW different ?

Recall the jump rates from to y are:

(1) wy, for the VSRW,

(2) wyy/ Y, wa. for the CSRW.
Consider a configuration like this, where black bonds have- 1 and the red

bond{z,y} hasw,, = K > 1.

The red bond acts as a ‘trap’. Both walks jump across the rad B9 K) times
before escaping. Since each jump takes tinié), the CSRW takes time( K).
Each jump takes the VSRW tin@@( K 1), so the total time is onl{(1).
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Why may GB fail?

Consider a configuration like this:

The blue bond with) < w, << 1 attached to the black bond acts as a kind of
‘battery’, and can hold the random walk for a long period.
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Overview of proofs

1. The basic idea is to follow Kipnis-Varadhan and constthet'corrector’
x(w, z) : Q x Z% — R4 such that foiP-a.a.w

M; =Y; — x(w,Y;) is aPY-martingale.
Then one proves:

Mt(n) =n" Y2 My = oW, (1)
n~ 2%y (w,Yn) — 0, in PO probability. 2)

2. A general CLTs for martingales (Helland, 1982) gives @vgence in1).
3. To control the corrector one needs something like:

— (. 3)

lim max
n—o0 |z[<n n

In d > 3 proving this requires upper bounds @iz, ).
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Heat kernel bounds — 1

As we have seen, in the general case one cannot expect to Balee & (x, y),
due to the bounds with very small conductivity:

Se={e€ FE;y:w. € (0,¢)}.

However, we can follow a strategy introduced by Biskup-Bodsand Mathieu.
Choose= > 0 small enough so théf. is a very sparse set. Then the percolation
process

O' ={e:w,>e¢}
Is still supercritical. Call the infinite clustél_.

If Y; is the original process, l&tf’ denoteY looked at only wherY is onC_.

Then onadoeshave GB forY’, and hence can obtain control of the corrector for
Y’, and so forY'.
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Heat kernel bounds - 2

A general guide to proving heat kernel bounds is given by dthlewWing theorem.

Theorem B. (T. Delmotte, 1999). Let = (V, F) be a (locally finite) graph, with
distanced(x, y). The following are equivalent:

(a) The heat kerne}; (x, y) satisfies (GB).

(b) G satisfiesvolume Doublingand Poincare inequality VD+PI.

[ (c) Solutions of the heat equation @énsatisfy a PHI. ]

Here (GB) means that if> 1V d(z, y)

eXp(_Cld(xv y)Q/t) eXp(_CQd(xa y)2/t)
Blr. 1/ < qi(z,y) < Bl

Note that| B(z, t'/2| can be replaced byt?/? if, as is the case ofi?,

crd < |(B(z,r)| < r?.
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VD and PI for graphs

Poincaré inequality (PI): For every bdd = B(z,r),andf : B — R,

D (f@) = fp)lra <Cpr® Y (fly) = f(2))

reB r~Y,T,YyeB

Here f 5 is the real number which minimises the LHS.

An example of a graph for which the Pl fails is two copieZdf(with d > 2)
connected at their origins.

Volume doubling (VD): foreaclr € V', r > 1,
|B(x,2r)| < Cp|B(x, 7).

This holds for example o where|B(z, r)| < r<.
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Heat kernel bounds - 3

Delmotte’s theorem was based on the characterization obiRitanifolds due to
Grigoryan and Saloffe-Coste. This in turn was ultimatelgdzhon work on
Moser in the early 1960s.

In the random graph case, it has (so far) proved difficult epadloser’s
methods. But other techniques due to Nash can be used, and gersion of
Theorem B which holds for supercritical percolation cluste

A similar approach also works in for the truncated clustgr, and gives (GB) for
Y’

This then leads to good control of the correctoand hence to a FLCT for the
VSRW.
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CSRW

Once we have the QFCLT for the VSRWIt is easy to get it for the CSRW .

Set
t
Ay = / Ly, ds,
0

and letr; be the inverse ofA. Then the CSRWX is given by
X, =Y, t>0.
By the ergodic theorem
A/t — C =2d Eqw, € [1,00],

sot;/t — C~1 €0, 1]. So we get the QFCLT fak, and the diffusivityo?% is
positive if and only ifC' < oo, i.e. if and only if

Ew, < c0.
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CSRW: beyond the CLT

If Ew., = oo then we just have

Xt(n) = n_1/2Xmg — 0.

The reason is thaX spends long periods in the ‘traps’, i.e. jumping across ‘red
bonds’e = {z, y} with w, > 1.

‘Fractional kinetic motion’ FK&). Letd > 1, W be BM(@R?) andé; be an
iIndependent stable subordinator index (0, 1). Let L, be the inverse of:
L; = inf{s : & > t}. Then the FK) is given by:

R =w., t>o.

R is not Markov, moves like a BM, but has long periods of remagnionstant.
MB and J.Cerny: ifd > 3, andP(w. > t) ~ t~ then

n=%Y,, = cR\".
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Fractional Kinetic motion
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