Interactions Between Quantum Graphs and Harmonic Analysis

Robert Carlson University of Colorado at Colorado Springs

July 22, 2011

Abstract

Quantum graphs arise as models for thin physical networks. Their Laplace operators blend a one dimensional local structure with a graphical global structure through junction coupling conditions. When edge lengths are equal, or rationally related, the eigenvalues and trigonometric eigenfunctions have a surprisingly simple structure. As a consequence, they exhibit aspects of function theory usually associated with the circle, including a continuous graph Fast Fourier Transform.

Two pictures
Mention less regular networks road networks
river systems
human arterial tree

1 Differential equations on graphs

Figure 1. Wire screen

Use the 1-d heat equation for each wire,

$$\frac{\partial u}{\partial t}(t,x) = \frac{\partial^2 u}{\partial x^2}(t,x), \quad u(0,x) = f(x).$$

Couple edges e_j and e_k meeting at v,

$$f_j(v) = f_k(v), \quad \sum f'_j(v) = 0,$$

the sum over all edges meeting at v, and derivatives computed with outward pointing local coordinates.

2 Quantum graph framework

Finite graph, finite length edges. Edges are identified with intervals $e = [a_e, b_e]$. Hilbert space $\bigoplus_j L^2(e_j)$ with inner product

$$\langle f(x), g(x) \rangle = \frac{1}{\sum_{e} (b_e - a_e)} \sum_{e} \int_{a_e}^{b_e} f_e(x) \overline{g_e(x)} \ dx.$$

Laplace operator $-\partial^2/\partial x^2$ with above domain is a nonnegative self adjoint operator with compact resolvent.

Eigenfunctions are trigonometric on each edge.

The 'Sturm-Liouville' or 'Fourier series' theory extends (beyond L^2) (M. Baker and R. Rumely)

Literature disclaimer

By inserting 'invisible' vertices and rescaling, make rational edge length graphs have edge lengths 1.

3 Discrete Graph Operators

With vertices v_1, \ldots, v_N the adjacency matrix A is

$$A_{jk} = \begin{cases} 1, & \{v_j, v_k\} \in \mathcal{E}, \\ 0, & \{v_j, v_k\} \notin \mathcal{E} \end{cases}.$$

There is also an inner product

$$\langle f, g \rangle = \sum_{v \in \mathcal{V}} deg(v) f(v) \overline{g(v)},$$

deg(v) = number of incident edges.

A self adjoint discrete Laplacian with this inner product is

$$\Delta_1 = I - D^{-1}A, \quad Df(v) = deg(v)f(v).$$

4 Edge lengths 1 - Remarkable facts

(von Below, Cattaneo, Friedman-Tillich) The eigenspace $E(\lambda)$ for $-\partial^2/\partial x^2$ has 'periodicity':

Proposition 4.1. If $\omega = \sqrt{\lambda} > 0$,

$$\dim E(\omega^2) = \dim E([\omega + 2m\pi]^2), \quad m = 1, 2, 3, \dots$$

Using 'vertex evaluation map' we find

Theorem 4.2. If $\lambda \notin \{n^2\pi^2 \mid n = 0, 1, 2, ...\}$, then λ is an eigenvalue of $-\partial^2/\partial x^2$ if and only if $\mu = 1 - \cos(\sqrt{\lambda})$ is an eigenvalue of Δ_1 , with the same multiplicity.

The cases $\lambda \in \{n^2\pi^2 \mid n=1,2,...\}$ are also 'combinatorial'. The edge space has the cycle subspace $Z_0(\mathcal{G})$. Let Z_1 be the set of functions $f: \mathcal{E} \to \mathbb{C}$ with

$$\sum_{e \simeq v} f(e) = 0, \quad v \in \mathcal{V}.$$

Let $E_0(n^2\pi^2) \subset E(n^2\pi^2)$ be the eigenfunctions of $\partial^2/\partial x^2$ vanishing at the vertices.

Theorem 4.3.

$$\dim(Z_0(\mathcal{G})) = \dim E_0((2n\pi)^2).$$

$$dim(Z_1) = \dim E_0((2n-1)\pi)^2$$
.

5 Graph refinements

Thinking like a numerical analyst, let's sample the length 1 graph edges uniformly.

Figure 3.1: Refinement of a graph

The operator $\Delta_{\infty} = -\partial^2/\partial x^2$ stays fixed since the new vertex conditions do not change the domain.

The graphs have changed, giving new adjacency matrices and degree operators.

By the v.B,C.,F.-T. theorem orthogonal eigenspaces of $-\partial^2/\partial x^2$ descend by sampling to orthogonal eigenspaces of the 'new Δ_1 ' if the corresponding eigenvalues are distinct.

This generalizes the Fourier series - DFT coupling of S^1 .

6 Discrete Graph Fourier analysis

After sampling edge $e \in \mathcal{G}_1$ becomes N edges in \mathcal{G}_N with vertex space \mathbb{H}_N , discrete Laplacian

$$\Delta_N = N^2(I - D^{-1}A), \quad \Delta_N : \mathbb{H}_N \to \mathbb{H}_N,$$

and inner product

$$\langle f, g \rangle_N = \frac{1}{2NN\varepsilon} \sum_v deg(v) f(v) \overline{g(v)}.$$

Eigenspaces are $E_N(\lambda)$, resp. $E_{\infty}(\lambda)$. Let $E_p(n^2\pi^2)$ be the subspace having the form $C\cos(n\pi x)$ on each edge. Let $\mathbb{S}_N \subset L^2(\mathcal{G}_{\infty})$ denote the subspace

$$\mathbb{S}_N = \operatorname{span}\{E_p(N^2\pi^2), E_\infty(\lambda), 0 \le \lambda < N^2\pi^2\}.$$

Proposition 6.1. The restriction $R_N : \mathbb{S}_N \to \mathbb{H}_N$ is a bijection. For $0 \le \lambda < N^2\pi^2$ this map takes distinct orthogonal eigenspaces $E_{\infty}(\lambda)$ of Δ_{∞} onto distinct orthogonal eigenspaces $E_N(N^2(1-\cos(\sqrt{\lambda}/N)))$ of Δ_N , and R_N takes $E_p(N^2\pi^2)$ onto $E_N(2N^2)$.

We'd like an FFT using sampled Δ_{∞} eigenfunctions.

Good bases generated by 'frequency increase'.

Multiplicity of eigenvalues complicates image orthogonality within eigenspaces.

Theorem 6.2. There is a Fourier transform

$$\mathcal{F}_N: \mathbb{H}_N \to \mathbb{C}^M, \quad M = \dim(\mathbb{H}_N)$$

satisfying

$$\mathcal{F}_N(\Delta_N f) = \{ \mu_{m,k} \mathcal{F}(f)_{m,k} \},\,$$

isometric on \mathbb{C}^M with a modified inner product.

If N is a power of 2, then $\mathcal{F}_N(f)$ and its inverse can be computed in time $O(N \log_2(N))$.

Question: Are leafless equilateral graph eigenspaces $E(\lambda)$ for $\lambda \neq n^2\pi^2$ 'generically' simple? Friedlander: arbitrary positive real lengths.

7 A family of examples

Basic examples - complete bipartite graphs K(m, 2) on m, 2 vertices.

The graph $K_{4,2}$

Local model for any graph.

Obtain from the polar coordinate 2-sphere by uniform angular sampling.

Rotationally symmetric eigenfunctions $\cos(k\pi x)$.

Rest $\sin(k\pi x) \exp(2\pi i \frac{jm}{M})$.

8 Rework S^2 trapezoidal rule analysis

'Continuum limit' of K(m,2) Laplacians leads to polar S^2 Laplacian $\Delta_p = \partial^2/\partial x^2 + \partial^2/\partial y^2$ with nonlocal polar condition

$$\int_0^1 \partial_x f(0, y) \ dy = 0 = \int_0^1 \partial_x f(1, y) \ dy.$$

Trapezoidal rule

$$T(M, N, f) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n}^{M'} f(x_n, y_m) \simeq \int_{I^2} f(x, y)$$

exact on eigenfunctions with corresponding index range. Sobolev spaces H^s from domain of $\Delta_p^{s/2}$ provide rates,

Theorem 8.1. If $f(x,y) \in H^s$ and L = min(M,N), then

$$\int_{I^2} f(x,y) - T(M,N,f) = O(L^{2-s}).$$

Novelty for singular function estimates. The singular function $\cos(2\pi y)$ on S^2 , which is not continuous at the poles, converts to the polar integrand $f(x,y) = 2\pi^2 \sin(\pi x) \cos(2\pi y)$, which is in all H^s .

References

- [1] M. Baker and R. Rumely. Harmonic analysis on metrized graphs, Canad. J. Math., 59(2): 225–275, 2007.
- [2] J. von Below. A characteristic equation associated to an eigenvalue problem on c^2 networks, Linear Algebra and Its Applications, 71(23): 309–3325, 1985.
- [3] G. Berkolaiko and R. Carlson and S. Fulling and P. Kuchment Quantum Graphs and Their Applications, Contemporary Mathematics, 415, 2006.
- [4] W. Briggs and V. Henson. The DFT: an owners manual for the discrete Fourier transform. SIAM, 1995.
- [5] R. Carlson Harmonic analysis for graph refinements and the continuous graph FFT, Linear Algebra and Its Applications, 2009.
- [6] R. Carlson Harmonic analysis for star graphs and the spherical coordinate trapezoidal rule, J. of Computational and Applied Mathematics (2010)
- [7] F. Chung. Spectral Graph Theory. American Mathematical Society, Providence, 1997.

- [8] P. Kuchment, ed. Special section on quantum graphs, Waves in Random Media, 14(1):S107–S128, 2004. 415, 2006.
- [9] G. Dell'Antonio and P. Exner and V. Geyler Special issue on singular interactions in quantum mechanics: solvable models, Journal of Physics A: Mathematics and General, 38(22), 2005.
- [10] J. Friedman and J-P. Tillich. Wave equations for graphs and the edge-based Laplacian, Pacific Journal of Mathematics, 216(2): 229–266, 2004.
- [11] P. Kuchment. Quantum graphs: I. Some basic structures. Waves in Random Media, 14(1):S107–S128, 2004.