Interactions Between Quantum Graphs and Harmonic Analysis

Robert Carlson
University of Colorado at Colorado Springs
July 22, 2011

Abstract
Quantum graphs arise as models for thin physical networks. Their Laplace operators blend a one dimensional local structure with a graphical global structure through junction coupling conditions. When edge lengths are equal, or rationally related, the eigenvalues and trigonometric eigenfunctions have a surprisingly simple structure. As a consequence, they exhibit aspects of function theory usually associated with the circle, including a continuous graph Fast Fourier Transform.
Two pictures
Mention less regular networks -
road networks
river systems
human arterial tree
1 Differential equations on graphs

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{wire_screen.png}
\caption{Wire screen}
\end{figure}

Use the 1-d heat equation for each wire,

\[\frac{\partial u}{\partial t}(t, x) = \frac{\partial^2 u}{\partial x^2}(t, x), \quad u(0, x) = f(x). \]

Couple edges \(e_j\) and \(e_k\) meeting at \(v\),

\[f_j(v) = f_k(v), \quad \sum f'_j(v) = 0, \]

the sum over all edges meeting at \(v\), and derivatives computed with outward pointing local coordinates.
2 Quantum graph framework

Finite graph, finite length edges. Edges are identified with intervals $e = [a_e, b_e]$. Hilbert space $\bigoplus_j L^2(e_j)$ with inner product

$$\langle f(x), g(x) \rangle = \frac{1}{\sum e (b_e - a_e)} \sum_e \int_{a_e}^{b_e} f_e(x) \overline{g_e(x)} \, dx.$$

Laplace operator $-\partial^2 / \partial x^2$ with above domain is a nonnegative self adjoint operator with compact resolvent. Eigenfunctions are trigonometric on each edge.

The 'Sturm-Liouville' or 'Fourier series' theory extends (beyond L^2) (M. Baker and R. Rumely)

Literature disclaimer

By inserting 'invisible' vertices and rescaling, make rational edge length graphs have edge lengths 1.
3 Discrete Graph Operators

With vertices v_1, \ldots, v_N the adjacency matrix A is

$$A_{jk} = \begin{cases} 1, & \{v_j, v_k\} \in \mathcal{E}, \\ 0, & \{v_j, v_k\} \notin \mathcal{E} \end{cases}.$$

There is also an inner product

$$\langle f, g \rangle = \sum_{v \in \mathcal{V}} \deg(v)f(v)\overline{g(v)},$$

$\deg(v) = \text{number of incident edges}.$

A self adjoint discrete Laplacian with this inner product is

$$\Delta_1 = I - D^{-1}A, \quad Df(v) = \deg(v)f(v).$$
4 Edge lengths 1 - Remarkable facts

(von Below, Cattaneo, Friedman-Tillich)

The eigenspace $E(\lambda)$ for $-\partial^2/\partial x^2$ has 'periodicity':

Proposition 4.1. If $\omega = \sqrt{\lambda} > 0$,

$$\dim E(\omega^2) = \dim E([\omega + 2m\pi]^2), \quad m = 1, 2, 3, \ldots.$$

Using 'vertex evaluation map' we find

Theorem 4.2. If $\lambda \notin \{n^2\pi^2 \mid n = 0, 1, 2, \ldots\}$, then λ is an eigenvalue of $-\partial^2/\partial x^2$ if and only if $\mu = 1 - \cos(\sqrt{\lambda})$ is an eigenvalue of Δ_1, with the same multiplicity.

The cases $\lambda \in \{n^2\pi^2 \mid n = 1, 2, \ldots\}$ are also 'combinatorial'. The edge space has the cycle subspace $Z_0(\mathcal{G})$. Let Z_1 be the set of functions $f : \mathcal{E} \to \mathbb{C}$ with

$$\sum_{e \approx v} f(e) = 0, \quad v \in \mathcal{V}.$$

Let $E_0(n^2\pi^2) \subset E(n^2\pi^2)$ be the eigenfunctions of $\partial^2/\partial x^2$ vanishing at the vertices.

Theorem 4.3.

$$\dim(Z_0(\mathcal{G})) = \dim E_0((2n\pi)^2).$$

$$\dim(Z_1) = \dim E_0((2n - 1)\pi)^2).$$
5 Graph refinements

Thinking like a numerical analyst, let's sample the length 1 graph edges uniformly.

![Refinement of a graph](image)

Figure 3.1: Refinement of a graph

The operator $\Delta_\infty = -\partial^2/\partial x^2$ stays fixed since the new vertex conditions do not change the domain.

The graphs have changed, giving new adjacency matrices and degree operators.

By the v.B.C.,F.-T. theorem orthogonal eigenspaces of $-\partial^2/\partial x^2$ descend by sampling to orthogonal eigenspaces of the 'new Δ_1' if the corresponding eigenvalues are distinct.

This generalizes the Fourier series - DFT coupling of S^1.
6 Discrete Graph Fourier analysis

After sampling edge $e \in G_1$ becomes N edges in G_N with vertex space H_N, discrete Laplacian

$$
\Delta_N = N^2(I - D^{-1}A), \quad \Delta_N : H_N \rightarrow H_N,
$$

and inner product

$$
\langle f, g \rangle_N = \frac{1}{2NN_E} \sum_v \text{deg}(v)f(v)\overline{g(v)}.
$$

Eigenspaces are $E_N(\lambda)$, resp. $E_\infty(\lambda)$. Let $E_p(n^2\pi^2)$ be the subspace having the form $C\cos(n\pi x)$ on each edge. Let $S_N \subset L^2(G_\infty)$ denote the subspace

$$
S_N = \text{span}\{E_p(N^2\pi^2), E_\infty(\lambda), 0 \leq \lambda < N^2\pi^2\}.
$$

Proposition 6.1. The restriction $R_N : S_N \rightarrow H_N$ is a bijection. For $0 \leq \lambda < N^2\pi^2$ this map takes distinct orthogonal eigenspaces $E_\infty(\lambda)$ of Δ_∞ onto distinct orthogonal eigenspaces $E_N(N^2(1 - \cos(\sqrt{\lambda}/N)))$ of Δ_N, and R_N takes $E_p(N^2\pi^2)$ onto $E_N(2N^2)$.

8
We'd like an FFT using sampled Δ_∞ eigenfunctions. Good bases generated by 'frequency increase'. Multiplicity of eigenvalues complicates image orthogonality within eigenspaces.

Theorem 6.2. There is a Fourier transform

$$\mathcal{F}_N : \mathbb{H}_N \rightarrow \mathbb{C}^M, \quad M = \dim(\mathbb{H}_N)$$

satisfying

$$\mathcal{F}_N(\Delta_N f) = \{\mu_{m,k}\mathcal{F}(f)_{m,k}\},$$

isometric on \mathbb{C}^M with a modified inner product.

If N is a power of 2, then $\mathcal{F}_N(f)$ and its inverse can be computed in time $O(N \log_2(N))$.

Question: Are leafless equilateral graph eigenspaces $E(\lambda)$ for $\lambda \neq n^2\pi^2$ 'generically' simple? Friedlander: arbitrary positive real lengths.
7 A family of examples

Basic examples - complete bipartite graphs $K(m, 2)$ on $m, 2$ vertices.

The graph $K_{4,2}$

Local model for any graph.
Obtain from the polar coordinate 2-sphere by uniform angular sampling.
Rotationally symmetric eigenfunctions $\cos(k\pi x)$.
Rest $\sin(k\pi x) \exp(2\pi i \frac{im}{M})$.

8 Rework S^2 trapezoidal rule analysis

'Continuum limit' of $K(m, 2)$ Laplacians leads to polar S^2 Laplacian $\Delta_p = \partial^2/\partial x^2 + \partial^2/\partial y^2$ with nonlocal polar condition

$$\int_0^1 \partial_x f(0, y) \, dy = 0 = \int_0^1 \partial_x f(1, y) \, dy.$$

Trapezoidal rule

$$T(M, N, f) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n} f(x_m, y_n) \sim \int_{I^2} f(x, y)$$

exact on eigenfunctions with corresponding index range.

Sobolev spaces H^s from domain of $\Delta_p^{s/2}$ provide rates,

Theorem 8.1. If $f(x, y) \in H^s$ and $L = \min(M, N)$, then

$$\int_{I^2} f(x, y) - T(M, N, f) = O(L^{2-s}).$$

Novelty for singular function estimates. The singular function $\cos(2\pi y)$ on S^2, which is not continuous at the poles, converts to the polar integrand $f(x, y) = 2\pi^2 \sin(\pi x) \cos(2\pi y)$, which is in all H^s.

11
References

