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Abstract

Quantum graphs arise as models for thin physical net-
works. Their Laplace operators blend a one dimensional
local structure with a graphical global structure through
junction coupling conditions. When edge lengths are
equal, or rationally related, the eigenvalues and trigono-
metric eigenfunctions have a surprisingly simple struc-
ture. As a consequence, they exhibit aspects of function
theory usually associated with the circle, including a con-
tinuous graph Fast Fourier Transform.
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1 Differential equations on graphs

Figure 1. Wire screen
Use the 1-d heat equation for each wire,

ou 0*u
—(t,x) = e —(t,z), u(0,z)= f(z).

Couple edges e; and e; meeting at v,

fi(v) . ) fi)

the sum over all edges meeting at v, and derivatives com-
puted with outward pointing local coordinates.



2 Quantum graph framework

Finite graph, finite length edges.
Edges are identified with intervals e = [a,, be|.
Hilbert space ijLQ(ej) with inner product

(f(z), 9(z))

3 b — a,) e fe

Laplace operator —82/83:2 with above domain is a
nonnegative self adjoint operator with compact resolvent.

Figenfunctions are trigonometric on each edge.

The "Sturm-Liouville’ or "Fourier series’ theory extends
(beyond L?) (M. Baker and R. Rumely)

Literature disclaimer

By inserting 'invisible’ vertices and rescaling, make ra-
tional edge length graphs have edge lengths 1.



3 Discrete Graph Operators

With vertices vy, ..., vy the adjacency matrix A is
A {1, {Uj,vk}eg,}
ik = .
N0, {v,m} €€

There is also an inner product

(f,9) =) deg(v)f(v)g(v),

deg(v) = number of incident edges.
A self adjoint discrete Laplacian with this inner prod-
uct 1s

Ar=1-D"'A, Df(w)=deg()f(v).



4 Edge lengths 1 - Remarkable facts

(von Below, Cattaneo, Friedman-Tillich)
The eigenspace E(\) for —9%/0x? has periodicity:

Proposition 4.1. If w = VA > 0,
dim B(w?) = dim E(jw + 2m7]?), m=1,2,3,....
Using 'vertex evaluation map’ we find

Theorem 4.2. If A ¢ {n’m* | n =0,1,2,...}, then
A is an eigenvalue of —0*/0x* if and only if p =
1 — cos(V/A) is an eigenvalue of Ay, with the same
multiplicity.

The cases A € {n’*7? | n =1,2,...} are also 'combi-
natorial’. The edge space has the cycle subspace Zy(G).
Let Z, be the set of functions f : £ — C with

> fle)=0, veV.

{ iy 1)
Let Ey(n®m?) C E(nm?) be the eigenfunctions of 9% /92>
vanishing at the vertices.

Theorem 4.3.
dim(Zp(G)) = dim Ey((2nm)?).

dim(Z,) = dim Ey((2n — 1)7)?).
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5 Graph refinements

Thinking like a numerical analyst, let’s sample the
length 1 graph edges uniformly.

———+
Figure 3.1: Refinement of a graph

The operator Ay = —0?/0x* stays fixed since the
new vertex conditions do not change the domain.

The graphs have changed, giving new adjacency ma-
trices and degree operators.

By the v.B,C.,F.-T. theorem orthogonal eigenspaces of
—0?/02?* descend by sampling to orthogonal eigenspaces
of the 'new Ay’ if the corresponding eigenvalues are dis-
tinct.

This generalizes the Fourier series - DFT coupling of

St



6 Discrete Graph Fourier analysis

After sampling edge e € G becomes N edges in Gy
with vertex space Hy, discrete Laplacian

Ay = N*I—-D1A), Ay:Hy— Hy,

and inner product

(190 = g7z 2 dea0)0)g)

Eigenspaces are Ey(A), resp. Ex()). Let E,(n*m?) be
the subspace having the form C'cos(n7a) on each edge.
Let Sy C L?(Gs) denote the subspace

Sy = span{ E,(N?7?), Ex()),0 < A < N*z?}.

Proposition 6.1. The restriction Ry : Sy — Hy is
a bijection. For 0 < X\ < N?x? this map takes distinct
orthogonal eigenspaces Ex(N) of As onto distinct or-
thogonal eigenspaces Ex(N?(1 — cos(vV'A/N))) of Ay,
and Ry takes E,(N*r?) onto Ex(2N?).



We'd like an FE'T using sampled A, eigenfunctions.

Good bases generated by 'frequency increase’.

Multiplicity of eigenvalues complicates image orthogo-
nality within eigenspaces.

Theorem 6.2. There is a Fourier transform
Fy Hy - CM M = dim(Hy)
satisfying
Fn(ANF) = {ttm i F (Flmr}s

isometric on CM with a modified inner product.
If N is a power of 2, then Fy(f) and its inverse
can be computed in time O(N logy(N)).

Question: Are leafless equilateral graph eigenspaces
E(\) for A # n2m? ’generically’ simple? Friedlander:
arbitrary positive real lengths.



7 A family of examples

Basic examples - complete bipartite graphs K (m;,2) on
m, 2 vertices.

The graph Ky

Local model for any graph.

Obtain from the polar coordinate 2-sphere by uniform
angular sampling.

Rotationally symmetric eigenfunctions cos(kmx).

Rest sin(kmz) exp(27mifr).
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8 Rework S? trapezoidal rule analysis

’Continuum limit’ of K(m,2) Laplacians leads to polar
S? Laplacian A, = 9%/9z? + 8 /dy* with nonlocal polar
condition

1

1
/ 0, f(0,y) dy=0= [ 0,f(1,3) dy.
0

0
Trapezoidal rule

M-1

T(M, N, f) = ﬁ SOST F@nym) = /12 f(z,y)
0 n

m=

exact on eigenfunctions with corresponding index range.
; : s/2 :
Sobolev spaces H?® from domain of Ap/ provide rates,

Theorem 8.1. If f(z,y) € H® and L = min(M, N),
then

f@y) = T(M,N, f) = O(L*™).
I

Novelty for singular function estimates. The singu-
lar function cos(27wy) on S?, which is not continuous

at the poles, converts to the polar integrand f(z,y) =
om? sin(mx) cos(2my), which is in all H*.
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