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Overview
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Spectral Graph Wavelet Transform (SGWT)

EEG source estimation

Electrical head modeling

Sparse representation with Cortical Spectral Graph Wavelets

Motivations from Classical Wavelet Analysis

Spectral Graph Theory

SGWT construction

Cortical connectome graph construction



SGWT : wavelets on weighted graphs
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Wavelets on weighted graph: 

Why?

Wavelets : very useful, but classically limited to Euclidean space

Ai,j = wi,j (wi,j ≥ 0)

Linear, multiscale representation for functions on vertices

Graphs : flexibly model complicated data domains

Weighted graphs :

N vertices

Symmetric adjacency matrix

f(i) : value on ith vertex

f ∈ RN

ψγ ∈ RN

cγ = �ψγ , f�
localized in space and frequency



Preview : some SGWT graph wavelets
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Classical wavelet analysis
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translation & dilation

Analysis : wavelet coefficients

Reconstruction (Orthogonal Wavelet case)

Signal manipulation often easier in wavelet transform space

Wf (t, u) = �ψt,u, f�

f =
�

n,j

Wf (2
j , 2jn)ψ2j ,2jn(x)

ψt,u(x) =
1√
t
ψ

�
x− u

t

�

Signal f ∈ L2(R)

“mother” wavelet ψ



Wavelet transform in Fourier domain :

Individual wavelets : apply operator to δu(x) = δ(x− u)

Analog of Fourier transform on weighted graphs => Spectral graph theory
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Towards Wavelets on Graphs

Problem : dilation and translation on irregular Graph?

�Wf (t, w) = f̂(ω)ψ̂∗(tω)

ψt,u(−x) = Wδu(t, x)

dilationlocalization

= F−1
�

δ̂u(ω) ψ̂∗(tω)
�

Wf (t, x) = f � ψ̄t

Dilate operator             in frequency domain, then localizeψ̂∗(tω)

ψ̄t(x) = 1
t ψ(−x

t )



Spectral Graph Theory
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Di,i =
N�

k=1

Ak,i

Degree matrix Graph Laplacian

L = D −A

 Spectral decomposition of L

orthonormal basis

0 = λ1 ≤ λ1 ≤ ... ≤ λN

Graph “Fourier transform”

{χl}N
l=1

Lχl = λlχl

Graph “inverse Fourier transform”

f =
�

l

f̂(l)χl

f̂(l) = �χl, f� =
�

n

χ∗
l (n)f(n)



Spectral Graph Wavelets
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Wavelet kernel g : R+ → R+

ψ̂∗(ω)analogous to           

Wavelet operator (at scale tj) 

Action defined on eigenvectors

T tj
g χl = g(tjλl)χl

T tj
g = g(tjL) : RN → RN

SGWT coefficients at scale j T tj
g f =

�

l

g(tjλl)f̂(l)χl

Wavelets ψj,n = T tj
g δn

λ λN

g(t1λ)

H., P.  Vandergheynst, R. Gribonval 2011
Applied and Computational Harmonic Analysis
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Scaling function band

K-fold Overcomplete

Fast SGWT 

λ λN

h(λ) g(t1λ) g(t2λ) g(t3λ)

K=4

Polynomial approximation of g(tj x)

W : RN → RKN

Avoids diagonalization of L

Th = h(L)

φn = Thδn

Spectral Graph Wavelets
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Application to EEG Source Estimation



Electroencephalography (EEG)
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EEG signal : arises from dipole current sources + volume conduction

J1

J2 J3

Φ1

Φ2

Source estimation : Infer current sources J from electrode measurements Φ 

How to exploit connectivity knowledge?  Sparsity in cortical graph wavelet basis.

The ratio of the secondary to the primary magnetic flux increases
with increasing ratio of the radial to the tangential dipole
orientation components (Haueisen, 1996).

The last simulated source was a deeper and therefore mainly
radially oriented source in the left thalamus. In contrast to the
superficial sources, there was a strong remote tissue anisotropy in

the region between the source and the measurement sensors. From
the line integral convolution visualization of the return currents, we
found multiple areas where the main fiber direction and the return
current vector in the model with anisotropic white matter

compartment are highly parallel with highest degrees of parallelity
within the bigger white matter fiber bundles, e.g., the left and right
pyramidal tracts. In the isotropic case, the return currents are

smoothly dipolar in shape, but in the anisotropic case, the fiber
geometry influences the flow to be largely parallel to the white
matter fiber tracts. Thus, for deeper sources, the leading cause for

topography error was no longer the anisotropy of the skull but that
of the white matter compartment. With an RDM of more than 15%
for the MEG and more than 10% for the EEG and a MAG of about
0.7, the effect of white matter anisotropy should not be neglected.

We have presented here the effect of remote anisotropy, i.e., in
which the thalamus was modeled as an isotropic structure. Our

reasoning was that the thalami are part of the human gray matter
compartment (Shimony et al., 1999). Nevertheless, most histolog-
ical methods identify 14 functionally specific anisotropic thalamic

clusters referred to as nuclei (Buren and Borke, 1972). Recently, it
was shown that DT-MRI can non-invasively resolve the fiber
orientation of those nuclei, using an automatic segmentation

method (Wiegell et al., 2003). Therefore, in an even more realistic
volume conductor model, the thalamus by itself would have to be
considered as anisotropic gray matter tissue. Furthermore, the

whole cortex is known to have an anisotropy ratio of about 1:2
(Nicholson and Freeman, 1975). If we then take into account that
local conductivity changes in the vicinity of the sources have a

large effect on EEG and MEG (Haueisen et al., 2000; Gencer and
Acar, 2004), then the errors might be substantially larger than those
presented in this study.

Our visualization results also showed the importance of the

CSF compartment in determining bioelectric fields. Because of its
high conductivity, the return current in this layer was much more
distinct than in the rest of the head model so that it can be seen as a

compartment with a strong ‘‘current distribution’’ effect. Because
the conductivity of the human CSF is known quite accurately
(Baumann et al., 1997), this result further underscores the

importance of realistic high-resolution finite element head model-
ing when compared to boundary or spherical head modeling.

We conclude that with the new visualization techniques for
return current flow in high-resolution FE models, presented in our

paper, insight is gained into the effect of tissue anisotropy, which is
now more easily accessible. One implicit premise of our study was
that if anisotropy affects the accuracy of the forward solution, it

will have at least as strong an influence over solutions to the
associated inverse problem, which will be examined in a
consequent paper (Anwander et al., 2002, in preparation). We

summarize that the modeling of skull anisotropy is important for
EEG and can be neglected for MEG studies. Our results suggest
that the exact representation of the CSF compartment and the

modeling of gray and white matter anisotropy is important for both
EEG and MEG based reconstruction of the neural sources.
Concerning white matter anisotropy, this is especially true with
regard to the reconstruction of the orientation and strength

components of the sources in the associated EEG and MEG
inverse problem. The more the source is surrounded by anisotropy,
the larger the influence. Recent developments for the finite element

method in EEG/MEG source reconstruction (Weinstein et al.,
2000; Wolters et al., 2002, 2004b; Gencer and Acar, 2004)
dramatically reduce the complexity of the computations, so that the

main disadvantage of FE modeling no longer exists and such
modeling even with very high resolutions is now practical.
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Fig. 14. Return currents for the left thalamic source on a coronal cut through

the isotropic model (top row) and the model with 1:10 anisotropic white

matter compartment (volume constraint, bottom row): the return current

directions are indicated by the texture and the magnitude is color coded (the

upper scale was limited to 0.02 A/m2, see Fig. 12 for the correct magnitude

in the source area).

C.H. Wolters et al. / NeuroImage 30 (2006) 813–826824

MRI : measure tissue geometry

Diffusion tensor imaging (DTI) + tract tracing : measure brain connectivity

Access to subject specific brain anatomy :



EEG forward problem
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Quasi-static Maxwell PDE 

: potentialφ

s  : current sources

Finite-difference solver, on 1mm 3D grid

Lead field matrix K

K

Nd

Ne

�ne1

e2e3

d1

d2

d3

d4

Kĳ : solution at ei with unit source at dj

Φ=KJ

: source current amplitudesJ ∈ RNd

: electrode voltagesΦ ∈ RNe

σ(x, y, z) : tissue conductivity

∇ · (σ∇φ) = s

(σ∇φ) · �n = 0 on boundary



Cortical grey matter (neuron cell bodies) 
connected by white matter fibers (axons)

Cortical connectome graph

Diffusion Tensor Imaging (DTI) measures water diffusion direction at every voxel

�
λ1v1

�
λ2v2

�rT D−1�r = 1

diffusion ellipsoid

Tractography

γ�(t) = v1(γ(t))

v1(x1)

v1(x2)

compute streamlines, from seed points

( a little more complicated, in practice ... )

dominant eigenvector v1 reveals fiber orientation

using method developed by
S Warfield, B Scherrer, Children’s Hospital,  Harvard 13

Diffusion along fiber directions



seed in white matter, retain tracts 
connecting cortex to cortex

showing 12,124 out of
 775,939 cortical-cortical tracts

global (tract-based) connectome Atr

local (adjacency-based) connectome Aloc

atr
i,j =

�

k connecting i and j

1
length(k)

length of boundary 
between patches i,j

aloc
i,j =

Cortical connectome graph
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A = λtrA
tr + λlocA

loc

hybrid connectome A
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seed in white matter, retain tracts 
connecting cortex to cortex

showing 12,124 out of
 775,939 cortical-cortical tracts

global (tract-based) connectome Atr

local (adjacency-based) connectome Aloc

atr
i,j =

�

k connecting i and j

1
length(k)

length of boundary 
between patches i,j

aloc
i,j =

Cortical connectome graph

A = λtrA
tr + λlocA

loc

hybrid connectome A
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seed in white matter, retain tracts 
connecting cortex to cortex

showing 12,124 out of
 775,939 cortical-cortical tracts

global (tract-based) connectome Atr

local (adjacency-based) connectome Aloc

atr
i,j =

�

k connecting i and j

1
length(k)

length of boundary 
between patches i,j

aloc
i,j =

Cortical connectome graph

A = λtrA
tr + λlocA

loc

hybrid connectome A



cortex patches, showing patch centers 
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Global (tract-based) connectome graph
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Local connectome graph
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EEG inverse problem
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prior 

linear superposition : 
Φ=KJ

Ne equations, Nd unknowns ⟹
     infinitely many possibilities for J !

Inverse problem : Given Φ, find J 

Find J minimizing ||Φ−KJ ||2 + f(J)

data fidelity

small for “good” J
large for  “bad” J

f(J) :

how to build prior using connectivity?
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Sparse representation with Cortical Graph Wavelets

Construct SGWT from hybrid connectome A

J =
�

i

ciψi = WT c

W : RNd → RKNd

expand

penalty on c�1prior : 

J∗ = WT c∗

c∗ = argmin
c

||Φ−KWT c||22 + λ||c||1

(P) is convex, L1-LS program

Kim, Koh, Lustig, Boyd,
Gorinevsky 2007solve with truncated Newton interior point method

(P)



Motor Potential study
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Validation : investigate source estimates for paradigm where we 
                “know” where the sources should be

Experimental paradigm:

Press button (RT,LT,RP,LP)

EEG recording setup : 

   256 - channel (257 electrodes) sensor net,  250 Hz

   average locked to button press onset (ERP)

Phan Luu (EGI)

expect activation in contralateral motor cortex 



Preliminary Results

40 ms before left thumb press

minimum norm
(l2 penalty)

proposed
(wavelet l1 penalty) dipole l1 penalty

subject 
1470
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76 ms before right thumb press

minimum norm
(l2 penalty)

proposed
(wavelet l1 penalty) dipole l1 penalty

subject 
1490

24



Future Work
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Explore parameters (connectome graph construction, SGWT ...)

Sensible automatic selection of regularization parameters (L-curve) 

Spatiotemporal estimation via spatiotemporal graph

Alternative convex program formulations

More appropriate convex solver (path following for λ)?

More subjects / different experimental paradigms
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0 40

0

1

λ

g(tjx) ≈ pj(x) =
M�

k=0

cj,kTk(x)

Chebyshev approx 
for M=10 

λmax

g(tjL)f ≈ pj(L)f =
M�

k=0

cj,k(Tk(L)f)

Tk(L)f = 2L(Tk−1(L)f)− Tk−2(L)f

Tk(x) = 2xTk−1(x)− Tk−2(x)

computing Tk(L)f  is fast if  L  is sparse
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Chebyshev polynomials for fast SGWT
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Some Cortical Graph Wavelets


