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Random walks on graphs and data

Given a weighted graph (G, E, W): vertices represent data points,
edges connect z;,x; with weight W;; := W(x;,x,), when positive
(or above a threshold). Let D;; = > i Wij and

=) Sl gl o
B melE SRS WD 2 =] -0 Hwema
random walk  symm. “random walk’” norm.Laplacian Heat kernel

Let 1= Ao > A1 > ... and ; the eigenval.’s and eigenvec.’s of 7.
We shall consider the map G 3 x — (p1(x),...,m(x)) € R™.
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Random walks on graphs and data

Given a weighted graph (G, E, W): vertices represent data points,
edges connect z;,x; with weight W;; := W(x;,x,), when positive
(or above a threshold). Let D;; = > i Wij and

=) Sl gl o
B melE SRS WD 2 =] -0 Hwema
random walk  symm. “random walk’” norm.Laplacian Heat kernel

Let 1= Ao > A1 > ... and ; the eigenval.’s and eigenvec.’s of 7.
We shall consider the map G 3 x — (p1(x),...,m(x)) € R™.

We may construct weighted graphs from data: given
R e i

. Local similarities via a kernel function W (z;,z;) > 0.

Simplest example: Wy (z;,x;) = e~ llzi—z;l1*/o
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J. Lee, MM, Thesis, 2010,

Dynamic Graphs
Proc. SampTA, 2011

Given: time series of graphs GG;. Objective: to analyze this time series. Desider-
ata:

. Sensitive to large and small significative changes in the network, and to
their location.

. Should capture both topological and quantitative geometric changes.
. Should yield measures of change: want to do analysis, statistics...

. Robust to “noisy” perturbations of the network.

We are used to performing similar tasks on real-valued time series, how do we
extend similar tools to a “space of graphs”? How can we quantify change? How
do we construct multiple resolutions on graphs?
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Multiscale Graphs - Toy Model

The graphs we start with will have a strong multiscale structure. They are
constructed as follows: we start with a dictionary D of graphs, including for
example complete graphs, trees, paths, loops, etc... Then:

(i) Pick J graph flavors Fy, ..., Fy, from D, i.e. on flavor per scale

(ii) Let the graph at the coarsest scale be of flavor GG, with edges with weight
O(21)

(iii) For j = 2,...,J, replace each vertex of G,_; with a graph G of flavor F}
and edges of Welght O(27).

Our model

i M

CIuster

M=l 2 u oy
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For example different models

Multiscale Graphs - Toy Model

The generalizations below are trivially handled by the algorithms that follow,
Intuitively: there is clear definition of scales, and what it means to “look at the

graph at a certain scale”.

What matters is that the random walk has multiple time scales.

that do not depend on the symmetries above.
used at different locations at different scales.
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Dynamic Graphs - Toy Model

We consider a small set of “elementary moves”, including:
(i) adding or removing a vertex
(ii) adding or removing an edge
(iii) changing an edge weight

The scale of the change is important.
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Multiscale analysis of Dynamic Graphs

Our construction consists of 3 steps:
. Construct multiscale partitions of G4

. Map G to a feature vector whose coordinates are operators, more specif-
ically versions of P* compressed on the multiscale partitions

. Compare G;;1 and G; based on the feature vectors constructed above:
these are now vectors of operators, and we know how to compare operators.
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Algorithm: Multiscale Partitions

2Coo=0G
Recursive |
cuts leadtoa 2
multiscale 2
artition 2 -
. c
O IlI .
p /
= [
we one such 3 §
at each time .
snapshot
5/
®

Clusters at each scale
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Algorithm: Multiscale Partitions

— Edges leaving the

cluster

Total number of

o & s

edges in cluster

Alternative: instead on N-cut use a conductance based criterion and local par-
titioning methods (D. Spielman, F. Chung, ...). This has stronger theoretical
guarantees, and a good option for very large graphs.
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Algorithm: Multiscale Partitions

Algorithm for constructing partitions. What is a good partition? Ncut should

be small: — Edges leaving the
1 k z) ) cluster
1 e —_
NCUt(C 25 e Zl ”UOZ C’Z v\ Total number of
Y=

edges 1n cluster
where W(A,B) = » . ca ,epW(z,y) and vol(A) = >, 42>, W(z,y).
NP-Hard to minimize, approximation algorithms exist |Arora|. Oftentimes re-
laxed to spectral clustering on P = D~ 'W: compute top k + 1 eigenvectors of
P: ©1,..., 011, embed the graph in Euclidean space by = +— (goi(a:))fill, and

perform k-means in this space.

At any time t, we perform the above recursively, with £ = 2, obtaining a mul-
tiscale family of partitions {C} .} organized in a binary tree.

Alternative: instead on N-cut use a conductance based criterion and local par-
titioning methods (D. Spielman, F. Chung, ...). This has stronger theoretical
guarantees, and a good option for very large graphs.
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Algorithm: Multiscale Dynamics

For every t and every scale j, compress P/ : it is a matrix of size |C; | X |C} 4|:

T-step r.w. on G; compressed at scale 3

e Z (J’ prazy

xECZ EC’Z

probability mass transported from
a starting point in C7%, to some point in C’Jl-,t

t indexes time e
7, [ index

Ideteranhe clusters at scale j

in the partition tree

T refers to
internal averaging time
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Algorithm: Multiscale compression

For every t and every scale j, compress P/ : it is a matrix of size |C; ;| x |C} 4|:

(Pusru= Y = 3 Py

8 ,t I
2€C}, 7" yeCi,

for ¢,! varying in the index of the sets in the partition C} ;.

In fact we can do much more, since we can localize this changes, at every
scale, and across scales, and develop a full multiscale (“wavelet-like”) time series
analysis for graphs.
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Algorithm: Multiscale compression

For every t and every scale j, compress P/ : it is a matrix of size |C; ;| x |C} 4|:

(Pusru= Y = 3 Py

8 ,t I
2€C}, 7" yeCi,

for ¢,! varying in the index of the sets in the partition C} ;.

At this point we can measure variations in P ; » as a function of ¢, for the scale
7 and “internal time scale” 7, for example by measuring ||P; ; + — Pit1.7||F-

In fact we can do much more, since we can localize this changes, at every
scale, and across scales, and develop a full multiscale (“wavelet-like”) time series

analysis for graphs.
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A Simple Example

A time series of 51 graphs was constructed with a single vertex and edge noise
added after each graph. The initial graph has 3 layers, and 60 nodes. The
edge weights on the scales from finest to coarsest are 64, 8, and 1. The ini-
tial partitions are fed to the algorithm and we update the partitions using the
aforementioned online algorithm. At each step, a new vertex with 3 edges is
introduced.
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Morm of Change

Morm of Change
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Flot of change in coarse scale
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Morm of Change
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A Simple Example

hange in coarse scale
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Simulated “attacks”

Network of political blogs, 1400 nodes and 19000 edges. We simulate two
attacks: a DDOS attack at time 4, when one random vertex is connected to 100
random vertices, till time 6, and then a wormhole attack at time 8, when the
two farthest vertices are connected by a heavy edge.

0.01—
0 - & x & 5
8 10

Time

L. A. Adamic and N. Glance, "The political blogosphere and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the Weblogging Ecosystem (2005)
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A much hner version

Joint with P. Balachandran and J. Mattingly

. We consider continuous time, and one scale only. Let C',...,C}) be clus-
ters, constructed according to a conductance criterion, so that a r.w.
started in C; almost mixes inside C; before significant mass leaks to CY.

. Compressing the clusters. Let 9~ C; and 97 C; be the entry and exit points
of C;: we encode the probability of first leaving C); through y € GC’;L hav-
ing entered at « € 9C; , and approximate (in TV-distance) the distribu-

tion of the corresponding first exit time 7.

. Homogenized process. It state space is 0~ C; U 07 C;, and the transitions
are as follows: at x € 9~ C; toss a coin to pick be the exit point y € 97 C;,
and drawing a corresponding first exit time 7,,. Then use the edges
and transition times on the original graphs to move from y € 07C; to

y € 0~ (.

. Some properties. The homogenized process is semi-Markov (Markov at
jump times), with a time-dependent transition kernel P(x,y). Then in a
suitable, strong sense (TV distance), P:(x,y) is close to Pi(x,y).

. The above may be implemented by eflicient algorithms.
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A few notes

. Processes on a graph are the focus, not the graph itself

. We replaced a graph by a process on it (e.g. the random walk), and then
studied that process at multiple scales. If the graph changes in time, we have
a family of processes.

. Eigenfunctions capture large scale/long time dynamics, but expect interesting
graphs to have rich multiscale spatial/temporal scales.

. Functions on graphs are also important, e.g. in machine learning.

. Spectral graph theory, multiscale analysis, stochastic processes all play fun-
damental roles.

. The construction of the processes from data is domain dependent, informed
by physical /statistical /geometric models.

. We know how to construct multiscale basis functions (with fast transforms)
on graphs; these may be used to compress processes such as the r.w.
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Open problems & future dir.’s

Too many!

. Efficient and good local clustering algorithms.
. Properties of eigenfunctions of Laplacian/r.w. on graphs.

. Notions of (multiscale?) geometric stability and its relationships with stability
of eigenfunctions, clusters, r.w.’s...

. How to study more general processes where diffusion is not the main compo-
nent?

Collaborators: D. Brady (EE, Duke), R. Brady (CS, Duke), C. Clementi (Che,
Rice), J. Mattingly (Math, Duke), E. Monson (CS, Duke), S. Mukherjee (Stats,
Duke), R. Rajae (EE, Oregon), M. Rohrdanz (Che, Rice), R. Schul (Math, Stony
Brook), W. Willinger (AT&T)

Partial support: DARPA, DOE, NSE ONR, Sloan Foundation

THANK YOU!

www.math.duke.edu/~mauro
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