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Random walks on graphs and data
Given a weighted graph (G,E,W ): vertices represent data points,

edges connect xi, xj with weight Wij := W (xi, xj), when positive

(or above a threshold). Let Dii =
P

j Wij and

P = D�1W| {z }
random walk

, T = D� 1
2WD� 1

2| {z }
symm. “random walk00

, L = I � T| {z }
norm.Laplacian

, H = e�tL
| {z }
Heat kernel

Let 1 = �
0

� �
1

� . . . and 'i the eigenval.’s and eigenvec.’s of T .
We shall consider the map G 3 x 7! ('

1

(x), . . . ,'m(x)) 2 Rm
.
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Random walks on graphs and data
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Dynamic Graphs

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

Given: time series of graphs Gt. Objective: to analyze this time series. Desider-
ata:

. Sensitive to large and small significative changes in the network, and to
their location.

. Should capture both topological and quantitative geometric changes.

. Should yield measures of change: want to do analysis, statistics...

. Robust to “noisy” perturbations of the network.

We are used to performing similar tasks on real-valued time series, how do we
extend similar tools to a “space of graphs”? How can we quantify change? How
do we construct multiple resolutions on graphs?

J. Lee, MM, Thesis, 2010,
Proc. SampTA, 2011
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Multiscale Graphs - Toy Model

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

when there is a large change on the coarse scale, since this indicates these partitions no
longer resemble good clusterings. We recompute the clusterings using spectral clustering.
See [17] for details.

2.3.5 Analysis of the Dynamics

(a) Initial Graph (b) Graph after adding one vertex

(c) Final Graph

Figure 2.5: Multiscale Graphs at di�erent times.

In this example, the graph has two di�erent scales. The coarse scale consists of the
3 large clusters. The finer scale consists of 15 clusters. For this simulation, we fix the
number of clusters at 2 and fix 3 clusters at the coarse scale and 15 clusters at the fine
scale. After several perturbations, the resulting graph may no longer have 3 coarse scale
clusters or 15 fine scale clusters, but the dynamics can still be e�ectively measured by
fixing the number of scales and clusters.

As stated before, the change in the graph is measured as ||P �1
C1,t,t

� P �1
C1,t�1,t�1||F and

||P �2
C2,t,t

� P �2
C2,t�1,t�1||F . This is plotted in Figure 2.8. We update Cj,t using the online

updates and recompute Cj,t when there is a large change on the coarse scale. The plot
corresponding to the change in the fine scale is much more jittery. The minimum value

20

Figure 2.3: Graph Coarsification Procedure: from fine scale to coarse scale.

If there are many connections between i and j then P � (i, j) will be large for a range of
� . If i and j are in di�erent clusters, but share an edge then P (i, j) will be large, but
P � (i, j) will be small. The � parameter adds robustness to the method.

The � parameter is also scale and graph dependent. For example when comparing
two coarsified graphs, P �1

t,C1
� P �1

t�1,C1
for the appropriate �1 is more meaningful than

Pt,C1 � Pt�1,C1 . The latter quantity only reflects the change in the one step dynamic of
the graph, so only the change in the immediate connectivity between the clusters a�ects
this. However by exponentiating to the �1, the change in the random walk after �1 steps
is measured. This will negate the ”boundary” e�ects that is measured and reflect the
averaged change of the coarsified random walk. Similarly for the fine scale, P �2

t,C2
� P �2

t,C2

is analyzed. In general, �2 < �1 because the random walk mixes faster on the finer scales.
For � ⇥ ⇤, the di�erence measures the change in the stationary distribution of the
coarsified graph which only depends on the degree of the vertices. Thus the goal is to
choose a � where the coarsified graph has su⌅ciently mixed to negate boundary e�ects,
but has not reached the stationary distribution. For further discussion of the mixing time
and coarsification of random walks see [6, 12].

2.2.5 Multiscale Measurements of the Dynamics

Since we have associated with each graph Gt, the transition matrix Pt we can measure
changes as P �

t, � P �
t�1 for some choice of � . We note that the choice of � is important

because without the averaging e�ect of the di�usion time, noise may cause large changes.
The entries with large changes represent clusters that exhibit interesting dynamics. We
repeat the same process to compare the transition matrices at di�erent scales which
allows us to find the clusters at each scale that have interesting dynamics. The multiscale
measurements of the error allow us to localize a change on the graph to one region/cluster
of the original graph.

There are several di�erent types of dynamics that we would like to study; these are
illustrated in Figure 2.4. In the first row of Figure 2.4 from left to right is the original
graph, a vertex joining, and a vertex leaving. In the second row of Figure 2.4 is an
edge weight increasing, an entire new cluster joining the graph and two clusters merging
together. Of course, these type of changes can happen at any given scale or even between
scales. These are all example of dynamics that the multsicale analysis methodology will
detect.

17

Barabasi et al.

The graphs we start with will have a strong multiscale structure. They are

constructed as follows: we start with a dictionary D of graphs, including for

example complete graphs, trees, paths, loops, etc... Then:

(i) Pick J graph flavors F1, . . . , FJ , from D, i.e. on flavor per scale

(ii) Let the graph at the coarsest scale be of flavor G1, with edges with weight

O(2

1
)

(iii) For j = 2, . . . , J , replace each vertex of Gj�1 with a graph Gj of flavor Fj

and edges of weight O(2

j
).

Our model
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Multiscale Graphs - Toy Model

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:
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Spectrum of T

The generalizations below are trivially handled by the algorithms that follow,

that do not depend on the symmetries above. For example di↵erent models

used at di↵erent locations at di↵erent scales.

What matters is that the random walk has multiple time scales.

Intuitively: there is clear definition of scales, and what it means to “look at the

graph at a certain scale”.
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Dynamic Graphs - Toy Model

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

Figure 2.4: Possible di�erent type of graph dynamics

2.2.6 Description of the Algorithm

Algorithm 2. For each time point t and scale j do the following:

1. Create a partition Cj,t for Gt from the partition for Gt�1 using the online update of
the partition.If the partition does not perform well with respect to the Cut Objective,
recompute the partitions using spectral clustering.

2. Compute coarse grained transition matrix: Pt,Cj,t

3. Measure the change in the graph time series: ||P �j

t,Cj,t
� P

�j

t�1,Cj,t�1
||

2.3 Simulation Results

We test the multiscale analysis algorithm on a simulated graph time series. The purpose
of the simulation is to illustrate that our methodology can adequately detect several types
of dynamics. The first type of dynamics is vertices leaving and entering. Next, the edge
weights on the graph will change between each graph. The dynamics translate to changes
on di�erent scales depending on the type of dynamics. For example, two fine scale clusters
merging will cause a large change in the fine scale. We show that the algorithm described
in Section 2.2 can e�ectively identify these dynamics.

2.3.1 Construction of Graphs

The simulated graphs have clear multiscale structure. The edges on the finest scale are
the largest and decrease by a factor of 8 each scale as we move to coarser scales. Thus

18

We consider a small set of “elementary moves”, including:

(i) adding or removing a vertex

(ii) adding or removing an edge

(iii) changing an edge weight

The scale of the change is important.
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Multiscale analysis of Dynamic Graphs

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

Our construction consists of 3 steps:

. Construct multiscale partitions of Gt

. Map Gt to a feature vector whose coordinates are operators, more specif-
ically versions of P t compressed on the multiscale partitions

. Compare Gt+1 and Gt based on the feature vectors constructed above:
these are now vectors of operators, and we know how to compare operators.
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Algorithm: Multiscale Partitions

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:
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at each time 
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Algorithm: Multiscale Partitions

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

Edges leaving the 
cluster

Total number of 
edges in cluster

Alternative: instead on N-cut use a conductance based criterion and local par-

titioning methods (D. Spielman, F. Chung, ...). This has stronger theoretical

guarantees, and a good option for very large graphs.
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Algorithm: Multiscale Partitions

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

Algorithm for constructing partitions. What is a good partition? Ncut should
be small:

Ncut(C1
, . . . , C

k) =
1

2

kX

i=1

W (Ci

, (Ci)c)

vol(Ci)

where W (A,B) =
P

x2A,y2B

W (x, y) and vol(A) =
P

x2A

P
y

W (x, y).
NP-Hard to minimize, approximation algorithms exist [Arora]. Oftentimes re-
laxed to spectral clustering on P = D

�1
W : compute top k + 1 eigenvectors of

P : '1, . . . ,'k+1, embed the graph in Euclidean space by x 7! ('
i

(x))k+1
i=1 , and

perform k-means in this space.

At any time t, we perform the above recursively, with k = 2, obtaining a mul-

tiscale family of partitions {Cj,t} organized in a binary tree.

Edges leaving the 
cluster

Total number of 
edges in cluster

Alternative: instead on N-cut use a conductance based criterion and local par-

titioning methods (D. Spielman, F. Chung, ...). This has stronger theoretical

guarantees, and a good option for very large graphs.
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Algorithm: Multiscale Dynamics

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

t indexes time

j indexes scale

in the partition tree

⌧ refers to

internal averaging time

i, l index
clusters at scale j

For every t and every scale j, compress P ⌧
t : it is a matrix of size |Cj,t|⇥ |Cj,t|:

(P
t,j,⌧

)
il

:=
X

x2C

i
j,t

1

C

i

j,t

X

y2C

l
j,t

P

⌧ (x, y)

⌧ -step r.w. on Gt compressed at scale j

probability mass transported from

a starting point in Ci
j,t to some point in Cl

j,t
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Algorithm: Multiscale compression

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

In fact we can do much more, since we can localize this changes, at every

scale, and across scales, and develop a full multiscale (“wavelet-like”) time series

analysis for graphs.

For every t and every scale j, compress P

⌧

t

: it is a matrix of size |C
j,t

|⇥ |C
j,t

|:

(P

t,j,⌧

)

il

=

X

x2C

i
j,t

1

C

i

j,t

X

y2C

l
j,t

P

⌧

(x, y)

for i, l varying in the index of the sets in the partition C

j,t

.
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Algorithm: Multiscale compression

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

At this point we can measure variations in Pt,j,⌧ as a function of t, for the scale
j and “internal time scale” ⌧ , for example by measuring ||Pt,j,⌧ � Pt+1,j,⌧ ||F .

In fact we can do much more, since we can localize this changes, at every

scale, and across scales, and develop a full multiscale (“wavelet-like”) time series

analysis for graphs.

For every t and every scale j, compress P

⌧

t

: it is a matrix of size |C
j,t

|⇥ |C
j,t

|:

(P

t,j,⌧

)

il

=

X

x2C

i
j,t

1

C

i

j,t

X

y2C

l
j,t

P

⌧

(x, y)

for i, l varying in the index of the sets in the partition C

j,t

.
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A Simple Example

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

A time series of 51 graphs was constructed with a single vertex and edge noise

added after each graph. The initial graph has 3 layers, and 60 nodes. The

edge weights on the scales from finest to coarsest are 64, 8, and 1. The ini-

tial partitions are fed to the algorithm and we update the partitions using the

aforementioned online algorithm. At each step, a new vertex with 3 edges is

introduced.

when there is a large change on the coarse scale, since this indicates these partitions no
longer resemble good clusterings. We recompute the clusterings using spectral clustering.
See [17] for details.

2.3.5 Analysis of the Dynamics

(a) Initial Graph (b) Graph after adding one vertex

(c) Final Graph

Figure 2.5: Multiscale Graphs at di�erent times.

In this example, the graph has two di�erent scales. The coarse scale consists of the
3 large clusters. The finer scale consists of 15 clusters. For this simulation, we fix the
number of clusters at 2 and fix 3 clusters at the coarse scale and 15 clusters at the fine
scale. After several perturbations, the resulting graph may no longer have 3 coarse scale
clusters or 15 fine scale clusters, but the dynamics can still be e�ectively measured by
fixing the number of scales and clusters.

As stated before, the change in the graph is measured as ||P �1
C1,t,t

� P �1
C1,t�1,t�1||F and

||P �2
C2,t,t

� P �2
C2,t�1,t�1||F . This is plotted in Figure 2.8. We update Cj,t using the online

updates and recompute Cj,t when there is a large change on the coarse scale. The plot
corresponding to the change in the fine scale is much more jittery. The minimum value

20

when there is a large change on the coarse scale, since this indicates these partitions no
longer resemble good clusterings. We recompute the clusterings using spectral clustering.
See [17] for details.

2.3.5 Analysis of the Dynamics

(a) Initial Graph (b) Graph after adding one vertex

(c) Final Graph
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t = 0 t = 1 t = 51
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A Simple Example

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

Figure 2.8: Plot of the change between Gt and Gt�1. Y-axis is ||P �
Cj,t,t � P �

Cj,t�1,t�1||F .

the large change at time 27 that is seen in Figure 2.8. See Figure 2.7 for the change
between G26 and G27.

2.3.6 Interplay between Di�usion Time and Dynamics

In Figures 2.9a,2.9b and 2.9c, we plot the magnitude of ||P �
t,C1,t

�P �
t�1, C1,t�1|| and |P �

t,C2,t
�

P �
t�1, C2,t�1|| for a large range of � . In the first row � varies from 1 to 200 in increments

of 1, in the second row � varies from 1 to 2000 in increments of 10 and in the third row
� varies from 1 to 150000 in increments of 3000.

The most obvious observation is that the fine scale plots take on larger values than the
coarse scale plots. As expected, the fine scale is more sensitive to perturbations and noise
added to the graph time series. In fact, many of the entries of the coarse scale plot are
near 0, yet they a�ect the fine scale. From these plots, it is also evident that for smaller �
the coarse scale plots are not very informative. In the first row on the right for tau < 25,
the plot indicates almost no change between the graph time series. On the other hand,
the corresponding fine scale plot (first row on the left) reveals dynamics of the time series.

In Figure 2.9c, we notice that the measured change is the change in the stationary
distribution of the coarsified graphs. The stationary distribution is only a�ected by the
degrees of the vertices. The stationary distribution change of the fine scale is larger
because the change is relative to the weight of the cluster and the weight of the edges
being introduced. Since the size/weight of the fine scale clusters are smaller , they are
more influenced by vertices with heavy edges joining. At time point 27, a vertex joined
that merged two coarse clusters. This caused the dark red band seen in Figure 2.9b, but
the magnitude of the change decays as � increases because the stationary distribution was

22

Figure 2.8: Plot of the change between Gt and Gt�1. Y-axis is ||P �
Cj,t,t � P �

Cj,t�1,t�1||F .

the large change at time 27 that is seen in Figure 2.8. See Figure 2.7 for the change
between G26 and G27.

2.3.6 Interplay between Di�usion Time and Dynamics

In Figures 2.9a,2.9b and 2.9c, we plot the magnitude of ||P �
t,C1,t

�P �
t�1, C1,t�1|| and |P �

t,C2,t
�

P �
t�1, C2,t�1|| for a large range of � . In the first row � varies from 1 to 200 in increments

of 1, in the second row � varies from 1 to 2000 in increments of 10 and in the third row
� varies from 1 to 150000 in increments of 3000.

The most obvious observation is that the fine scale plots take on larger values than the
coarse scale plots. As expected, the fine scale is more sensitive to perturbations and noise
added to the graph time series. In fact, many of the entries of the coarse scale plot are
near 0, yet they a�ect the fine scale. From these plots, it is also evident that for smaller �
the coarse scale plots are not very informative. In the first row on the right for tau < 25,
the plot indicates almost no change between the graph time series. On the other hand,
the corresponding fine scale plot (first row on the left) reveals dynamics of the time series.

In Figure 2.9c, we notice that the measured change is the change in the stationary
distribution of the coarsified graphs. The stationary distribution is only a�ected by the
degrees of the vertices. The stationary distribution change of the fine scale is larger
because the change is relative to the weight of the cluster and the weight of the edges
being introduced. Since the size/weight of the fine scale clusters are smaller , they are
more influenced by vertices with heavy edges joining. At time point 27, a vertex joined
that merged two coarse clusters. This caused the dark red band seen in Figure 2.9b, but
the magnitude of the change decays as � increases because the stationary distribution was

22
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more influenced by vertices with heavy edges joining. At time point 27, a vertex joined
that merged two coarse clusters. This caused the dark red band seen in Figure 2.9b, but
the magnitude of the change decays as � increases because the stationary distribution was
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Figure 2.6: A vertex joining causes two fine scale clusters to merge. This is only seen in
the fine scale measurements.

Figure 2.7: A vertex merges two coarse scale clusters. Notice the vertex in the plot on
the right, but not in the left side plot. This vertex causes a large change between these
two graphs since it joins two coarse scale clusters.

it attains is near .1. This is because even small changes in the graph are altering the fine
scales. However, the plot of change in the coarse scale takes on much lower values. The
large peaks in the coarse scale plot are also large peaks in the fine scale plot. On the
other hand, many of the peaks in the fine scale plot are either much smaller or disappear
in the coarse scale plot. For example, the 7th time point causes a large change in the
fine scale, but almost no change on the coarse scale (Figure 2.8). In fact, we see that the
di�erence between G7 and G6 is a vertex with edges to two fine scale clusters joined and
thus merged two fine scale clusters. This does not a�ect the coarse scale since the newly
introduced edges are all within the same coarse scale cluster. See Figure 2.6 for details.

The peak at time point 2 in Figure 2.8 is due to a vertex joining with edges between
two coarse scale clusters. This can be seen by comparing Figures 2.5a and 2.5b. This
change is evident on both scales since it causes two coarse scale clusters to merge, and
also causes two fine scale clusters to join.

The largest change is at time point 27. Before time 27, two of the coarse clusters
are tightly interconnected, but one cluster is not connected to the other two. The vertex
entering at time 27 causes the lone cluster to be connected to the other two. This causes
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A Simple Example

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

Figure 2.8: Plot of the change between Gt and Gt�1. Y-axis is ||P �
Cj,t,t � P �

Cj,t�1,t�1||F .

the large change at time 27 that is seen in Figure 2.8. See Figure 2.7 for the change
between G26 and G27.

2.3.6 Interplay between Di�usion Time and Dynamics

In Figures 2.9a,2.9b and 2.9c, we plot the magnitude of ||P �
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t,C2,t
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P �
t�1, C2,t�1|| for a large range of � . In the first row � varies from 1 to 200 in increments

of 1, in the second row � varies from 1 to 2000 in increments of 10 and in the third row
� varies from 1 to 150000 in increments of 3000.

The most obvious observation is that the fine scale plots take on larger values than the
coarse scale plots. As expected, the fine scale is more sensitive to perturbations and noise
added to the graph time series. In fact, many of the entries of the coarse scale plot are
near 0, yet they a�ect the fine scale. From these plots, it is also evident that for smaller �
the coarse scale plots are not very informative. In the first row on the right for tau < 25,
the plot indicates almost no change between the graph time series. On the other hand,
the corresponding fine scale plot (first row on the left) reveals dynamics of the time series.

In Figure 2.9c, we notice that the measured change is the change in the stationary
distribution of the coarsified graphs. The stationary distribution is only a�ected by the
degrees of the vertices. The stationary distribution change of the fine scale is larger
because the change is relative to the weight of the cluster and the weight of the edges
being introduced. Since the size/weight of the fine scale clusters are smaller , they are
more influenced by vertices with heavy edges joining. At time point 27, a vertex joined
that merged two coarse clusters. This caused the dark red band seen in Figure 2.9b, but
the magnitude of the change decays as � increases because the stationary distribution was
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Figure 2.6: A vertex joining causes two fine scale clusters to merge. This is only seen in
the fine scale measurements.

Figure 2.7: A vertex merges two coarse scale clusters. Notice the vertex in the plot on
the right, but not in the left side plot. This vertex causes a large change between these
two graphs since it joins two coarse scale clusters.

it attains is near .1. This is because even small changes in the graph are altering the fine
scales. However, the plot of change in the coarse scale takes on much lower values. The
large peaks in the coarse scale plot are also large peaks in the fine scale plot. On the
other hand, many of the peaks in the fine scale plot are either much smaller or disappear
in the coarse scale plot. For example, the 7th time point causes a large change in the
fine scale, but almost no change on the coarse scale (Figure 2.8). In fact, we see that the
di�erence between G7 and G6 is a vertex with edges to two fine scale clusters joined and
thus merged two fine scale clusters. This does not a�ect the coarse scale since the newly
introduced edges are all within the same coarse scale cluster. See Figure 2.6 for details.

The peak at time point 2 in Figure 2.8 is due to a vertex joining with edges between
two coarse scale clusters. This can be seen by comparing Figures 2.5a and 2.5b. This
change is evident on both scales since it causes two coarse scale clusters to merge, and
also causes two fine scale clusters to join.

The largest change is at time point 27. Before time 27, two of the coarse clusters
are tightly interconnected, but one cluster is not connected to the other two. The vertex
entering at time 27 causes the lone cluster to be connected to the other two. This causes
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Simulated “attacks”

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:
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L. A. Adamic and N. Glance, "The political blogosphere and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the Weblogging Ecosystem (2005)

Network of political blogs, 1400 nodes and 19000 edges. We simulate two
attacks: a DDOS attack at time 4, when one random vertex is connected to 100
random vertices, till time 6, and then a wormhole attack at time 8, when the
two farthest vertices are connected by a heavy edge.

Sim. DDOS attack

Sim. wormhole attack
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A much finer version
. We consider continuous time, and one scale only. Let C1, . . . , Ck

be clus-

ters, constructed according to a conductance criterion, so that a r.w.

started in C

i

almost mixes inside C

i

before significant mass leaks to C

c

i

.

. Compressing the clusters. Let @�
C

i

and @

+
C

i

be the entry and exit points

of C

i

: we encode the probability of first leaving C

i

through y 2 @C

+
i

hav-

ing entered at x 2 @C

�
i

, and approximate (in TV-distance) the distribu-

tion of the corresponding first exit time ⌧

y|x.

. Homogenized process. It state space is @

�
C

i

[ @

+
C

i

, and the transitions

are as follows: at x 2 @

�
C

i

toss a coin to pick be the exit point y 2 @

+
C

i

,

and drawing a corresponding first exit time ⌧

y|x. Then use the edges

and transition times on the original graphs to move from y 2 @

+
C

i

to

y 2 @

�
C

l

.

. Some properties. The homogenized process is semi-Markov (Markov at

jump times), with a time-dependent transition kernel P

t

(x, y). Then in a

suitable, strong sense (TV distance), P

t

(x, y) is close to P

t

(x, y).

. The above may be implemented by e�cient algorithms.

Joint with P. Balachandran and J. Mattingly
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A few notes
. Processes on a graph are the focus, not the graph itself

. We replaced a graph by a process on it (e.g. the random walk), and then

studied that process at multiple scales. If the graph changes in time, we have

a family of processes.

. Eigenfunctions capture large scale/long time dynamics, but expect interesting

graphs to have rich multiscale spatial/temporal scales.

. Functions on graphs are also important, e.g. in machine learning.

. Spectral graph theory, multiscale analysis, stochastic processes all play fun-

damental roles.

. The construction of the processes from data is domain dependent, informed

by physical/statistical/geometric models.

. We know how to construct multiscale basis functions (with fast transforms)

on graphs; these may be used to compress processes such as the r.w.
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Open problems & future dir.’s

Partial support: DARPA, DOE, NSF, ONR, Sloan Foundation

THANK YOU!

www.math.duke.edu/~mauro

Too many!

. E�cient and good local clustering algorithms.

. Properties of eigenfunctions of Laplacian/r.w. on graphs.

. Notions of (multiscale?) geometric stability and its relationships with stability
of eigenfunctions, clusters, r.w.’s...

. How to study more general processes where di↵usion is not the main compo-
nent?

Collaborators: D. Brady (EE, Duke), R. Brady (CS, Duke), C. Clementi (Che,
Rice), J. Mattingly (Math, Duke), E. Monson (CS, Duke), S. Mukherjee (Stats,
Duke), R. Rajae (EE, Oregon), M. Rohrdanz (Che, Rice), R. Schul (Math, Stony
Brook), W. Willinger (AT&T)
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