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Challenge: Organization / Understanding of Data

In many �elds massive amounts of data collected or generated,

EXAMPLES:

�nancial data, multi-sensor data, simulations, documents,
web-pages, images, video streams, medical data, astrophysical data,
etc.

Need to organize / understand their structure
Inference / Learning from data

Boaz Nadler Multiscale Harmonic Analysis on Graphs



. . . . . .

Semi-Supervised Learning
Global (Graph Based) Approaches

Multiscale Methods

Challenge: Organization / Understanding of Data

In many �elds massive amounts of data collected or generated,

EXAMPLES:

�nancial data, multi-sensor data, simulations, documents,
web-pages, images, video streams, medical data, astrophysical data,
etc.

Need to organize / understand their structure
Inference / Learning from data

Boaz Nadler Multiscale Harmonic Analysis on Graphs



. . . . . .

Semi-Supervised Learning
Global (Graph Based) Approaches

Multiscale Methods

Classical vs. Modern Data Analysis Setup and Tasks

Classical Setup:

- Data typically in a (low-dimensional) Euclidean Space.
- Small to medium sample sizes (n < 1000)
- Either all data unlabeled (unsupervised) or all labeled (supervised).

Modern Setup:

- high-dimensional data, or data encoded as a graph.
- Huge datasets, with n = 106 samples or more. Few labeled data.

The well developed and understood standard tools of statistics
not always applicable

Question: Harmonic Analysis in such settings
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Harmonic Analysis and Learning

In the past 20 years (multiscale) harmonic analysis had profound
impact on statistics and signal processing.

Well developed theory, long tradition:

geometry of space X ⇒ bases for {f : X → R}

Simplest Example: X = [0, 1]

Construct (multiscale) basis {Ψi}, that allows control of |⟨f ,Ψi ⟩|
for some (smooth) class of functions f .

Theorem: ψ smooth wavelet, ψℓ,k - wavelet basis, f : [0, 1] → R,
then

|f (x)− f (y)| < C |x − y |α ⇔ |⟨f , ψℓ,k⟩| ≤ C ′2−ℓ(α+1/2)
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Setting

Harmonic analysis wisdom for f : Rd → R

I Expand f in orthonormal basis {ψi} (e.g. wavelet)

f =
∑
i

⟨f , ψi ⟩ψi

I Shrink / estimate coe�cients

I Useful when f well approximated by a few terms
(�fast coe�cent decay� / sparsity)

Can this work on general datasets?

Need data-adaptive basis {ψi} for space of functions f : X → R
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Harmonic Analysis on Graphs

Setup: We are given dataset X = {x1, . . . , xN}
with similarity / a�nity matrix Wi ,j

Goal: Statistical inference of smooth f : X → R
I Denoise f

I SSL / Regression / classi�cation: extend f from X̃ ⊂ X to X
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Semi-Supervised Learning

In many applications - easy to collect lots of unlabeled data, BUT
labeling the data is expensive.

Question: Given (small) labeled set X̃ ⊂ X = {xi , yi} (y = f (x)),
construct f̂ to label rest of X .

Key Assumption:

function f (x) has some smoothness w.r.t graph a�nities Wi ,j .

otherwise - unlabeled data is useless or may even harm prediction.
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The Graph Laplacian

In most previous approaches, key object is

GRAPH LAPLACIAN:

L = D −W

where Dii =
∑

j Wij ,
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Global Graph Laplacian Based SSL Methods

Zhu, Ghahramani, La�erty, SSL using Gaussian �elds and harmonic
functions [ICML, 2003] , Azran [ICML 2007]

f (x) = arg min
f (xi )=yi

1

n2

n∑
i ,j=1

W i ,j(fi − fj)
2 = argmin

1

n2
fTLf

Y. Bengio, O. Delalleau, N. Le Roux, [2006]
D. Zhou, O. Bousquet, T. Navin Lal, J. Weston, B. Scholkopf
[NIPS 2004]

f (x) = argmin

 1

n2

n∑
i ,j=1

Wi ,j(fi − fj)
2 + λ

ℓ∑
i=1

(fi − yi )
2


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Global Graph-Laplacian Based SSL

Belkin & Niyogi (2003): Given similarity matrix W �nd �rst few
eigenvectors of Graph Laplacian, Lej = (D −W )ej = λjej .
Expand

f̂ =

p∑
j=1

ajej

Estimate coe�cients aj from labeled data.
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Statistical Analysis of Laplacian Regularization

[N., Srebro, Zhou, NIPS 09']

Theorem: In the limit of large unlabeled data from Euclidean
space, with Wi ,j = K (∥xi − xj∥), Graph Laplacian Regularizaton
Methods

f (x) = argmin

 1

n2

n∑
i ,j=1

Wi ,j(fi − fj)
2 + λ

ℓ∑
i=1

(fi − yi )
2


are weill posed for underlying data in 1-d, but are not well posed for
data in dimension d ≥ 2.
In particular, in limit of in�nite unlabeled data, f (x) → const at all
unlabeled x .
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Eigenvector-Fourier Methods

Belkin, Niyogi [2003], suggested a di�erent approach based on the
Graph Laplacian L = W − D:

Given similarity W , �nd �rst few eigenvectors (W − D)ej = λjej ,
Expand

ŷ(x) =

p∑
j=1

ajej

Find coe�cients aj by least squares,

(â1, . . . , âp) = argmin
l∑

j=1

(yj − ŷ(xj))
2.
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Toy example

Example: USPS benchmark

I X is USPS (ML benchmark) as 1500 vectors in R16×16 = R256

I A�nity Wi ,j = exp
(
−∥xi − xj∥2

)
I f : X → {1,−1} is the class label.
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Toy example: visualization by kernel PCA
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Toy example: Prior art?

Generalizing Fourier: The Graph Laplacian eigenbasis

I Take (W − D)ψi = λiψi where Di ,i =
∑

j Wi ,j

I (Belkin, Niyogi 2004) and others

In Euclidean setting

I Typical coe�cient decay rate in Fourier basis: polynomial

I But in wavelet bases: exponential
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Challenge

Challenge: build multiscale "wavelet-like" bases on X

1. Construct adaptive multiscale basis on general dataset

2. Investigate: coe�cient ⟨f , ψi ⟩ decay rate ⇔ f smooth

Previous Works
- Di�fusion Wavelets [Coifman and Maggioni]
- Multiscale Methods for Data on Graphs [Jansen, Nason,
Silverman]
- Wavelets on Graphs via Spectral Graph Theory [Hammond et al.]

Our Work
- (Relavitely) Simple Construction
-Accompanying Theory.
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Toy example: intriguing experiment
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Challenge and Result

Challenge: build "wavelet" bases on X

1. Construct adaptive multiscale basis on general dataset

2. Investigate: coe�cient ⟨f , ψi ⟩ decay rate ⇔ f smooth

Key Results

1. Partition tree on X induces �wavelet� Haar-like bases

2. Assuming �Balanced� tree

f smooth ⇐⇒ fast coe�cient decay

3. Novel SSL scheme with learning guarantees assuming smooth
functions on tree.
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functions on tree.
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Partition Tree ⇒ Haar-like basis

[Lee, N., Wasserman, AOAS 08']
Simple Observation:

Hierarchical Tree → Mutli-Resolution Analysis of Space of Functions
→ Haar-like multiscale basis

V = {f | f : X → R}
V ℓ = {f | f constant at partitions at level ℓ}

V 1 ⊂ V 2 ⊂ . . .V L = V
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Toy example: Haar-like basis function
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Smoothness ⇐⇒Coe�cient decay

How to de�ne smoothness ?

I Partition tree induces tree metric d(xi , xj) [ultrametric]

I Measure smoothness of f : X → R in tree metric

Theorem:

Let f : X → R. Then

|f (xi )− f (xj)| ≤ Cd(xi , xj)
α ⇔ |⟨f , ψℓ,i ⟩| ≤ C ′q−ℓ(α+1/2) .

where
- q measures the tree balance

- α measures function smoothness w.r.t. tree

Particular example of Space of Homogeneous Type [Coifman &
Weiss]
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Application: SSL

Given dataset X with weighted graph G , similarity matrix W ,
labeled points {xi , yi},

1. Construct a balanced hierarchical tree of graph

2. Construct corresponding Haar-like basis

3. Estimate coe�cients from labeled points
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Toy Example: Benchmarks
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State of the art
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Toy Example: MNIST 8 vs. {3,4,5,7}
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Summary

1. A balanced partition tree induces a useful �wavelet� basis

2. Designing the basis allows a theory connecting
Coe�cients decay, smoothness and learnability

3. �Wavelet arsenal� becomes available: wavelet shrinkage, etc

4. Interesting harmonic analysis. Promising for data analysis?

5. Computational experiments motivate theory and vice-versa

The End

www.wisdom.weizmann.ac.il/∼nadler

Boaz Nadler Multiscale Harmonic Analysis on Graphs



. . . . . .

Semi-Supervised Learning
Global (Graph Based) Approaches

Multiscale Methods

Summary

1. A balanced partition tree induces a useful �wavelet� basis

2. Designing the basis allows a theory connecting
Coe�cients decay, smoothness and learnability

3. �Wavelet arsenal� becomes available: wavelet shrinkage, etc

4. Interesting harmonic analysis. Promising for data analysis?

5. Computational experiments motivate theory and vice-versa

The End

www.wisdom.weizmann.ac.il/∼nadler

Boaz Nadler Multiscale Harmonic Analysis on Graphs



. . . . . .

Semi-Supervised Learning
Global (Graph Based) Approaches

Multiscale Methods

Summary

1. A balanced partition tree induces a useful �wavelet� basis

2. Designing the basis allows a theory connecting
Coe�cients decay, smoothness and learnability

3. �Wavelet arsenal� becomes available: wavelet shrinkage, etc

4. Interesting harmonic analysis. Promising for data analysis?

5. Computational experiments motivate theory and vice-versa

The End

www.wisdom.weizmann.ac.il/∼nadler

Boaz Nadler Multiscale Harmonic Analysis on Graphs



. . . . . .

Semi-Supervised Learning
Global (Graph Based) Approaches

Multiscale Methods

Summary

1. A balanced partition tree induces a useful �wavelet� basis

2. Designing the basis allows a theory connecting
Coe�cients decay, smoothness and learnability

3. �Wavelet arsenal� becomes available: wavelet shrinkage, etc

4. Interesting harmonic analysis. Promising for data analysis?

5. Computational experiments motivate theory and vice-versa

The End

www.wisdom.weizmann.ac.il/∼nadler

Boaz Nadler Multiscale Harmonic Analysis on Graphs



. . . . . .

Semi-Supervised Learning
Global (Graph Based) Approaches

Multiscale Methods

Summary

1. A balanced partition tree induces a useful �wavelet� basis

2. Designing the basis allows a theory connecting
Coe�cients decay, smoothness and learnability

3. �Wavelet arsenal� becomes available: wavelet shrinkage, etc

4. Interesting harmonic analysis. Promising for data analysis?

5. Computational experiments motivate theory and vice-versa

The End

www.wisdom.weizmann.ac.il/∼nadler

Boaz Nadler Multiscale Harmonic Analysis on Graphs



. . . . . .

Semi-Supervised Learning
Global (Graph Based) Approaches

Multiscale Methods

Summary

1. A balanced partition tree induces a useful �wavelet� basis

2. Designing the basis allows a theory connecting
Coe�cients decay, smoothness and learnability

3. �Wavelet arsenal� becomes available: wavelet shrinkage, etc

4. Interesting harmonic analysis. Promising for data analysis?

5. Computational experiments motivate theory and vice-versa

The End

www.wisdom.weizmann.ac.il/∼nadler

Boaz Nadler Multiscale Harmonic Analysis on Graphs



. . . . . .

Semi-Supervised Learning
Global (Graph Based) Approaches

Multiscale Methods

Summary

1. A balanced partition tree induces a useful �wavelet� basis

2. Designing the basis allows a theory connecting
Coe�cients decay, smoothness and learnability

3. �Wavelet arsenal� becomes available: wavelet shrinkage, etc

4. Interesting harmonic analysis. Promising for data analysis?

5. Computational experiments motivate theory and vice-versa

The End

www.wisdom.weizmann.ac.il/∼nadler

Boaz Nadler Multiscale Harmonic Analysis on Graphs


	Semi-Supervised Learning
	Global (Graph Based) Approaches
	Multiscale Methods

