Harmonic Analysis on Graphs Global vs. Multiscale Approaches

Boaz Nadler

Weizmann Institute of Science, Rehovot, Israel

July 2011

Joint work with Matan Gavish (WIS/Stanford), Ronald Coifman (Yale), *ICML 10*'

Challenge: Organization / Understanding of Data

In many fields massive amounts of data collected or generated, EXAMPLES:

financial data, multi-sensor data, simulations, documents, web-pages, images, video streams, medical data, astrophysical data, etc.

ヘロト 人間ト イヨト イヨト

Challenge: Organization / Understanding of Data

In many fields massive amounts of data collected or generated, EXAMPLES:

financial data, multi-sensor data, simulations, documents, web-pages, images, video streams, medical data, astrophysical data, etc.

> Need to organize / understand their structure Inference / Learning from data

Classical Setup:

- Data typically in a (low-dimensional) Euclidean Space.
- Small to medium sample sizes (n < 1000)
- Either all data unlabeled (unsupervised) or all labeled (supervised).

・ 同 ト ・ ヨ ト ・ ヨ ト

Classical Setup:

- Data typically in a (low-dimensional) Euclidean Space.
- Small to medium sample sizes (n < 1000)
- Either all data unlabeled (unsupervised) or all labeled (supervised).

Modern Setup:

- high-dimensional data, or data encoded as a graph.
- Huge datasets, with $n = 10^6$ samples or more. Few labeled data.

Classical Setup:

- Data typically in a (low-dimensional) Euclidean Space.
- Small to medium sample sizes (n < 1000)
- Either all data unlabeled (unsupervised) or all labeled (supervised).

Modern Setup:

- high-dimensional data, or data encoded as a graph.
- Huge datasets, with $n=10^6$ samples or more. Few labeled data.

The well developed and understood standard tools of statistics not always applicable

Classical Setup:

- Data typically in a (low-dimensional) Euclidean Space.
- Small to medium sample sizes (n < 1000)
- Either all data unlabeled (unsupervised) or all labeled (supervised).

Modern Setup:

- high-dimensional data, or data encoded as a graph.
- Huge datasets, with $n=10^6$ samples or more. Few labeled data.

The well developed and understood standard tools of statistics not always applicable

Question: Harmonic Analysis in such settings

Harmonic Analysis and Learning

In the past 20 years (multiscale) harmonic analysis had profound impact on statistics and signal processing.

• • = • • = •

э

Harmonic Analysis and Learning

In the past 20 years (multiscale) harmonic analysis had profound impact on statistics and signal processing.

Well developed theory, long tradition:

geometry of space $X \Rightarrow$ bases for $\{f : X \rightarrow \mathbb{R}\}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Harmonic Analysis and Learning

In the past 20 years (multiscale) harmonic analysis had profound impact on statistics and signal processing.

Well developed theory, long tradition:

```
geometry of space X \Rightarrow bases for \{f : X \rightarrow \mathbb{R}\}
```

Simplest Example: X = [0, 1]

Construct (multiscale) basis $\{\Psi_i\}$, that allows control of $|\langle f, \Psi_i \rangle|$ for some (smooth) class of functions f.

Theorem: ψ smooth wavelet, $\psi_{\ell,k}$ - wavelet basis, $f:[0,1] \to \mathbb{R}$, then

$$|f(x) - f(y)| < C|x - y|^{lpha} \iff |\langle f, \psi_{\ell,k} \rangle| \leq C' 2^{-\ell(lpha + 1/2)}$$

Setting

Harmonic analysis wisdom for $f : \mathbb{R}^d \to \mathbb{R}$

Boaz Nadler Multiscale Harmonic Analysis on Graphs

イロン イヨン イヨン イヨン

æ

Harmonic analysis wisdom for $f: \mathbb{R}^d \to \mathbb{R}$

• Expand f in orthonormal basis $\{\psi_i\}$ (e.g. wavelet)

$$f = \sum_{i} \langle f, \psi_i \rangle \psi_i$$

イロト 不得下 イヨト イヨト

æ

Harmonic analysis wisdom for $f : \mathbb{R}^d \to \mathbb{R}$

• Expand f in orthonormal basis $\{\psi_i\}$ (e.g. wavelet)

$$f = \sum_{i} \langle f, \psi_i \rangle \psi_i$$

Shrink / estimate coefficients

イロト イポト イヨト イヨト

臣

Harmonic analysis wisdom for $f : \mathbb{R}^d \to \mathbb{R}$

• Expand f in orthonormal basis $\{\psi_i\}$ (e.g. wavelet)

$$f = \sum_{i} \langle f, \psi_i \rangle \psi_i$$

- Shrink / estimate coefficients
- Useful when f well approximated by a few terms ("fast coefficent decay" / sparsity)

(日) (四) (日) (日) (日)

Harmonic analysis wisdom for $f : \mathbb{R}^d \to \mathbb{R}$

• Expand f in orthonormal basis $\{\psi_i\}$ (e.g. wavelet)

$$f = \sum_{i} \langle f, \psi_i \rangle \psi_i$$

- Shrink / estimate coefficients
- Useful when f well approximated by a few terms ("fast coefficent decay" / sparsity)

Can this work on general datasets? Need data-adaptive basis $\{\psi_i\}$ for space of functions $f: X \to \mathbb{R}$

イヨト イモト イモト

Harmonic Analysis on Graphs

Setup: We are given dataset $X = \{x_1, \dots, x_N\}$ with similarity / affinity matrix $W_{i,j}$

Goal: Statistical inference of smooth $f: X \to \mathbb{R}$

- Denoise f
- ▶ SSL / Regression / classification: extend f from $\tilde{X} \subset X$ to X

Semi-Supervised Learning

In many applications - easy to collect lots of unlabeled data, BUT labeling the data is expensive.

Question: Given (small) labeled set $\tilde{X} \subset X = \{x_i, y_i\}$ (y = f(x)), construct \hat{f} to label rest of X.

A (2) > (

Semi-Supervised Learning

In many applications - easy to collect lots of unlabeled data, BUT labeling the data is expensive.

Question: Given (small) labeled set $\tilde{X} \subset X = \{x_i, y_i\}$ (y = f(x)), construct \hat{f} to label rest of X.

Key Assumption:

function f(x) has some smoothness w.r.t graph affinities $W_{i,j}$.

otherwise - unlabeled data is useless or may even harm prediction.

(D) (A) (A) (A)

The Graph Laplacian

In most previous approaches, key object is

GRAPH LAPLACIAN:

$$L = D - W$$

where $D_{ii} = \sum_j W_{ij}$,

・ 同 ト ・ ヨ ト ・ ヨ ト …

臣

Global Graph Laplacian Based SSL Methods

Zhu, Ghahramani, Lafferty, SSL using Gaussian fields and harmonic functions [ICML, 2003], Azran [ICML 2007]

$$f(x) = \arg\min_{f(x_i)=y_i} \frac{1}{n^2} \sum_{i,j=1}^n W_{i,j} (f_i - f_j)^2 = \arg\min\frac{1}{n^2} \mathbf{f}^T L \mathbf{f}$$

Y. Bengio, O. Delalleau, N. Le Roux, [2006] D. Zhou, O. Bousquet, T. Navin Lal, J. Weston, B. Scholkopf [NIPS 2004]

$$f(x) = \arg \min \left[\frac{1}{n^2} \sum_{i,j=1}^n W_{i,j} (f_i - f_j)^2 + \lambda \sum_{i=1}^{\ell} (f_i - y_i)^2 \right]$$

ヘロト 人間ト イヨト イヨト

Global Graph-Laplacian Based SSL

Belkin & Niyogi (2003): Given similarity matrix W find first few eigenvectors of Graph Laplacian, $L\mathbf{e}_j = (D - W)\mathbf{e}_j = \lambda_j \mathbf{e}_j$. Expand

$$\hat{f} = \sum_{j=1}^{p} a_j \mathbf{e}_j$$

Estimate coefficients a_j from labeled data.

・ 同 ト ・ ヨ ト ・ ヨ ト

Statistical Analysis of Laplacian Regularization

[N., Srebro, Zhou, NIPS 09']

イロト 不得下 イヨト イヨト

Theorem: In the limit of large unlabeled data from Euclidean space, with $W_{i,j} = K(||x_i - x_j||)$, Graph Laplacian Regularizaton Methods

$$f(x) = \arg \min \left[\frac{1}{n^2} \sum_{i,j=1}^n W_{i,j} (f_i - f_j)^2 + \lambda \sum_{i=1}^{\ell} (f_i - y_i)^2 \right]$$

are weill posed for underlying data in 1-d, but are not well posed for data in dimension $d \ge 2$.

In particular, in limit of infinite unlabeled data, $f(x) \rightarrow const$ at all unlabeled x.

Eigenvector-Fourier Methods

Belkin, Niyogi [2003], suggested a different approach based on the Graph Laplacian L = W - D:

Given similarity W, find first few eigenvectors $(W - D)\mathbf{e}_j = \lambda_j \mathbf{e}_j$, Expand

$$\hat{y}(x) = \sum_{j=1}^{p} a_j \mathbf{e}_j$$

Find coefficients a_j by least squares,

$$(\hat{a}_1,\ldots,\hat{a}_p) = \arg\min\sum_{j=1}^l (y_j - \hat{y}(x_j))^2.$$

ヘロト ヘポト ヘヨト ヘヨト

Toy example

Example: USPS benchmark

Boaz Nadler Multiscale Harmonic Analysis on Graphs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Toy example

Example: USPS benchmark

• X is USPS (ML benchmark) as 1500 vectors in $\mathbb{R}^{16 \times 16} = \mathbb{R}^{256}$

Toy example

Example: USPS benchmark

• X is USPS (ML benchmark) as 1500 vectors in $\mathbb{R}^{16 \times 16} = \mathbb{R}^{256}$

• Affinity
$$W_{i,j} = \exp\left(-\|x_i - x_j\|^2\right)$$

Toy example

Example: USPS benchmark

• X is USPS (ML benchmark) as 1500 vectors in $\mathbb{R}^{16 \times 16} = \mathbb{R}^{256}$

• Affinity
$$W_{i,j} = \exp\left(-\|x_i - x_j\|^2\right)$$

• $f: X \to \{1, -1\}$ is the class label.

Toy example: visualization by kernel PCA

Toy example: Prior art?

Boaz Nadler Multiscale Harmonic Analysis on Graphs

イロン イヨン イヨン イヨン

æ

Toy example: Prior art?

Generalizing Fourier: The Graph Laplacian eigenbasis

Boaz Nadler Multiscale Harmonic Analysis on Graphs

A (2) > (

臣

Generalizing Fourier: The Graph Laplacian eigenbasis

• Take
$$(W - D)\psi_i = \lambda_i \psi_i$$
 where $D_{i,i} = \sum_j W_{i,j}$

A (2) > (

臣

Generalizing Fourier: The Graph Laplacian eigenbasis

• Take
$$(W - D)\psi_i = \lambda_i \psi_i$$
 where $D_{i,i} = \sum_i W_{i,j}$

(Belkin, Niyogi 2004) and others

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Generalizing Fourier: The Graph Laplacian eigenbasis

• Take
$$(W - D)\psi_i = \lambda_i \psi_i$$
 where $D_{i,i} = \sum_i W_{i,j}$

(Belkin, Niyogi 2004) and others

In Euclidean setting

A (2) > (

Generalizing Fourier: The Graph Laplacian eigenbasis

• Take
$$(W - D)\psi_i = \lambda_i \psi_i$$
 where $D_{i,i} = \sum_j W_{i,j}$

(Belkin, Niyogi 2004) and others

In Euclidean setting

Typical coefficient decay rate in Fourier basis: polynomial

(日) (四) (日) (日) (日)

Generalizing Fourier: The Graph Laplacian eigenbasis

• Take
$$(W - D)\psi_i = \lambda_i \psi_i$$
 where $D_{i,i} = \sum_j W_{i,j}$

(Belkin, Niyogi 2004) and others

In Euclidean setting

- Typical coefficient decay rate in Fourier basis: polynomial
- But in wavelet bases: exponential

Toy example: Graph Laplacian Eigenbasis

Boaz Nadler Multiscale Harmonic Analysis on Graphs

Toy example: Graph Laplacian Eigenbasis

Boaz Nadler Multiscale Harmonic Analysis on Graphs

Toy example: Graph Laplacian Eigenbasis

Challenge

Boaz Nadler Multiscale Harmonic Analysis on Graphs

◆□ ▶ ◆圖 ▶ ◆ 国 ▶ ◆ 国 ▶

Challenge

Challenge: build multiscale "wavelet-like" bases on X

Boaz Nadler Multiscale Harmonic Analysis on Graphs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Challenge: build multiscale "wavelet-like" bases on X

1. Construct adaptive multiscale basis on general dataset

A (2) > (

Challenge: build multiscale "wavelet-like" bases on X

- 1. Construct adaptive multiscale basis on general dataset
- 2. Investigate: coefficient $\langle f, \psi_i \rangle$ decay rate \Leftrightarrow f smooth

A (2) > (

Challenge: build multiscale "wavelet-like" bases on X

- 1. Construct adaptive multiscale basis on general dataset
- 2. Investigate: coefficient $\langle f, \psi_i
 angle$ decay rate \Leftrightarrow f smooth

Previous Works

- Difffusion Wavelets [Coifman and Maggioni]
- Multiscale Methods for Data on Graphs [Jansen, Nason, Silverman]
- Wavelets on Graphs via Spectral Graph Theory [Hammond et al.]

・ロト ・ 同ト ・ ヨト ・ ヨト

Challenge: build multiscale "wavelet-like" bases on X

- 1. Construct adaptive multiscale basis on general dataset
- 2. Investigate: coefficient $\langle f, \psi_i
 angle$ decay rate \Leftrightarrow f smooth

Previous Works

- Difffusion Wavelets [Coifman and Maggioni]
- Multiscale Methods for Data on Graphs [Jansen, Nason, Silverman]
- Wavelets on Graphs via Spectral Graph Theory [Hammond et al.]

Our Work

- (Relavitely) Simple Construction
- -Accompanying Theory.

(日) (同) (三) (三)

Toy example: intriguing experiment

Boaz Nadler Multiscale Harmonic Analysis on Graphs

Toy example: intriguing experiment

Boaz Nadler Multiscale Harmonic Analysis on Graphs

Toy example: intriguing experiment

Boaz Nadler Multiscale Harmonic Analysis on Graphs

<ロ> (四) (四) (王) (王) (王)

Toy example: intriguing experiment

(日) (日) (日) (日) (日)

Toy example: intriguing experiment

Toy example: intriguing experiment

Boaz Nadler Multiscale Harmonic Analysis on Graphs

Challenge and Result

Boaz Nadler Multiscale Harmonic Analysis on Graphs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Challenge and Result

Challenge: build "wavelet" bases on X

Boaz Nadler Multiscale Harmonic Analysis on Graphs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Challenge and Result

Challenge: build "wavelet" bases on X

1. Construct adaptive multiscale basis on general dataset

・ 同 ト ・ ヨ ト ・ ヨ ト

Challenge: build "wavelet" bases on X

- 1. Construct adaptive multiscale basis on general dataset
- 2. Investigate: coefficient $\langle f, \psi_i
 angle$ decay rate \Leftrightarrow f smooth

A (2) > (

Challenge: build "wavelet" bases on X

- 1. Construct adaptive multiscale basis on general dataset
- 2. Investigate: coefficient $\langle f, \psi_i
 angle$ decay rate \Leftrightarrow f smooth

Key Results

A (2) > (

Challenge: build "wavelet" bases on X

- 1. Construct adaptive multiscale basis on general dataset
- 2. Investigate: coefficient $\langle f, \psi_i
 angle$ decay rate \Leftrightarrow f smooth

Key Results

1. Partition tree on X induces "wavelet" Haar-like bases

・ 同 ト ・ ヨ ト ・ ヨ ト

Challenge: build "wavelet" bases on X

- 1. Construct adaptive multiscale basis on general dataset
- 2. Investigate: coefficient $\langle f, \psi_i
 angle$ decay rate \Leftrightarrow f smooth

Key Results

- 1. Partition tree on X induces "wavelet" Haar-like bases
- 2. Assuming "Balanced" tree

f smooth \iff fast coefficient decay

(日) (同) (三) (三)

Challenge: build "wavelet" bases on X

- 1. Construct adaptive multiscale basis on general dataset
- 2. Investigate: coefficient $\langle f, \psi_i
 angle$ decay rate \Leftrightarrow f smooth

Key Results

- 1. Partition tree on X induces "wavelet" Haar-like bases
- 2. Assuming "Balanced" tree

 $f \operatorname{smooth} \iff \operatorname{fast coefficient decay}$

3. Novel SSL scheme with learning guarantees assuming smooth functions on tree.

(日) (同) (三) (三)

The Haar Basis on [0, 1]

Boaz Nadler Multiscale Harmonic Analysis on Graphs

イロン イヨン イヨン イヨン

The Haar Basis on [0, 1]

Boaz Nadler Multiscale Harmonic Analysis on Graphs

イロン イヨン イヨン イヨン

The Haar Basis on [0, 1]

Boaz Nadler Multiscale Harmonic Analysis on Graphs

イロン イヨン イヨン イヨン

The Haar Basis on [0, 1]

イロン イヨン イヨン イヨン

The Haar Basis on [0, 1]

Boaz Nadler Multiscale Harmonic Analysis on Graphs

イロン イヨン イヨン イヨン

The Haar Basis on [0, 1]

Boaz Nadler Multiscale Harmonic Analysis on Graphs

イロト イヨト イヨト イヨト

The Haar Basis on [0, 1]

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Haar Basis on [0, 1]

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Haar Basis on [0, 1]

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Haar Basis on [0, 1]

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Haar Basis on [0, 1]

イロト イヨト イヨト イヨト

Hierarchical partition of X

Boaz Nadler Multiscale Harmonic Analysis on Graphs

イロン イヨン イヨン イヨン

Hierarchical partition of X

Boaz Nadler Multiscale Harmonic Analysis on Graphs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Hierarchical partition of X

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Hierarchical partition of X

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Hierarchical partition of X

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Partition Tree (Dendrogram)

Boaz Nadler Multiscale Harmonic Analysis on Graphs

イロン イヨン イヨン イヨン

Partition Tree (Dendrogram)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Partition Tree (Dendrogram)

Boaz Nadler Multiscale Harmonic Analysis on Graphs

・ロト ・聞ト ・ヨト ・ヨト

Partition Tree (Dendrogram)

・ロト ・四ト ・ヨト ・ヨト

Partition Tree (Dendrogram)

・ロト ・聞ト ・ヨト ・ヨト

Partition Tree (Dendrogram)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Partition Tree (Dendrogram)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Partition Tree \Rightarrow Haar-like basis

[Lee, N., Wasserman, AOAS 08']

(日) (四) (日) (日) (日)

э

Simple Observation:

 $\begin{array}{l} \mbox{Hierarchical Tree} \rightarrow \mbox{Mutli-Resolution Analysis of Space of Functions} \\ \rightarrow \mbox{Haar-like multiscale basis} \end{array}$

Partition Tree \Rightarrow Haar-like basis

[Lee, N., Wasserman, AOAS 08']

イロト イポト イヨト イヨト

э

Simple Observation:

 $\begin{array}{l} \mbox{Hierarchical Tree} \rightarrow \mbox{Mutli-Resolution Analysis of Space of Functions} \\ \rightarrow \mbox{Haar-like multiscale basis} \end{array}$

$$V = \{f \mid f : X \to \mathbb{R}\}$$

 $V^{\ell} = \{f \mid f \text{ constant at partitions at level } \ell\}$

Partition Tree \Rightarrow Haar-like basis

[Lee, N., Wasserman, AOAS 08']

(日) (同) (三) (三)

Simple Observation:

 $\begin{array}{l} \mbox{Hierarchical Tree} \rightarrow \mbox{Mutli-Resolution Analysis of Space of Functions} \\ \rightarrow \mbox{Haar-like multiscale basis} \end{array}$

 $V = \{f \mid f : X \to \mathbb{R}\}$ $V^{\ell} = \{f \mid f \text{ constant at partitions at level } \ell\}$

$$V^1 \subset V^2 \subset \ldots V^L = V$$

Partition Tree \Rightarrow Haar-like basis

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Partition Tree \Rightarrow Haar-like basis

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Partition Tree \Rightarrow Haar-like basis

・ロン ・四と ・ヨン ・ヨン

Partition Tree \Rightarrow Haar-like basis

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Partition Tree \Rightarrow Haar-like basis

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Partition Tree \Rightarrow Haar-like basis

イロト イヨト イヨト イヨト

Partition Tree \Rightarrow Haar-like basis

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Partition Tree \Rightarrow Haar-like basis

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Partition Tree \Rightarrow Haar-like basis

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Partition Tree \Rightarrow Haar-like basis

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Partition Tree \Rightarrow Haar-like basis

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Toy example: Haar-like basis function

-

$\mathsf{Smoothness} \Longleftrightarrow \mathsf{Coefficient} \ \mathsf{decay}$

How to define smoothness ?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

 $\mathsf{Smoothness} \iff \mathsf{Coefficient} \operatorname{decay}$

How to define smoothness ?

▶ Partition tree induces tree metric $d(x_i, x_j)$ [ultrametric]

Particular example of Space of Homogeneous Type [Coifman & Weiss]

$\mathsf{Smoothness} \iff \mathsf{Coefficient} \operatorname{decay}$

How to define smoothness ?

- ▶ Partition tree induces tree metric $d(x_i, x_j)$ [ultrametric]
- Measure smoothness of $f: X \to \mathbb{R}$ in tree metric

Particular example of Space of Homogeneous Type [Coifman & Weiss]

$\mathsf{Smoothness} \Longleftrightarrow \mathsf{Coefficient} \ \mathsf{decay}$

How to define smoothness ?

- ▶ Partition tree induces tree metric $d(x_i, x_j)$ [ultrametric]
- Measure smoothness of $f: X \to \mathbb{R}$ in tree metric

Theorem:

Let $f:X \to \mathbb{R}$. Then

$$|f(x_i) - f(x_j)| \leq Cd(x_i, x_j)^{\alpha} \iff |\langle f, \psi_{\ell,i} \rangle| \leq C' q^{-\ell(\alpha+1/2)}$$

where

- q measures the tree balance
- α measures function smoothness w.r.t. tree

Particular example of Space of Homogeneous Type [Coifman & Weiss]

Application: SSL

Given dataset X with weighted graph G, similarity matrix W, labeled points $\{x_i, y_i\}$,

- 1. Construct a balanced hierarchical tree of graph
- 2. Construct corresponding Haar-like basis
- 3. Estimate coefficients from labeled points

- 4 同 6 4 日 6 4 日 6

Toy Example: Benchmarks

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Toy Example: MNIST 8 vs. {3,4,5,7}

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Summary

Boaz Nadler Multiscale Harmonic Analysis on Graphs

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Summary

1. A balanced partition tree induces a useful "wavelet" basis

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- 1. A balanced partition tree induces a useful "wavelet" basis
- 2. *Designing* the basis allows a theory connecting Coefficients decay, smoothness and learnability

- 1. A balanced partition tree induces a useful "wavelet" basis
- 2. *Designing* the basis allows a theory connecting Coefficients decay, smoothness and learnability
- 3. "Wavelet arsenal" becomes available: wavelet shrinkage, etc

- 1. A balanced partition tree induces a useful "wavelet" basis
- 2. *Designing* the basis allows a theory connecting Coefficients decay, smoothness and learnability
- 3. "Wavelet arsenal" becomes available: wavelet shrinkage, etc
- 4. Interesting harmonic analysis. Promising for data analysis?

- 1. A balanced partition tree induces a useful "wavelet" basis
- 2. *Designing* the basis allows a theory connecting Coefficients decay, smoothness and learnability
- 3. "Wavelet arsenal" becomes available: wavelet shrinkage, etc
- 4. Interesting harmonic analysis. Promising for data analysis?
- 5. Computational experiments motivate theory and vice-versa

- 1. A balanced partition tree induces a useful "wavelet" basis
- 2. *Designing* the basis allows a theory connecting Coefficients decay, smoothness and learnability
- 3. "Wavelet arsenal" becomes available: wavelet shrinkage, etc
- 4. Interesting harmonic analysis. Promising for data analysis?
- 5. Computational experiments motivate theory and vice-versa

The End

www.wisdom.weizmann.ac.il/~nadler