Vector Diffusion Maps and the Connection Laplacian

Amit Singer

Princeton University, Department of Mathematics and PACM

ICIAM, Vancouver, BC, Canada July 22, 2011

Motivating Problem: Cryo-Electron Microscopy

- ▶ Projection images $P_i(x,y) = \int_{-\infty}^{\infty} \phi(xR_i^1 + yR_i^2 + zR_i^3) dz$ + "noise".
- $\phi: \mathbb{R}^3 \mapsto \mathbb{R}$ is the electric potential of the molecule.
- ▶ Cryo-EM problem: Find ϕ and R_1, \ldots, R_n given P_1, \ldots, P_n

Amit Singer (Princeton University)

July 2011 2 / 27

Toy Example

E. coli 50S ribosomal subunit: sample images

Class Averaging in Cryo-EM: Improve SNR

Current clustering method (Penczek, Zhu, Frank 1996)

- ▶ Projection images $P_1, P_2, ..., P_n$ with unknown rotations $R_1, R_2, ..., R_n \in SO(3)$
- Rotationally Invariant Distances (RID)

$$d_{RID}(i,j) = \min_{O \in SO(2)} ||P_i - OP_j||$$

- Cluster the images using K-means.
- Images are not centered; also possible to include translations and to optimize over the special Euclidean group.
- Problem with this approach: outliers.
- At low SNR images with completely different viewing directions may have relatively small d_{RID} (noise aligns well, instead of underlying signal).

Outliers: Small World Graph on S^2

▶ Define graph G = (V, E) by $\{i, j\} \in E \iff d_{RID}(i, j) \leq \varepsilon$.

► Optimal rotation angles

$$O_{ij} = \underset{O \in SO(2)}{\operatorname{argmin}} \|P_i - OP_j\|, \quad i, j = 1, \dots, n.$$

▶ Triplet consistency relation – good triangles

$$O_{ij}O_{jk}O_{ki}\approx Id.$$

► How to use information of optimal rotations in a systematic way? Vector Diffusion Maps

Amit Singer (Princeton University)

July 2011 7 / 27

Vector Diffusion Maps: Setup

In VDM, the relationships between data points (e.g., cryo-EM images) are represented as a weighted graph, where the weights w_{ij} describing affinities between data points are accompanied by linear orthogonal transformations O_{ij} .

Amit Singer (Princeton University)

July 2011 8 / 27

Manifold Learning: Point cloud in \mathbb{R}^p

- $\succ x_1, x_2, \ldots, x_n \in \mathbb{R}^p$.
- ▶ Manifold assumption: $x_1, ..., x_n \in \mathcal{M}^d$, with $d \ll p$.
- ▶ Local Principal Component Analysis (PCA) gives an approximate orthonormal basis O_i for the tangent space $T_{x_i}\mathcal{M}$.
- ▶ O_i is a $p \times d$ matrix with orthonormal columns: $O_i^T O_i = I_{d \times d}$.
- ▶ Alignment: $O_{ij} = \operatorname{argmin}_{O \in O(d)} \|O O_i^T O_j\|_{HS}$ (computed through the singular value decomposition of $O_i^T O_j$).

Parallel Transport

▶ O_{ij} approximates the parallel transport operator $P_{x_i,x_i}: T_{x_i}\mathcal{M} \to T_{x_i}\mathcal{M}$

Vector diffusion mapping: S and D

Symmetric nd × nd matrix S:

$$S(i,j) = \begin{cases} w_{ij} O_{ij} & (i,j) \in E, \\ 0_{d \times d} & (i,j) \notin E. \end{cases}$$

 $n \times n$ blocks, each of which is of size $d \times d$.

▶ Diagonal matrix D of the same size, where the diagonal $d \times d$ blocks are scalar matrices with the weighted degrees:

$$D(i,i) = \deg(i)I_{d\times d},$$

and

$$\deg(i) = \sum_{i:(i,i)\in E} w_{ij}$$

Amit Singer (Princeton University)

$D^{-1}S$ as an averaging operator for vector fields

▶ The matrix $D^{-1}S$ can be applied to vectors v of length nd, which we regard as n vectors of length d, such that v(i) is a vector in \mathbb{R}^d viewed as a vector in $T_{x_i}\mathcal{M}$. The matrix $D^{-1}S$ is an averaging operator for vector fields, since

$$(D^{-1}Sv)(i) = \frac{1}{\deg(i)} \sum_{j:(i,j) \in E} w_{ij} O_{ij} v(j).$$

This implies that the operator $D^{-1}S$ transport vectors from the tangent spaces $T_{x_i}\mathcal{M}$ (that are nearby to $T_{x_i}\mathcal{M}$) to $T_{x_i}\mathcal{M}$ and then averages the transported vectors in $T_{x_i}\mathcal{M}$.

Affinity between nodes based on consistency of transformations

- ▶ In the VDM framework, we define the affinity between *i* and *j* by considering all paths of length *t* connecting them, but instead of just summing the weights of all paths, we *sum the transformations*.
- ▶ Every path from *j* to *i* may result in a different transformation (like parallel transport due to curvature).
- When adding transformations of different paths, cancelations may happen.
- ▶ We define the affinity between *i* and *j* as the consistency between these transformations.
- ▶ $D^{-1}S$ is similar to the symmetric matrix \ddot{S}

$$\tilde{S} = D^{-1/2} S D^{-1/2}$$

 \blacktriangleright We define the affinity between i and j as

$$\|\tilde{S}^{2t}(i,j)\|_{HS}^2 = \frac{\deg(i)}{\deg(j)} \|(D^{-1}S)^{2t}(i,j)\|_{HS}^2.$$

Amit Singer (Princeton University)

Embedding into a Hilbert Space

- ▶ Since \tilde{S} is symmetric, it has a complete set of eigenvectors $\{v_l\}_{l=1}^{nd}$ and eigenvalues $\{\lambda_i\}_{l=1}^{nd}$ (ordered as $|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_{nd}|$).
- ▶ Spectral decompositions of \tilde{S} and \tilde{S}^{2t} :

$$\tilde{S}(i,j) = \sum_{l=1}^{nd} \lambda_l v_l(i) v_l(j)^T$$
, and $\tilde{S}^{2t}(i,j) = \sum_{l=1}^{nd} \lambda_l^{2t} v_l(i) v_l(j)^T$,

where $v_l(i) \in \mathbb{R}^d$ for i = 1, ..., n and l = 1, ..., nd.

▶ The HS norm of $\tilde{S}^{2t}(i,j)$ is calculated using the trace:

$$\|\tilde{S}^{2t}(i,j)\|_{HS}^2 = \sum_{l,r=1}^{na} (\lambda_l \lambda_r)^{2t} \langle v_l(i), v_r(i) \rangle \langle v_l(j), v_r(j) \rangle.$$

▶ The affinity $\|\tilde{S}^{2t}(i,j)\|_{HS}^2 = \langle V_t(i), V_t(j) \rangle$ is an inner product for the finite dimensional Hilbert space $\mathbb{R}^{(nd)^2}$ via the mapping V_t :

$$V_t: i \mapsto \left((\lambda_l \lambda_r)^t \langle v_l(i), v_r(i) \rangle \right)_{l,r=1}^{nd}.$$

Vector Diffusion Distance

► The vector diffusion mapping is defined as

$$V_t: i \mapsto ((\lambda_l \lambda_r)^t \langle v_l(i), v_r(i) \rangle)_{l,r=1}^{nd}.$$

▶ The vector diffusion distance between nodes i and j is denoted $d_{VDM,t}(i,j)$ and is defined as

$$d_{\text{VDM},t}^2(i,j) = \langle V_t(i), V_t(i) \rangle + \langle V_t(j), V_t(j) \rangle - 2\langle V_t(i), V_t(j) \rangle.$$

- ▶ Other normalizations of the matrix *S* are possible and lead to slightly different embeddings and distances (similar to diffusion maps).
- ▶ The matrices $I \tilde{S}$ and $I + \tilde{S}$ are positive semidefinite, because

$$v^{T}(I \pm D^{-1/2}SD^{-1/2})v = \sum_{(i,j)\in E} \left\| \frac{v(i)}{\sqrt{\deg(i)}} \pm \frac{w_{ij}O_{ij}v(j)}{\sqrt{\deg(j)}} \right\|^{2} \geq 0,$$

for any $v \in \mathbb{R}^{nd}$. Therefore, $\lambda_l \in [-1,1]$. As a result, the vector diffusion mapping and distances can be well approximated by using only the few largest eigenvalues and their corresponding eigenvectors.

Application to the class averaging problem in Cryo-EM

Figure: SNR=1/64: Histogram of the angles (x-axis, in degrees) between the viewing directions of each image (out of 40000) and it 40 neighboring images. Left: neighbors are identified using the original rotationally invariant distances d_{RID} . Right: neighbors are post identified using vector diffusion distances.

(b) Neighbors are identified using $d_{VDM,t=2}$

(a) Neighbors are identified using d_{RID}

The Hairy Ball Theorem

- ► There is no non-vanishing continuous tangent vector field on the sphere.
- ► Cannot find O_i such that $O_{ij} = O_i O_i^{-1}$.
- ▶ No global rotational alignment of all images.

Convergence Theorem to the Connection-Laplacian

Let $\iota: \mathcal{M} \hookrightarrow \mathbb{R}^p$ be a smooth d-dim closed Riemannian manifold embedded in \mathbb{R}^p , with metric g induced from the canonical metric on \mathbb{R}^p , and the data set $\{x_i\}_{i=1,\dots,n}$ is independently uniformly distributed over \mathcal{M} . Let $K \in C^2(\mathbb{R}^+)$ be a positive kernel function decaying exponentially, that is, there exist T > 0 and C > 0 such that $K(t) \le Ce^{-t}$ when t > T. For $\epsilon > 0$, let $K_{\epsilon}(x_i, x_j) = K\left(\frac{\|\iota(x_i) - \iota(x_j)\|_{\mathbb{R}^p}}{\sqrt{\epsilon}}\right)$. Then, for $X \in C^3(T\mathcal{M})$ and for all x_i almost surely we have

$$\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{\epsilon} \left[\frac{\sum_{j=1}^{n} K_{\epsilon}(x_{i}, x_{j}) O_{ij} X_{j}}{\sum_{j=1}^{n} K_{\epsilon}(x_{i}, x_{j})} - X_{i} \right] = \frac{m_{2}}{2dm_{0}} \left(\langle \iota_{*} \nabla^{2} X(x_{i}), e_{I} \rangle \right)_{I=1}^{d},$$

where ∇^2 is the connection Laplacian, $X_i \equiv (\langle \iota_* X(x_i), e_l \rangle)_{l=1}^d \in \mathbb{R}^d$ for all $i, \{e_l(x_i)\}_{i=1,\ldots,d}$ is an orthonormal basis of $\iota_* T_{x_i} \mathcal{M}$, $m_l = \int_{\mathbb{D}^d} ||x||^l K(||x||) dx$, and O_{ii} is the optimal orthogonal transformation determined by the algorithm in the alignment step.

4□ > 4個 > 4 = > 4 = > = 900

Example: Connection-Laplacian for S^d embedded in \mathbb{R}^{d+1}

The connection-Laplacian commutes with rotations and the eigenvalues and eigen-vector-fields are calculated using representation theory:

```
S^2: 6, 10, 14, \dots

S^3: 4, 6, 9, 16, 16, \dots

S^4: 5, 10, 14, \dots

S^5: 6, 15, 20, \dots
```


Figure: Bar plots of the largest 30 eigenvalues of $D^{-1}S$ for n=8000 points uniformly distributed over spheres of different dimensions.

More applications of VDM: Orientability from a point cloud

Encode the information about reflections in a symmetric $n \times n$ matrix Z with entries

$$Z_{ij} = \left\{ \begin{array}{ll} \det O_{ij} & (i,j) \in E, \\ 0 & (i,j) \notin E. \end{array} \right.$$

That is, $Z_{ij} = 1$ if no reflection is needed, $Z_{ij} = -1$ if a reflection is needed, and $Z_{ij} = 0$ if the points are not nearby. Normalize Z by the node degrees.

Figure: Histogram of the values of the top eigenvector of $D^{-1}Z$.

Orientable Double Covering

Embedding obtained using the eigenvectors of the (normalized) matrix

$$\left[\begin{array}{cc} Z & -Z \\ -Z & Z \end{array}\right] = \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right) \otimes Z,$$

Figure: Left: the orientable double covering of $\mathbb{R}P(2)$, which is S^2 ; Middle: the orientable double covering of the Klein bottle, which is T^2 ; Right: the orientable double covering of the Möbius strip, which is a cylinder.

3D Reconstruction (not optimal)

➤ 27000 images of the 50S ribosomal subunit were class averaged into 3000 classes using available software (Imagic).

3D Reconstruction (not optimal)

Figure: The refined model is from an Imagic reference-based alignment of the 27,000 particle data set used in this study and refined to 15\AA resolution (0.5 Fourier shell correlation threshold criteria). The structures were also flipped about the *z*-axis such that their handedness is consistent with the X-ray structure of T. Steitz.

Ongoing Research in cryo-EM

- Molecules with symmetries
- Heterogeneity problem
- ► Signal/Image processing

Summary and Outlook

- VDM is a generalization of diffusion maps: from functions to vector fields
- A way to globally connect local PCAs.
- Vector diffusion distance: a new metric for data points
- Noise robustness: random matrix theory (noise model – orthogonal transformations average to 0).
- ► Other higher order Laplacians from point clouds (e.g., the Hodge Laplacian).
- Revealing the topology of the data (e.g., orientability).
- ▶ Diffusion on orbit spaces \mathcal{M}/G .
- More applications

References

- ► A. Singer, H.-T. Wu, "Vector diffusion maps and the connection Laplacian", submitted.
- A. Singer, H.-T. Wu, "Orientability and Diffusion Maps", Applied and Computational Harmonic Analysis, Applied and Computational Harmonic Analysis, 31 (1), pp. 44–58 (2011).
- A. Singer, Z. Zhao, Y. Shkolnisky, R. Hadani, "Viewing Angle Classification of Cryo-Electron Microscopy Images using Eigenvectors", SIAM Journal on Imaging Sciences, 4 (2), pp. 723–759 (2011).

Thank You!

Acknowledgements:

Students:

- ► Hau-tieng Wu
- Zhizhen Zhao

Collaborators:

- Ronny Hadani (UT Austin)
- Yoel Shkolnisky (Tel Aviv University)
- ► Fred Sigworth (Yale Medical School)

Funding:

- ► NIH/NIGMS R01GM090200
- Sloan Research Foundation