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Overview

What the talk is about
My general goal: Understand methods that rely on the manifold
assumption

Graph Laplacians
Used in:

I Clustering
I Semi-supervised learning
I Non-linear Dimensionality Reduction

Goals:
I Better understanding of Laplacian or “Laplacian like” methods
I Analysis of kNN graphs
I Better choices when constructing graphs
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Graph Laplacian

Definition (Graph Laplacian)

W = edge weight matrix
D = diagonal degree matrix

There are three commonly used versions of Graph Laplacians
Lu = D −W (unnormalized)

Ln = I −D−1/2WD−1/2 (normalized)

Lrw = I −D−1W (random walk).
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A visual example: kNN non-linear embedding
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Two graph constructions:
1) Why do they behave differently?
2) Is it fixable?
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Constructing graphs on a manifold

Convert Euclidean distance to edge weights: Existing theory
1 Choose a smooth kernel K (e.g. Gaussian)
2 Choose a bandwidth h
3 Choose a weighting/normalization exponent 1/d(x)α

wij =
1

d(xi)αd(xj)α
K

(
‖xi − xj‖

h

)
Overly restrictive conditions!

Fails to cover kNN graphs
Important since kNN graphs

I are sparse and have good computational properties
I show better empirical performance in SSL applications
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Constructing graphs on a Manifold

Generalizing edge weight choices
1 Allow for a non-smooth kernel K
2 Use a location dependent bandwidth hR
3 Use arbitrary weight functions ω

wij = ω(xi)ω(xj) K
(
‖xi − xj‖
hR(xi, xj)

)
Covers most geometric graph constructions of interest. This covers kNN
graphs by using an indicator kernel.
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Overview: The details

Analysis
Introduce kernel-free framework for analysis using diffusion theory
Identify the limiting operator and corresponding smoothness functional

I Effect of the density
I Effect of the graph construction method

Discuss how choose a good graph construction

Application
kNN graphs
“self-tuning” graphs of Zelnik-Manor & Perona (2004)
Locally Linear Embedding (LLE)
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Setting and Notation

Setting

Compact, smooth m-dimensional manifold without boundaryM embedded in Rk

Density p

Graph construction method (e.g. kNN) where neighborhood sizes are shrinking

Examine L(n)
u f →? (i.e. pointwise convergence in the strong operator topology)

Notation
Data points x, y ∈ Rk
Smooth C3 function onM f :M→ R
Normal coordinates for y

in neighborhood of x s ∈ Rm

Canonical measure onM η
Base kernel function K(·) : R+ → R+

degree function dn(·)
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Motivation for a Kernel-free framework

Previous question
Here’s a graph construction method. Does a limit exist and what is it?

Broader questions
What characterizes the limit?
What are sufficient conditions for a limit to exist?
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Answer: Diffusion processes

Characterizations
Laplacian is a (negative) infinitesimal generator for a random walk
Drift µ and diffusion σσT terms characterize a diffusion process

dXt = µ(Xt)dt+ σ(Xt)dWt

Infinitesimal generator of a diffusion process is

Gf =
1
2

∑
i,j

(
σσT

)
ij

∂2f

∂si∂sj
+
∑
i

µi
∂f

∂si
.
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Interpreting the drift and diffusion

A special elliptic operator: Laplace-Beltrami
If σσT = g(·)I and µ/g is a conservative vector field with µ/g = 2∇ log q, then

G =
1
2
g∆ + 〈µ,∇〉 =

1
2
g∆q

Continuous analog to graph Laplacian
Smoothness functional∫

〈f,−∆qf〉dη =
∫
〈∇f,∇f〉qdη = ‖∇f‖2L2(q)
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Main result

Key Assumptions
Kernel K of bounded variation

Bandwidth scaling hn → 0 and hm+2
n n/ logn→∞

Weight ωn(x) and bandwidth functions Rn(x, y) with Taylor-like expansions

Rn(x, x+ ε) = hn
`
r(x) + εdr(x, sign(u(x)Tε)) + o(hn)

´
Result
Expressed in normal coordinates, the drift and diffusion defined by Lrw are

µs(x) = r(x)2
„
∇p(x)
p(x)

+
∇ω(x)

ω(x)
+
m+ 2

2

dr(x)

r(x)

«
,

σs(x)σs(x)
T = r(x)2I

where dr(x) = 1
2
(dr(x, 1) + dr(x,−1))us(x).
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Remarks

Alternative form (for self-adjoint Laplacians)
If Rn(x, y)/hn =

√
r(x)r(y) + o(hn) e.v. then we have

The asymptotic limit of the graph Laplacian is

−cnLrw → r2∆q

−c′nLu →
q

p
∆q

where q = p2ω2rm+2.
Gives a change of measure from p to q
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Proof sketch

Based on one cute trick. Write a kernel with bounded variation as a
weighted sum of indicator kernels

K(x) =
∫

I(x < z)dν+(z)−
∫

I(x < z)dν−(z)

All the calculations involving non-random quantities reduce to finding
moments for a sphere

Location dependent bandwidth =⇒ in-
dicator kernel behaves like it is shifted by
m+2

2 h2dr. Shift introduces drift. Effect on
the diffusion term is of smaller order than the
leading term.
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(m+2)r’(x)h /2
2

r(x)h

Use Bernstein inequality and Borel-Cantelli to get almost sure
convergence of random quantities
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Application to kernel graphs

Weights

wij =
K (‖xi − xj‖ /hn)
dn(xi)αdn(xj)α

ωn(x) = 1/dn(x)α → 1/p(x)α

Asymptotics (known)
Rn(x, y) = 1
q = p2w2rd+2 = p2−2α

Asymptotic random walk and unnormalized Laplacians are
cnLrw → ∆p2−2α

c′nLu → p1−2α∆p2−2α

If α < 1, drift towards high density regions.
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Application to kNN

Weights

wij = I
(
‖xi − xj‖ < Rn(xi, xj)

)
kn/n→ 0 and k1+2/m

n /(n2/m log n)→∞

Undirected kNN graph (OR rule)
Rn(x, y)/hn ≈ max{p(x)−1/m, p(y)−1/m}
dr(x) = 1

2∇p(x)−1/m

Asymptotic random walk and unnormalized Laplacians are

cnLrw = c′nLu →
1

p2/m
∆p1−2/m

Drift away from high density regions if m = 1!
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kNN non-linear embedding example
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Fix:
kNN limit: 1

p∆p0

kernel limit: ∆p

Take ω = p1/2 ≈ r−1
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kNN non-linear embedding example
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Application to “self-tuning” graphs

“self-tuning” kernel (Zelnik-Manor & Perona (2004))

K(x, y) = exp

(
−‖x− y‖

2

σxσy

)
where σx is the distance between x and the kth neighbor

Asymptotics

r(x, y) =
√
p(x)−1/mp(y)−1/m

dr(x) = 1
2∇p(x)−1/m (same as undirected kNN)

Same asymptotic Laplace-Beltrami operator as for kNN

cnLrw = c′nLu →
1

p1+2/m
∆p1−2/m
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Application of kernel-free approach to LLE

Reminder: LLE
Goal: Find weights and coordinates that minimize reconstruction error.

Find weights Find coordinates
(local regression) (eigen-decomposition)

min
W

Y T (I −W )T (I −W )Y min
z
zT (I −W )T (I −W )z

Behavior
Belkin & Niyogi (2003) give a heuristic derivation that LLE should behave like
the Laplace-Beltrami operator, but... This is not completely true!
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Application of kernel-free approach to LLE

Normal coordinates
Converting normal coordinates s to extrinsic coordinates y

y = x+HTxs+ LT⊥x (ssT ) +O(‖s‖3)

Rough analysis
Examine the “drift” and “diffusion” terms for the LLE matrix I −W .

µRk(x) = HTx Es︸︷︷︸
µ(x)

+LT⊥x E(ssT )︸ ︷︷ ︸
σσT (x)

The quantities in normal coordinates satisfy
µ = 0 LT⊥x

(
σσT

)
= 0
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Application of kernel-free approach to LLE

Implications for behavior
µ = 0

I No effect of density on drift

LT⊥x
(
σσT

)
= 0

I Curvature of manifold affects diffusion term
I No well-defined limit when L is not full rank
I Does not behave like any elliptic operator if L is full rank

Behavior in practice
Weights are regularized
=⇒ favors constant weights
=⇒ like kNN-Laplacian if regularization is large
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Explaining weird behavior of LLE
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Explaining weird behavior of LLE
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Effect of regularization and boundary in LLE
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Effect of regularization and boundary in LLE
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Other good properties: Convergence of Eigenvectors

Importance
Construction of valid basis functions
Possibly of relevance for spectral clustering

Graph Laplacians and spectrum (von Luxburg et al. (2008))

Luf(·) = d(·)f(·)−
∫
K(·, y)f(y)dPy

No convergence for eigenvalues in rng(d).
Good spectral properties: Choose d so rng(d) = {1}.
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Graph construction and spectrum

Asymptotic degree operator and weighting density

d(x) = p(x)ω(x)2r(x)m set= 1

q(x) = p(x)2ω(x)2r(x)m+2

= p(x)r(x)2 Any density q is possible

Possible “good” symmetric graph constructions
w/o loc dep bw w/ loc dep bw

Unnormalized
∆p

q

p
∆q

Normalized p
1
2−α∆p2−2αp−

1
2+α

g

(
q

p
∆q

)
g−1
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Conclusion

What we introduce
Kernel-free framework using diffusion processes
Analysis for a general class of graph constructions
Location dependent bandwidth + arbitrary weights + non-smooth kernels

Practical implications
Better understanding of kNN graphs
LLE

I no “drift” component
I affected by curvature of the manifold

Construction of arbitrary first order smoothness functionals ‖∇f‖2L2(q)
,

not just q = pα.
Pilot density estimates lead to “better” graph constructions
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