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Overview

What the talk is about

@ My general goal: Understand methods that rely on the manifold
assumption

Graph Laplacians

@ Usedin:
Clustering
Semi-supervised learning
Non-linear Dimensionality Reduction

@ Goals:
Better understanding of Laplacian or “Laplacian like” methods
Analysis of kNN graphs
Better choices when constructing graphs
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Graph Laplacian

Definition (Graph Laplacian)

W = edge weight matrix

D = diagonal degree matrix
There are three commonly used versions of Graph Laplacians
L,=D-W (unnormalized)

L,=1-D"'?2wD~1/? (normalized)
Lyw=1-D"'W (random walk).
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A visual example: kNN non-linear embedding

(A) Gaussian Manifold Kernel Laplacian Embedding
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Constructing graphs on a manifold

Convert Euclidean distance to edge weights: Existing theory

@ Choose a smooth kernel K (e.g. Gaussian)
@ Choose a bandwidth h
© Choose a weighting/normalization exponent 1/d(x)®

1 i — ]
i = K
Y9 i) d () ( h

Overly restrictive conditions!
@ Fails to cover kNN graphs

@ Important since kNN graphs

» are sparse and have good computational properties
» show better empirical performance in SSL applications
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Constructing graphs on a Manifold

Generalizing edge weight choices

@ Allow for a non-smooth kernel K
© Use a location dependent bandwidth AR
@ Use arbitrary weight functions w

wij = w(zi)w(z;) K (M)

Covers most geometric graph constructions of interest. This covers kNN
graphs by using an indicator kernel.
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Overview: The details

Analysis
@ Introduce kernel-free framework for analysis using diffusion theory

@ |dentify the limiting operator and corresponding smoothness functional

Effect of the density
Effect of the graph construction method

@ Discuss how choose a good graph construction

Application
@ kNN graphs
@ “self-tuning” graphs of Zelnik-Manor & Perona (2004)
@ Locally Linear Embedding (LLE)
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Setting and Notation

Setting
@ Compact, smooth m-dimensional manifold without boundary M embedded in R*
@ Density p
@ Graph construction method (e.g. kNN) where neighborhood sizes are shrinking

@ Examine LL")f —7 (i.e. pointwise convergence in the strong operator topology)

Notation
Data points z,y € RF
Smooth C? function on M f:M—-R
Normal coordinates for y  om
in neighborhood of = IER
Canonical measure on M 7
Base kernel function K():RT - R*

degree function dn(*)
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Motivation for a Kernel-free framework

Previous question
@ Here’s a graph construction method. Does a limit exist and what is it?

Broader questions

@ What characterizes the limit?
@ What are sufficient conditions for a limit to exist?
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Answer: Diffusion processes

Characterizations
@ Laplacian is a (negative) infinitesimal generator for a random walk
@ Drift  and diffusion oo™ terms characterize a diffusion process

dXt = M(Xt)dt + O'(Xt)th
@ Infinitesimal generator of a diffusion process is

1 0% f of
9f = 9) Z (JJT)U 0s;0s; + Zuzaisz

%] %
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Interpreting the drift and diffusion

A special elliptic operator: Laplace-Beltrami
If ;0T = g(-)T and u/g is a conservative vector field with 11/g = 2V log ¢, then

1 1
G=598+ 1 V) =594,

Continuous analog to graph Laplacian
@ Smoothness functional

/ (f,— gy = / (V1,V Fadn = IV 12,0
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Main result

Key Assumptions

@ Kernel K of bounded variation
@ Bandwidth scaling h, — 0 and h7*"n/logn — oo
@ Weight w, () and bandwidth functions R, (z,y) with Taylor-like expansions

Ru(z,2 + €) = ha(r(x) + edr(x, sign(u(x) Te)) + o(hn))

Result
Expressed in normal coordinates, the drift and diffusion defined by L., are

— r(z)? Vp(z)  Vw(z) m—|—2d7r(a:)
(@) = 7(z) (p<x> Tl T2 r<x>)7

os(x)os(x)” = r(z)’I

where dr(z) = 1(dr(z,1) + dr(z, —1))us ().
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Remarks

Alternative form (for self-adjoint Laplacians)
If R, (x,y)/hn = +/7( ) + o(hy,) e.v. then we have

@ The asymptotic I|m|t of the graph Laplacian is
—cp Ly — r2Aq

q
_C;Lu — ];Aq

where g = p?w?rm*+2,
@ Gives a change of measure from p to ¢
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Proof sketch

@ Based on one cute trick. Write a kernel with bounded variation as a
weighted sum of indicator kernels

K(x) = /H(x < 2)dvy(z) — /]I(Jc < z)dv_(z)

@ All the calculations involving non-random quantities reduce to finding
moments for a sphere

Location dependent bandwidth — in-
dicator kernel behaves like it is shifted by

o ™E2p2q,. Shift introduces drift. Effect on
the diffusion term is of smaller order than the
leading term.

7
é
0
0
0
/
0
/
/
/
.
%

(M+2)r’ (x)h72
@ Use Bernstein inequality and Borel-Cantelli to get almost sure
convergence of random quantities
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Application to kernel graphs

Weights
. _ Ko — 5] /)
“ dn(mi)adn(xj)a
wn(z) = 1/dp(2)* — 1/p(x)*

Asymptotics (known)
° Rn(x,y) =1

0 ¢ = pPuwlrdt? = p2-

2c

@ Asymptotic random walk and unnormalized Laplacians are
CnLrw — Ap272a
C;Lu — pl_zaAp272a
@ If a < 1, drift fowards high density regions.
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Application to kNN

Weights

wij =I(l|lz: — ;| < Bn(wi, 7))
kn/n—0 and kY™ /(n¥™logn) — oo

Undirected kNN graph (OR rule)
® Ry (z,y)/hy = max{p(z) /™, p(y)~"/™}
® d.(x) = 3Vp(x)~/m
@ Asymptotic random walk and unnormalized Laplacians are

1

/
CnLrw = CnLu — WAP172/W

@ Drift away from high density regions if m = 1!
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kNN non-linear embedding example

(A) Gaussian Manifold

Kernel Laplacian Embedding
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kNN non-linear embedding example

(A) Gaussian Manifold

(C) Raw kNN Laplacian Embedding
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Kernel Laplacian Embedding
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Application to “self-tuning” graphs

“self-tuning” kernel (Zelnik-Manor & Perona (2004))

2
K(@,y) = eap (—'x ol )
Oz0y

where o, is the distance between z and the k*" neighbor

Asymptotics

@ r(z,y) = \/p(x)~/mp(y)-1/m
@ d.(z) = L1vp(x)~t/m (same as undirected kNN)
@ Same asymptotic Laplace-Beltrami operator as for kNN

1
/
CnLT’w = CnLu — WAP1—2/WL

19
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Application of kernel-free approach to LLE

Reminder: LLE
Goal: Find weights and coordinates that minimize reconstruction error.

Find weights Find coordinates
(local regression) (eigen-decomposition)
min YOI - W (I -W)Y min 27 (I — W)T(I — W)z
Behavior

Belkin & Niyogi (2003) give a heuristic derivation that LLE should behave like
the Laplace-Beltrami operator, but... This is not completely true!
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Application of kernel-free approach to LLE

Normal coordinates

@ Converting normal coordinates s to extrinsic coordinates y
y ==+ Hr,s+ Lrs(ss") + O(|ls|*)

Rough analysis
@ Examine the “drift” and “diffusion” terms for the LLE matrix I — W.
pre(z) = Hr, Es +Lr. E(ssT)
p(z) ool ()

@ The quantities in normal coordinates satisfy
uw=20 Lrs (O'O'T) =0
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Application of kernel-free approach to LLE

Implications for behavior
@ u=0
No effect of density on drift
® Ly (O'O'T) =0
Curvature of manifold affects diffusion term

No well-defined limit when L is not full rank
Does not behave like any elliptic operator if L is full rank

Behavior in practice

@ Weights are regularized
— favors constant weights
— like kNN-Laplacian if regularization is large
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Explaining weird behavior of LLE

(A) Toroidal helix
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Explaining weird behavior of LLE

(A) Toroidal helix (B) Laplacian
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Effect of regularization and boundary in LLE

Swiss hole LLE w/ regularization 1e-0
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Effect of regularization and boundary in LLE

Swiss hole LLE w/ regularization 1e-9

LLE w/projection LLE w/ regularization 1e-3
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Other good properties: Convergence of Eigenvectors

Importance
@ Construction of valid basis functions
@ Possibly of relevance for spectral clustering

Graph Laplacians and spectrum (von Luxburg et al. (2008))
Luf() =00 = [ KC.p)fw)ap,

@ No convergence for eigenvalues in rng(d).
@ Good spectral properties: Choose d so rng(d) = {1}.
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Graph construction and spectrum

Asymptotic degree operator and weighting density
d(z) = p(x)w(z)?r(z)™ =1

q(z) = p(z)*w(z)r(z)™*?
= p(x)r(z)>  Any density q is possible

Possible “good” symmetric graph constructions

w/o loc dep bw w/ loc dep bw
q
=A
Unnormalized B p !

Normalized p%‘aApz—Zap_%J”a g (gAq> g !
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Conclusion

What we introduce
@ Kernel-free framework using diffusion processes
@ Analysis for a general class of graph constructions
@ Location dependent bandwidth + arbitrary weights + non-smooth kernels

Practical implications

@ Better understanding of kNN graphs
o LLE

no “drift” component
affected by curvature of the manifold

@ Construction of arbitrary first order smoothness functionals ||Vf||%2(q) ,
not just ¢ = p©.
@ Pilot density estimates lead to “better” graph constructions
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