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© Motivation & Related Work



Shape Synthesis

@ Synthetic data for ML algorithms training
Koch et al., CVPR 2019, Li et al., SIGGRAPH 2017, Ben-Hamu et al., SIGGRAPH
ASIA 2018



Representation Learning & Shape priors

e Solving downstream tasks with partially or limited labelled data

@ Shape Classification and Retrieval

Kolotouros et al., CVPR 2019, Gecer et al., CVPR 2019, Bogo et al., CVPR 2017,
Bronstein et al., 2008



Challenges: Why is Shape Synthesis so hard?

e Functionality: Synthesizing visually pleasing 3D data is not enough:
e.g engineering parts need to be highly detailed and functional for
real-life use

o Large dimensionality: How to make our models scalable?

@ 3D acquisition is still not “democratized”: We still need to deal
with limited training data
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versions = Multiple representations



Image-based 3D shape generation: Multi-view
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3D shape synthesis via depth

3D shape completion via multi-
view depth-maps :

Hu et al., arxiv 2019 maps and silhouettes

A. Soltani et al., CVPR 2017

Credit: Anastasia Dubrovina



Image-based 3D shape generation: Mapping to flat domain
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Maron et al., SIGGRAPH 2017 UV maps
Ben-Hamu et al., SIGGRAPH Asia 2018 Moschoglou et al., arxiv 2019

e
~ D(x)

Credit: Anastasia Dubrovina



3D Shape Generation via Volumetric Representations

128x16x16x16 e 7

z () in 3D Voxel Space
64x64x64

T 3D Convolutional LSTM T views 3D-GAN
Wu et al., NIPS 2016
3D Recurrent Reconstruction by
multiple views
Choy et al., ECCV 2016

Credit: Anastasia Dubrovina



3D Shape Generation via Implicit Surfaces [CVPR 2019]
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Classify points as exterior or interior of the surface

Michalkiewicz et al., arxiv 2019, Park et al.,
Mescheder et al., Chen and Zhang, CVPR 2019 Credit; Anastasia Dubrovina



3D Shape Generation via Point Clouds
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Learnable operators for sets

Achlioptas et al., ICML 2018, Groueix et al., CVPR 2018 Credit: Anastasia Dubrovina



Challenges: Why is Shape Synthesis so hard?

e Functionality: Synthesizing visually pleasing 3D data is not enough:
e.g engineering parts need to be highly detailed and functional for
real-life use

o Large dimensionality: How to make our models scalable?

@ 3D acquisition is still not “democratized”: We still need to deal
with limited training data

o Ultimate goal: Learn a probability measure over continuous
manifolds P(X)

@ Relaxing the problem: Learn a probability measure over discretized
versions = Multiple representations = Most accurate: Meshes



Mesh representation

© Accurate approximations of the continuous surface

© Compact and Flexible

© No post processing needed

® Irregularly Structured: Non-euclidean operators needed




Mesh representation

© Accurate approximations of the continuous surface

© Compact and Flexible

© No post processing needed

® Irregularly Structured: Non-euclidean operators needed

Geometric Deep Learning
aka
Graph Neural Networks



Mesh representation

e Triangular Mesh M = (V, €, F) with vertices V = {1,...,n}, edges
ECVYxV, faces FCVYxVxV.

e Signals on the vertices L?(V) = {F : V — R%}

@ Domain: Signals might be defined on a fixed or arbitrary graph.

Fixed topology Arbitrary topology
e Unique graph M for all the shapes s o Different graph M, for each shape s
e Different signal F; for each shape s e Different signal F for each shape s



Mesh representation

o Fixed Topology Mesh Generation: Learn the probability
distribution of the signal F' that lives on the domain M (signal
generation)

@ Arbitrary Topology Mesh Generation: Learn the joint probability
of the signal F and the domain M (signal and graph generation)



© Fixed Topology Mesh Generation



Fixed Topology Mesh Generation

@ Vast amount of 3D data can be represented on the same graph
(mesh registration to a template)

@ Mainly deformable shapes: Faces, Bodies, Hands etc.

@ Applications to 3D reconstruction, animation, VR, AR, etc.

ER

image credit: D. Kulon  Kanazawa et al., CVPR 2019 www.arielai.com



Fixed Topology Mesh Generation with Statistical Shape Modelling

o Assumption: The signal follows a
multi-variate Gaussian distribution.

Blanz and Vetter, SIGGRAPH 1999



Fixed Topology Mesh Generation with Statistical Shape Modelling

o Assumption: The signal follows a
multi-variate Gaussian distribution.

@ Shape model: PCA on the training
data

o Let F € R™? the vectorized
representation of the signal across
the entire mesh. Then:

k
F = F+Zai\//\_i¢i
i=1

where F', the estimated mean, ¢;,
A; the principal eigenvectors and
eigenvalues of the covariance
matrix, a; ~ N(0,1).

Blanz and Vetter, SIGGRAPH 1999



Fixed Topology Mesh Generation with Statistical Shape Modelling

o Assumption: The signal follows a
multi-variate Gaussian distribution.

© Global: The underlying
connectivity of the domain remains
unused

©® Large number of parameters O(n)
© Linear

© Strong assumption (gaussianity)

Blanz and Vetter, SIGGRAPH 1999



Fixed Topology Mesh Generation with Graph Neural Networks

Define local learnable operators on
the underlying graph domain!



Fixed Topology Mesh Generation with Graph Neural Networks

Define local learnable operators on
the underlying graph domain!

© Local: stationarity assumption &\
allows to learn local filters that can s
be transferred across the domain

© Reduced number of parameters

o(1)

© Non-linear: adding non-linearities
between consecutive GNN layers

© Hierarchical: defining graph
pooling operators

Hidden layer Hidden layer

Input ‘. ‘o Output

© Minimum assumptions about the
distribution needed

figure by Thomas Kipf



Graph Neural Networks: The Message Passing paradigm

@ Every local filter at every layer is equivalent to a message passing
operation

@ Node features are learned by exchanging information with

neighbouring nodes
N(z)
o

figure by Thomas Kipf



Graph Neural Networks: The Message Passing paradigm

@ Every local filter at every layer is equivalent to a message passing
operation

@ The operation needs to be permutation invariant

@ The operation needs to be transferable across different
neighborhoods

F'(z) = p* Y ({F () }yen))

®/' figure by Thomas Kipf



Graph Neural Networks: Spectral Kernels

o First attempts: filters originally defined in the spectral domain
(using the convolution theorem).

o p®~V parametrised via R-th order graph Laplacian polynomials

T.(A). .
F =¢ <Z T,(A)F GT>
r=0

e GCN (Kipf et al., ICLR 2017): k£ =1, i.e. only immediate
neighbours are taken into account F/ = ¢(T1(A)FG) . Following
the message passing notation:

F(z)=¢| ) Ti(AF(y)G

yeN (z)

Defferrard et al., NIPS 2016, Kipf et al., ICLR 2017



Fixed Topology Mesh Generation with Spectral GNNs

F(o)=¢| Y Ti(AF@yE

yeN (z)

© Small number of parameters and easy to optimize

© Connectivity of the graph explicitly encoded throught the Graph
Laplacian = same transformation applied to corresponding points

® Reduced expressivity: One parameter per hop = Isotropic Kernels

Defferrard et al., NIPS 2016, Kipf et al., ICLR 2017



Fixed Topology Mesh Generation with Spectral GNNs

Inputimage
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EllpumM sh 156 vertices 628 vertices 2466 vertices
Pixel2Mesh
Wang et al., ECCV 2018

COMA
Ranjan et al., ECCV 2018

Input Image Projected Output Output Target

3d Hand Recovery 3D Body Recovery
Kulon et al., BMVC 2019 Kolotouros et al., CVPR 2019



Graph Neural Networks: Attention-based Kernels
@ To allow for anisotropy without losing permutation invariance: filters
are based on an attention-like mechanism

@ Replace the Laplacian Polynomial with learnable weights w(z,y) =
each neighbour sends a different message to the central node

Fl@)=¢| > wwy) FO)G |,

yeN (z)

and by allowing multiple kernels G-

F'(z) = €<§: (> wley) Fw) Gk>

k=1 yeN(x)



Graph Neural Networks: Attention-based Kernels
@ To allow for anisotropy without losing permutation invariance: filters
are based on an attention-like mechanism

@ Replace the Laplacian Polynomial with learnable weights w(z,y) =
each neighbour sends a different message to the central node

Fl@)=¢| > wwy) FO)G |,

yeN (z)
and by allowing multiple kernels G-

=5 3 wewrw)a)

@ This is equivalent to performing a soft-mapping (sometimes called
patch-operator) between neighbours y and kernels Gy, i.e:

Di@)(F)= 3 wila,y)F(y)

yeN (z)

Monti et al., CVPR 2017, Verma et al., CVPR 2018, Veli¢kovi¢ et al., ICLR 2018



Fixed Topology Mesh Generation with Attention-based GNNs

F’(m)=£<i( > wi(z,y) F(y)) Gk>

k=1 yeN(z)

concat/avg
R

(figure by Petar Velitkovi¢:
3-headed graph attention mechanism)

© Anisotropic Kernels

® Attention weights are functions of the signal = No explicit
encoding of the connectivity

© Soft mapping = Larger number of parameters, can be harder to
optimize

Monti et al.. CVPR 2017, Verma et al.. CVPR 2018. Veli¢kovié¢ et al.. ICLR 2018



Fixed Topology Mesh Generation with Attention-based GNNs

Shape Completion with Mesh VAE
Litany et al., CVPR 2018



How to benefit from the advantages of both?

@ Spectral methods: Connectivity modelled through the graph

Laplacian
R
F =¢ (Z T,(A)F G,n>

© Small number of parameters

© Different signal values on the same node always undergo the same
transformation.

@ lsotropic Kernels



How to benefit from the advantages of both?

@ Attention-based:

F'(a) = f(fj (¥ wlwy) Fo) Gk>

k=1 yeN(z)
© Anisotropic Kernels

© Connectivity not explicitly modelled: Different signals values on the
same node undergo different transformations



How to benefit from the advantages of both?

@ Anisotropic Kernels = different parameter per neighbour similar to
attention-based GNNs

@ Small number of parameters and easy-to-optimise = “Hard"”
assignments between nodes and parameters. Attention weights
should be either 0 or 1

e Explicitly encode the connectivity of the graph (fixed topology prior)
= Binary attention weights should depend only on the connectivity



Ordering-Based Graph Convolutions

@ Solution: locally order the vertices!



Ordering-Based Graph Convolutions

@ Solution: locally order the vertices!
@ Break the permutation invariant constraint that governs all GNNs.
@ For kernels equal to the maximum number of neighbours

K = mazx(|N(z)):

[N (

F'(a) = £<Zk_1””)' F(mGk).

where N(z) = {x1,..., %5 ()} the neighbourhood of z (inc. z)
ordered in some fixed way.

@ As a Patch Operator: Dy (z)(F) = F(xy)

@ The above formulation is equivalent with traditional convolution,
after choosing a consistent ordering.

Bouritsas™, Bokhnyak* et al., ICCV 2019, ICLRW 2019



How to define the local ordering: Spiral Convolutions

o Consistent ordering across different vertices of the graph via a spiral
scan

@ Spiral scan:
/1T N
/T

N
N

_.__._

A

| — T

@ Uniquely defined after choosing the starting point and the direction

The ordering needs to remain fixed

Lim et al., ECCVW 2018, Bouritsas*, Bokhnyak* et al., ICCV 2019, ICLRW 2019



Fixed Topology Mesh Generation with Ordering-Based GNNs

[N ()]
F'(x) = f Z F(Ik)Gk

k=1

© Anisotropic Kernels

© Lightweight, fast & easier to optimise

© Connectivity and geometry aware

© Similar to traditional convolutions = practices for traditional
CNNs can be directly transferred (e.g. dilated convolutions)

® Ordering needs to be engineered

Bouritsas®, Bokhnyak* et al., ICCV 2019, ICLRW 2019



© Results



Neural3DMM: Representation Learning for 3D meshes

e Autoencoder architecture
e Spiral Convolutions

e Hierarchical structure
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Unpool — Unpool Unpool

> —>
Pool Pool Pool

Bouritsas™, Bokhnyak* et al., ICCV 2019, ICLRW 2019



Ordering-based vs Spectral GNNs

@ Output of the operator at each vertex (delta function used as input)




Ordering-based vs other GNNs

@ Ordering-based vs Spectral GNNs

COMA Dataset
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Fixed Topology Mesh Generation: GNNs vs Statistcal Shape Modelling
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Vector space Arithmetics

@ Interpolation
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@ Analogies




3D Face Synthesis: Wasserstein GAN with GP




o Arbitrary Topology Mesh Generation



Arbitrary topology 3D shape generation: Relatively unexplored
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Fixed Topology and adaptive face splitting (Zero genus shape generation)

Dai and NieBner, CVPR 2019, Smith et al., ICML 2019



Can we draw insipration from methods on arbitrary Graphs?
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ICML 2018
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Twitter: @gbouritsas
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