
Learning to Generate Shapes with
Geometric Deep Learning

Minisymposium
on

Distance Metrics and Mass Transfer Between High Dimensional Point Clouds
ICIAM, 17 July 2019, Valencia

Giorgos Bouritsas

Imperial College London

Team

S. Bokhnyak* S. Ploumpis D. Kulon

S. Zafeiriou M. Bronstein

Universita Svizzera
Italiana

Imperial College London,
FaceSoft.io

Imperial College
London

Imperial College London,
FaceSoft.io

G. Bouritsas*
Imperial College

London

Imperial College London,
Universita Svizzera Italiana,

Twitter
• G. Bouritsas*, S. Bokhnyak* et al., Neural 3D Morphable Models, ICCV 2019

• S. Bokhnyak*, G. Bouritsas* et al., Learning to Represent & Generate Meshes with Spiral Convolutions,

ICLR Workshop, 2019

• D. Kulon, et al., Single Image 3D Hand Reconstruction with Mesh Convolutions, BMVC 2019

1 Motivation & Related Work

2 Fixed Topology Mesh Generation

3 Results

4 Arbitrary Topology Mesh Generation

5 Conclusions

Shape Synthesis

Engineering & 3D printing Computer-aided graphics design

Synthetic data for ML algorithms training
Koch et al., CVPR 2019, Li et al., SIGGRAPH 2017, Ben-Hamu et al., SIGGRAPH
ASIA 2018

Representation Learning & Shape priors
• Solving downstream tasks with partially or limited labelled data

3D reconstruction

Shape Classification and Retrieval

Kolotouros et al., CVPR 2019, Gecer et al., CVPR 2019, Bogo et al., CVPR 2017,
Bronstein et al., 2008

Challenges: Why is Shape Synthesis so hard?

Functionality: Synthesizing visually pleasing 3D data is not enough:
e.g engineering parts need to be highly detailed and functional for
real-life use

Large dimensionality: How to make our models scalable?

3D acquisition is still not “democratized”: We still need to deal
with limited training data

Ultimate goal: Learn a probability measure over continuous
manifolds P(X)

Relaxing the problem: Learn a probability measure over discretized
versions ⇒ Multiple representations

Challenges: Why is Shape Synthesis so hard?

Functionality: Synthesizing visually pleasing 3D data is not enough:
e.g engineering parts need to be highly detailed and functional for
real-life use

Large dimensionality: How to make our models scalable?

3D acquisition is still not “democratized”: We still need to deal
with limited training data

Ultimate goal: Learn a probability measure over continuous
manifolds P(X)

Relaxing the problem: Learn a probability measure over discretized
versions ⇒ Multiple representations

Challenges: Why is Shape Synthesis so hard?

Functionality: Synthesizing visually pleasing 3D data is not enough:
e.g engineering parts need to be highly detailed and functional for
real-life use

Large dimensionality: How to make our models scalable?

3D acquisition is still not “democratized”: We still need to deal
with limited training data

Ultimate goal: Learn a probability measure over continuous
manifolds P(X)

Relaxing the problem: Learn a probability measure over discretized
versions ⇒ Multiple representations

Image-based 3D shape generation: Multi-view

3D shape synthesis via depth
maps and silhouettes
A. Soltani et al., CVPR 2017

3D shape completion via multi-
view depth-maps
Hu et al., arxiv 2019

Credit: Anastasia Dubrovina

Image-based 3D shape generation: Mapping to flat domain

• Seamless Toric Covers
• Multi-chart Generation

Maron et al., SIGGRAPH 2017

Ben-Hamu et al., SIGGRAPH Asia 2018

Face Generation using
UV maps

Moschoglou et al., arxiv 2019

Credit: Anastasia Dubrovina

3D Shape Generation via Volumetric Representations

3D-GAN
Wu et al., NIPS 2016

3D Recurrent Reconstruction by
multiple views

Choy et al., ECCV 2016

Credit: Anastasia Dubrovina

3D Shape Generation via Implicit Surfaces [CVPR 2019]
Occupancy Networks: Learning 3D Reconstruction in Function Space

Lars Mescheder1 Michael Oechsle1,2 Michael Niemeyer1 Sebastian Nowozin3† Andreas Geiger1
1Autonomous Vision Group, MPI for Intelligent Systems and University of Tübingen

2ETAS GmbH, Stuttgart
3Google AI Berlin

{firstname.lastname}@tue.mpg.de nowozin@gmail.com

Abstract

With the advent of deep neural networks, learning-based
approaches for 3D reconstruction have gained popularity.
However, unlike for images, in 3D there is no canonical rep-
resentation which is both computationally and memory ef-
ficient yet allows for representing high-resolution geometry
of arbitrary topology. Many of the state-of-the-art learning-
based 3D reconstruction approaches can hence only repre-
sent very coarse 3D geometry or are limited to a restricted
domain. In this paper, we propose Occupancy Networks,
a new representation for learning-based 3D reconstruction
methods. Occupancy networks implicitly represent the 3D
surface as the continuous decision boundary of a deep neu-
ral network classifier. In contrast to existing approaches,
our representation encodes a description of the 3D output
at infinite resolution without excessive memory footprint.
We validate that our representation can efficiently encode
3D structure and can be inferred from various kinds of in-
put. Our experiments demonstrate competitive results, both
qualitatively and quantitatively, for the challenging tasks of
3D reconstruction from single images, noisy point clouds
and coarse discrete voxel grids. We believe that occupancy
networks will become a useful tool in a wide variety of
learning-based 3D tasks.

1. Introduction
Recently, learning-based approaches for 3D reconstruc-

tion have gained popularity [4,9,23,58,75,77]. In contrast
to traditional multi-view stereo algorithms, learned models
are able to encode rich prior information about the space of
3D shapes which helps to resolve ambiguities in the input.

While generative models have recently achieved remark-
able successes in generating realistic high resolution im-
ages [36, 47, 72], this success has not yet been replicated
in the 3D domain. In contrast to the 2D domain, the com-

†Part of this work was done while at MSR Cambridge.

(a) Voxel (b) Point (c) Mesh (d) Ours

Figure 1: Overview: Existing 3D representations discretize
the output space differently: (a) spatially in voxel represen-
tations, (b) in terms of predicted points, and (c) in terms of
vertices for mesh representations. In contrast, (d) we pro-
pose to consider the continuous decision boundary of a clas-
sifier f✓ (e.g., a deep neural network) as a 3D surface which
allows to extract 3D meshes at any resolution.

munity has not yet agreed on a 3D output representation
that is both memory efficient and can be efficiently inferred
from data. Existing representations can be broadly cate-
gorized into three categories: voxel-based representations
[4,19,43,58,64,69,75] , point-based representations [1,17]
and mesh representations [34, 57, 70], see Fig. 1.

Voxel representations are a straightforward generaliza-
tion of pixels to the 3D case. Unfortunately, however, the
memory footprint of voxel representations grows cubically
with resolution, hence limiting naı̈ve implementations to
323 or 643 voxels. While it is possible to reduce the memory
footprint by using data adaptive representations such as oc-
trees [61, 67], this approach leads to complex implementa-
tions and existing data-adaptive algorithms are still limited
to relatively small 2563 voxel grids. Point clouds [1,17] and
meshes [34,57,70] have been introduced as alternative rep-
resentations for deep learning, using appropriate loss func-
tions. However, point clouds lack the connectivity structure
of the underlying mesh and hence require additional post-
processing steps to extract 3D geometry from the model.

Credit: Anastasia Dubrovina
Michalkiewicz et al., arxiv 2019, Park et al.,
Mescheder et al., Chen and Zhang, CVPR 2019

Learning Implicit Fields for Generative Shape Modeling

Zhiqin Chen
Simon Fraser University

zhiqinc@sfu.ca

Hao Zhang
Simon Fraser University

haoz@sfu.ca

Abstract

We advocate the use of implicit fields for learning gen-
erative models of shapes and introduce an implicit field de-
coder, called IM-NET, for shape generation, aimed at im-
proving the visual quality of the generated shapes. An im-
plicit field assigns a value to each point in 3D space, so
that a shape can be extracted as an iso-surface. IM-NET
is trained to perform this assignment by means of a binary
classifier. Specifically, it takes a point coordinate, along
with a feature vector encoding a shape, and outputs a value
which indicates whether the point is outside the shape or
not. By replacing conventional decoders by our implicit de-
coder for representation learning (via IM-AE) and shape
generation (via IM-GAN), we demonstrate superior results
for tasks such as generative shape modeling, interpolation,
and single-view 3D reconstruction, particularly in terms of
visual quality. Code and supplementary material are avail-
able at https://github.com/czq142857/implicit-decoder.

1. Introduction
Unlike images and video, 3D shapes are not confined to

one standard representation. Up to date, deep neural net-
works for 3D shape analysis and synthesis have been devel-
oped for voxel grids [19, 48], multi-view images [42], point
clouds [1, 35], and integrated surface patches [17]. Specific
to generative modeling of 3D shapes, despite the many pro-
gresses made, the shapes produced by state-of-the-art meth-
ods still fall far short in terms of visual quality. This is re-
flected by a combination of issues including low-resolution
outputs, overly smoothed or discontinuous surfaces, as well
as a variety of topological noise and irregularities.

In this paper, we explore the use of implicit fields for
learning deep models of shapes and introduce an implicit
field decoder for shape generation, aimed at improving the
visual quality of the generated models, as shown in Fig-
ure 1. An implicit field assigns a value to each point
(x, y, z). A shape is represented by all points assigned to
a specific value and is typically rendered via iso-surface
extraction such as Marching Cubes. Our implicit field de-

Figure 1: 3D shapes generated by IM-GAN, our implicit
field generative adversarial network, which was trained on
643 or 1283 voxelized shapes. The output shapes are sam-
pled at 5123 resolution and rendered after Marching Cubes.

coder, or simply implicit encoder, is trained to perform this
assignment task, by means of a binary classifier, and it has a
very simple architecture; see Figure 2. Specifically, it takes
a point coordinate (x, y, z), along with a feature vector en-
coding a shape, and outputs a value which indicates whether
the point is outside the shape or not. In a typical application
setup, our decoder, which is coined IM-NET , would follow
an encoder which outputs the shape feature vectors and then
return an implicit field to define an output shape.

Several novel features of IM-NET impact the visual
quality of the generated shapes. First, the decoder output
can be sampled at any resolution and is not limited by the
resolution of the training shapes; see Figure 1. More im-
portantly, we concatenate point coordinates with shape fea-
tures, feeding both as input to our implicit decoder, which
learns the inside/outside status of any point relative to a
shape. In contrast, a classical convolution/deconvolution-
based neural network (CNN) operating on voxelized shapes
is typically trained to predict voxels relative to the extent
of the bounding volume of a shape. Such a network learns

ar
X

iv
:1

81
2.

02
82

2v
4

 [c
s.G

R]
 3

 Ju
n

20
19

Classify points as exterior or interior of the surface

3D Shape Generation via Point Clouds

AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

Thibault Groueix1
⇤
, Matthew Fisher2, Vladimir G. Kim2, Bryan C. Russell2, Mathieu Aubry1

1LIGM (UMR 8049), École des Ponts, UPE, 2Adobe Research
http://imagine.enpc.fr/˜groueixt/atlasnet/

Figure 1. Given input as either a 2D image or a 3D point cloud (a), we automatically generate a corresponding 3D mesh (b) and its atlas
parameterization (c). We can use the recovered mesh and atlas to apply texture to the output shape (d) as well as 3D print the results (e).

Abstract
We introduce a method for learning to generate the sur-

face of 3D shapes. Our approach represents a 3D shape as
a collection of parametric surface elements and, in contrast
to methods generating voxel grids or point clouds, naturally
infers a surface representation of the shape. Beyond its nov-
elty, our new shape generation framework, AtlasNet, comes
with significant advantages, such as improved precision and
generalization capabilities, and the possibility to generate
a shape of arbitrary resolution without memory issues. We
demonstrate these benefits and compare to strong baselines
on the ShapeNet benchmark for two applications: (i) auto-
encoding shapes, and (ii) single-view reconstruction from
a still image. We also provide results showing its potential
for other applications, such as morphing, parametrization,
super-resolution, matching, and co-segmentation.

1. Introduction
Significant progress has been made on learning good rep-

resentations for images, allowing impressive applications
in image generation [17, 35]. However, learning a repre-
sentation for generating high-resolution 3D shapes remains
an open challenge. Representing a shape as a volumetric
function [7, 13, 31] only provides voxel-scale sampling of
the underlying smooth and continuous surface. In contrast, a
point cloud [25, 26] provides a representation for generating
on-surface details [9], efficiently leveraging sparsity of the
data. However, points do not directly represent neighborhood

⇤Work done at Adobe Research during TG’s summer internship

information, making it difficult to approximate the smooth
low-dimensional manifold structure with high fidelity.

To remedy shortcomings of these representations, sur-
faces are a popular choice in geometric modeling. A surface
is commonly modeled by a polygonal mesh: a set of ver-
tices, and a list of triangular or quad primitives composed
of these vertices, providing piecewise planar approximation
to the smooth manifold. Each mesh vertex contains a 3D
(XYZ) coordinate, and, frequently, a 2D (UV) embedding
to a plane. The UV parameterization of the surface provides
an effective way to store and sample functions on surfaces,
such as normals, additional geometric details, textures, and
other reflective properties such as BRDF and ambient occlu-
sion. One can imagine converting point clouds or volumetric
functions produced with existing learned generative models
as a simple post-process. However, this requires solving
two fundamental, difficult, and long-standing challenges in
geometry processing: global surface parameterization and
meshing.

In this paper we explore learning the surface representa-
tion directly. Inspired by the formal definition of a surface
as a topological space that locally resembles the Euclidean
plane, we seek to approximate the target surface locally by
mapping a set of squares to the surface of the 3D shape. The
use of multiple such squares allows us to model complex
surfaces with non-disk topology. Our representation of a
shape is thus extremely similar to an atlas, as we will discuss
in Section 3. The key strength of our method is that it jointly
learns a parameterization and an embedding of a shape. This

1

ar
X

iv
:1

80
2.

05
38

4v
3

 [c
s.C

V
]

20
 Ju

l 2
01

8

Credit: Anastasia DubrovinaAchlioptas et al., ICML 2018, Groueix et al., CVPR 2018

Learnable operators for sets

Challenges: Why is Shape Synthesis so hard?

Functionality: Synthesizing visually pleasing 3D data is not enough:
e.g engineering parts need to be highly detailed and functional for
real-life use

Large dimensionality: How to make our models scalable?

3D acquisition is still not “democratized”: We still need to deal
with limited training data

Ultimate goal: Learn a probability measure over continuous
manifolds P(X)

Relaxing the problem: Learn a probability measure over discretized
versions ⇒ Multiple representations ⇒ Most accurate: Meshes

Mesh representation

Accurate approximations of the continuous surface

Compact and Flexible

No post processing needed

Irregularly Structured: Non-euclidean operators needed

Geometric Deep Learning
aka

Graph Neural Networks

Mesh representation

Accurate approximations of the continuous surface

Compact and Flexible

No post processing needed

Irregularly Structured: Non-euclidean operators needed

Geometric Deep Learning
aka

Graph Neural Networks

Mesh representation

Triangular Mesh M = (V, E ,F) with vertices V = {1, . . . , n}, edges
E ⊆ V × V, faces F ⊆ V × V × V.

Signals on the vertices L2(V) = {F : V → Rd}

Domain: Signals might be defined on a fixed or arbitrary graph.

Fixed topology

• Unique graph M for all the shapes s

• Different signal Fs for each shape s

Arbitrary topology

• Different graph Ms for each shape s

• Different signal Fs for each shape s

Mesh representation

Fixed Topology Mesh Generation: Learn the probability
distribution of the signal F that lives on the domain M (signal
generation)

Arbitrary Topology Mesh Generation: Learn the joint probability
of the signal F and the domain M (signal and graph generation)

1 Motivation & Related Work

2 Fixed Topology Mesh Generation

3 Results

4 Arbitrary Topology Mesh Generation

5 Conclusions

Fixed Topology Mesh Generation

Vast amount of 3D data can be represented on the same graph
(mesh registration to a template)

Mainly deformable shapes: Faces, Bodies, Hands etc.

Applications to 3D reconstruction, animation, VR, AR, etc.

image credit: D. Kulon Kanazawa et al., CVPR 2019 www.arielai.com

Fixed Topology Mesh Generation with Statistical Shape Modelling

Assumption: The signal follows a
multi-variate Gaussian distribution.

Blanz and Vetter, SIGGRAPH 1999

Fixed Topology Mesh Generation with Statistical Shape Modelling

Assumption: The signal follows a
multi-variate Gaussian distribution.
Shape model: PCA on the training
data
Let F ∈ Rn·d the vectorized
representation of the signal across
the entire mesh. Then:

F = F̄ +

k∑
i=1

ai
√
λiφi

where F̄ , the estimated mean, φi,
λi the principal eigenvectors and
eigenvalues of the covariance
matrix, ai ∼ N (0, 1).

Blanz and Vetter, SIGGRAPH 1999

Fixed Topology Mesh Generation with Statistical Shape Modelling

Assumption: The signal follows a
multi-variate Gaussian distribution.

Global: The underlying
connectivity of the domain remains
unused

Large number of parameters O(n)

Linear

Strong assumption (gaussianity)

Blanz and Vetter, SIGGRAPH 1999

Fixed Topology Mesh Generation with Graph Neural Networks

Define local learnable operators on
the underlying graph domain!

Fixed Topology Mesh Generation with Graph Neural Networks

Define local learnable operators on
the underlying graph domain!

Local: stationarity assumption
allows to learn local filters that can
be transferred across the domain
Reduced number of parameters
O(1)

Non-linear: adding non-linearities
between consecutive GNN layers
Hierarchical: defining graph
pooling operators

Minimum assumptions about the
distribution needed

figure by Thomas Kipf

Graph Neural Networks: The Message Passing paradigm

Every local filter at every layer is equivalent to a message passing
operation

Node features are learned by exchanging information with
neighbouring nodes

x

y1
y2

y3
y4

N(x)

figure by Thomas Kipf

Graph Neural Networks: The Message Passing paradigm

Every local filter at every layer is equivalent to a message passing
operation

The operation needs to be permutation invariant

The operation needs to be transferable across different
neighborhoods

F ′(x) = ρE→V
(
{F (y)}y∈N (x)

)

x

y1
y2

y3
y4

N(x)

figure by Thomas Kipf

Graph Neural Networks: Spectral Kernels

First attempts: filters originally defined in the spectral domain
(using the convolution theorem).

ρE→V parametrised via R-th order graph Laplacian polynomials
Tr(∆).

F′ = ξ

(
R∑

r=0

Tr(∆)FGr

)

GCN (Kipf et al., ICLR 2017): k = 1, i.e. only immediate
neighbours are taken into account F′ = ξ

(
T1(∆)FG

)
. Following

the message passing notation:

F′(x) = ξ

 ∑
y∈N (x)

T1(∆)F(y)G



Defferrard et al., NIPS 2016, Kipf et al., ICLR 2017

Fixed Topology Mesh Generation with Spectral GNNs

F′(x) = ξ

 ∑
y∈N (x)

T1(∆)F(y)G


Small number of parameters and easy to optimize
Connectivity of the graph explicitly encoded throught the Graph
Laplacian ⇒ same transformation applied to corresponding points
Reduced expressivity: One parameter per hop ⇒ Isotropic Kernels

Defferrard et al., NIPS 2016, Kipf et al., ICLR 2017

Fixed Topology Mesh Generation with Spectral GNNs

COMA
Ranjan et al., ECCV 2018

MANO Model
Romero et al., SIGGRAPH Asia 2017

Pixel2Mesh
Wang et al., ECCV 2018

3D Body Recovery
Kolotouros et al., CVPR 2019

3d Hand Recovery
Kulon et al., BMVC 2019

Graph Neural Networks: Attention-based Kernels

To allow for anisotropy without losing permutation invariance: filters
are based on an attention-like mechanism

Replace the Laplacian Polynomial with learnable weights w(x,y) ⇒
each neighbour sends a different message to the central node

F ′(x) = ξ

 ∑
y∈N (x)

w(x,y) F (y)G

 ,

and by allowing multiple kernels G:

F ′(x) = ξ

(
K∑

k=1

(∑
y∈N (x)

wk(x,y) F (y)
)
Gk

)

This is equivalent to performing a soft-mapping (sometimes called
patch-operator) between neighbours y and kernels Gk, i.e:

Dk(x)(F) =
∑

y∈N (x)

wk(x, y)F (y)

Monti et al., CVPR 2017, Verma et al., CVPR 2018, Veličković et al., ICLR 2018

Graph Neural Networks: Attention-based Kernels

To allow for anisotropy without losing permutation invariance: filters
are based on an attention-like mechanism

Replace the Laplacian Polynomial with learnable weights w(x,y) ⇒
each neighbour sends a different message to the central node

F ′(x) = ξ

 ∑
y∈N (x)

w(x,y) F (y)G

 ,

and by allowing multiple kernels G:

F ′(x) = ξ

(
K∑

k=1

(∑
y∈N (x)

wk(x,y) F (y)
)
Gk

)

This is equivalent to performing a soft-mapping (sometimes called
patch-operator) between neighbours y and kernels Gk, i.e:

Dk(x)(F) =
∑

y∈N (x)

wk(x, y)F (y)

Monti et al., CVPR 2017, Verma et al., CVPR 2018, Veličković et al., ICLR 2018

Fixed Topology Mesh Generation with Attention-based GNNs

F ′(x) = ξ

(
K∑

k=1

(∑
y∈N (x)

wk(x,y) F (y)
)
Gk

)

(figure by Petar Veličković:
3-headed graph attention mechanism)

Anisotropic Kernels

Attention weights are functions of the signal ⇒ No explicit
encoding of the connectivity
Soft mapping ⇒ Larger number of parameters, can be harder to
optimize

Monti et al., CVPR 2017, Verma et al., CVPR 2018, Veličković et al., ICLR 2018

Shape Completion with Mesh VAE
Litany et al., CVPR 2018

Fixed Topology Mesh Generation with Attention-based GNNs

How to benefit from the advantages of both?

Spectral methods: Connectivity modelled through the graph
Laplacian

F′ = ξ

(
R∑

r=0

Tr(∆)FGr

)
Small number of parameters

Different signal values on the same node always undergo the same
transformation.

Isotropic Kernels

How to benefit from the advantages of both?

Attention-based:

F ′(x) = ξ

(
K∑

k=1

(∑
y∈N (x)

wk(x,y) F (y)
)
Gk

)
Anisotropic Kernels

Connectivity not explicitly modelled: Different signals values on the
same node undergo different transformations

How to benefit from the advantages of both?

Anisotropic Kernels ⇒ different parameter per neighbour similar to
attention-based GNNs

Small number of parameters and easy-to-optimise ⇒ “Hard”
assignments between nodes and parameters. Attention weights
should be either 0 or 1

Explicitly encode the connectivity of the graph (fixed topology prior)
⇒ Binary attention weights should depend only on the connectivity

Ordering-Based Graph Convolutions

Solution: locally order the vertices!

Break the permutation invariant constraint that governs all GNNs.

For kernels equal to the maximum number of neighbours
K = max(|N (x)|):

F ′(x) = ξ

(∑|N (x)|

k=1
F (xk)Gk

)
.

where N (x) = {x1, . . . , x|N (x)|} the neighbourhood of x (inc. x)
ordered in some fixed way.

As a Patch Operator: Dk(x)(F) = F (xk)

The above formulation is equivalent with traditional convolution,
after choosing a consistent ordering.

Bouritsas∗, Bokhnyak∗ et al., ICCV 2019, ICLRW 2019

Ordering-Based Graph Convolutions

Solution: locally order the vertices!

Break the permutation invariant constraint that governs all GNNs.

For kernels equal to the maximum number of neighbours
K = max(|N (x)|):

F ′(x) = ξ

(∑|N (x)|

k=1
F (xk)Gk

)
.

where N (x) = {x1, . . . , x|N (x)|} the neighbourhood of x (inc. x)
ordered in some fixed way.

As a Patch Operator: Dk(x)(F) = F (xk)

The above formulation is equivalent with traditional convolution,
after choosing a consistent ordering.

Bouritsas∗, Bokhnyak∗ et al., ICCV 2019, ICLRW 2019

How to define the local ordering: Spiral Convolutions

Consistent ordering across different vertices of the graph via a spiral
scan

Spiral scan:

Uniquely defined after choosing the starting point and the direction

The ordering needs to remain fixed

Lim et al., ECCVW 2018, Bouritsas∗, Bokhnyak∗ et al., ICCV 2019, ICLRW 2019

Fixed Topology Mesh Generation with Ordering-Based GNNs

F ′(x) = ξ

|N (x)|∑
k=1

F (xk)Gk



Anisotropic Kernels

Lightweight, fast & easier to optimise
Connectivity and geometry aware
Similar to traditional convolutions ⇒ practices for traditional
CNNs can be directly transferred (e.g. dilated convolutions)
Ordering needs to be engineered

Bouritsas∗, Bokhnyak∗ et al., ICCV 2019, ICLRW 2019

1 Motivation & Related Work

2 Fixed Topology Mesh Generation

3 Results

4 Arbitrary Topology Mesh Generation

5 Conclusions

Neural3DMM: Representation Learning for 3D meshes

Autoencoder architecture

Spiral Convolutions

Hierarchical structure

Bouritsas∗, Bokhnyak∗ et al., ICCV 2019, ICLRW 2019

Ordering-based vs Spectral GNNs

Output of the operator at each vertex (delta function used as input)

Ordering-based vs other GNNs

Ordering-based vs Spectral GNNs

Ordering-based vs Attention-based GNNs

Monti et al.+ K=9 Monti et al. + K=25 Ours + K=9

error 0.48 0.395 0.387
params 401K 940K 400K

Fixed Topology Mesh Generation: GNNs vs Statistcal Shape Modelling

Vector space Arithmetics

Interpolation

Analogies

3D Face Synthesis: Wasserstein GAN with GP

1 Motivation & Related Work

2 Fixed Topology Mesh Generation

3 Results

4 Arbitrary Topology Mesh Generation

5 Conclusions

Arbitrary topology 3D shape generation: Relatively unexplored

Range scan to 3D mesh (link prediction on a fully connected graph ⇒ only up to 100 verts)

Fixed Topology and adaptive face splitting (Zero genus shape generation)

Dai and Nießner, CVPR 2019, Smith et al., ICML 2019

Can we draw insipration from methods on arbitrary Graphs?

Molecule generation

Topology Generation

Simonovsky and Komodakis, ICANN 2019, De Cao and Kipf, ICMLW 2018, You et al.,
ICML 2018

1 Motivation & Related Work

2 Fixed Topology Mesh Generation

3 Results

4 Arbitrary Topology Mesh Generation

5 Conclusions

Conclusions

3D shape generation still has a long way to go

Only recently the community invented the right tools to work
directly on non-euclidean domains

Fixed Topology mesh generation:

Enforcing an ordering can be beneficial and drastically reduces the
number of parameters

Still the ordering is engineered

Can we learn it?

Can we enforce orderings on arbitrary underlying graphs?

Arbitrary Topology mesh generation:

Still no consensus on how to approach the problem

Graph generation? Implicit Surfaces? Spectral Domain? Gaussian
Processes? ...

Twitter: @gbouritsas

Conclusions

3D shape generation still has a long way to go

Only recently the community invented the right tools to work
directly on non-euclidean domains

Fixed Topology mesh generation:

Enforcing an ordering can be beneficial and drastically reduces the
number of parameters

Still the ordering is engineered

Can we learn it?

Can we enforce orderings on arbitrary underlying graphs?

Arbitrary Topology mesh generation:

Still no consensus on how to approach the problem

Graph generation? Implicit Surfaces? Spectral Domain? Gaussian
Processes? ...

Twitter: @gbouritsas

Conclusions

3D shape generation still has a long way to go

Only recently the community invented the right tools to work
directly on non-euclidean domains

Fixed Topology mesh generation:

Enforcing an ordering can be beneficial and drastically reduces the
number of parameters

Still the ordering is engineered

Can we learn it?

Can we enforce orderings on arbitrary underlying graphs?

Arbitrary Topology mesh generation:

Still no consensus on how to approach the problem

Graph generation? Implicit Surfaces? Spectral Domain? Gaussian
Processes? ...

Twitter: @gbouritsas

Conclusions

3D shape generation still has a long way to go

Only recently the community invented the right tools to work
directly on non-euclidean domains

Fixed Topology mesh generation:

Enforcing an ordering can be beneficial and drastically reduces the
number of parameters

Still the ordering is engineered

Can we learn it?

Can we enforce orderings on arbitrary underlying graphs?

Arbitrary Topology mesh generation:

Still no consensus on how to approach the problem

Graph generation? Implicit Surfaces? Spectral Domain? Gaussian
Processes? ...

Twitter: @gbouritsas

	Motivation & Related Work
	Fixed Topology Mesh Generation
	Results
	Arbitrary Topology Mesh Generation
	Conclusions

