

Anisotropic Diffusion Kernels to Compare Distributions

Xiuyuan Cheng Duke University

ICIAM 2019 Valencia, Spain

Outline

- Background
 - Two-sample problem
 - Kernel MMD and data geometry
- Anisotropic kernel MMD test
 - Test statistic and algorithm
 - Testing power analysis
 - Application: Flow Cytometry data
 - Application: Diffusion MRI imaging
- Discussion: by neural network?

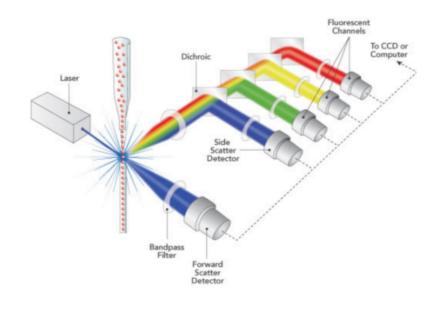
Two-sample Problem

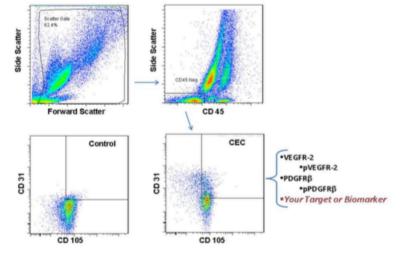
• Question: $X_i \sim p, Y_j \sim q, \text{ iid., in } \mathbb{R}^D$

$$X = \{X_i\}_{i=1}^{n_X}, Y = \{X_j\}_{j=1}^{n_Y}, X \text{ independent from } Y$$

Test hypothesis $\mathcal{H}_0: p = q$ against $\mathcal{H}_1: p \neq q$

Flow Cytometry

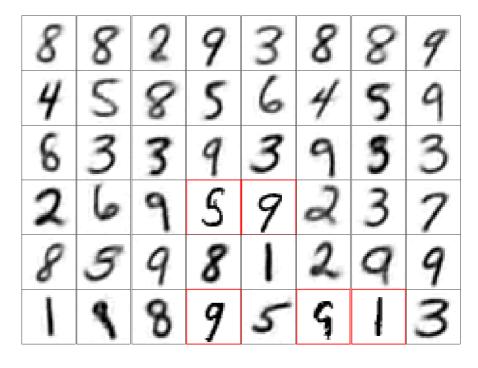




Comparing Groups of Population

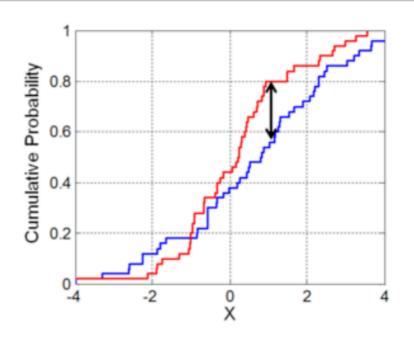
Treatment group	NT _e	NT _{ee}	HT	Pvalue
n	12	14	10	-
Female (%)	58	53	40	0.7
Age, h, mean ± SD	16±5	18±4	15±6	0.7
Weight at start of experiment, kg, mean ± SD	1.557±0.25	1.654±0.27	1.655 ± 0.24	0.6
pH at baseline, mean ± SD	7.47±0.07	7.48±0.10	7.52±0.05	0.3
Lactate at baseline, mmol/l, mean ± SD	26±1.2	2.7±1.3	32±12	0.5
Blood glucose at baseline, mmol/1, mean ± SD	6.3 ± 1.6	7.6±1.4	7.1 ± 1.4	0.2
Duration of LAEEG during insult, min, mean ± 5D	36.7±8.2	23.8 ± 2.9	21.8±3.5	< 0.0001
pH at end of insult, mean ± SD	7.04±0.16	7.10±0.14	7.08 ± 0.12	0.5
Lactate at end of insult, mmoUt, mean ± SD	15.0 ± 1.9	19.1 ± 3.5	17.2 ± 2.1	0.006*
MABP during insult, mmHg, mean ± SD	37±7	45±7	40±4	0.007

Authentic and Synthetic images

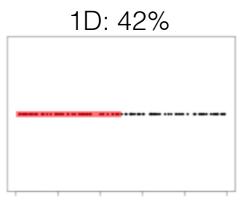


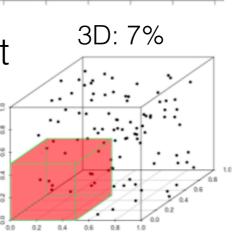
Two-sample Problem

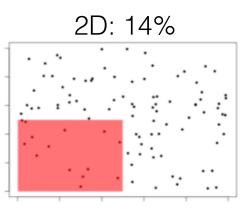
- Standard procedure:
 - Compute test statistic T(X,Y)
 - Specify a threshold value au
 - Accept \mathcal{H}_0 if $T(X,Y) < \tau$, reject otherwise
- Traditional solutions in 1D:
 - Kolmogotov-Smirnov Test
 - •
- Difficulty in higher dimensions:
 - Marginals of distributions are insufficient
 - Most "bins" will have very few points
- Additional question: where $p \neq q$?

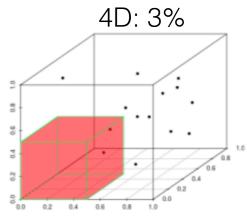


Proportion of samples captured by one box









Outline

- Background
 - Two-sample problem
 - Kernel MMD and data geometry
- Anisotropic kernel MMD test
 - Test statistic and algorithm
 - Testing power analysis
 - Application: Flow Cytometry data
 - Application: Diffusion MRI imaging
- Discussion: by neural network?

Review: Kernel MMD (Maximum-mean Discrepancy)

Maximum-mean Discrepancy (MMD)

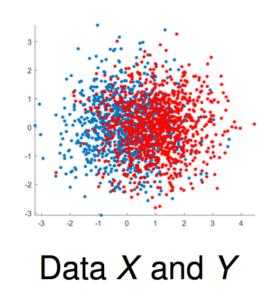
$$MMD(p, q; \mathcal{F}) = \sup_{f \in \mathcal{F}} \int f(x)(p(x) - q(x))dx,$$

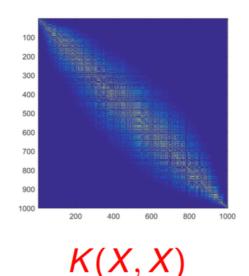
- Reproducing Kernel Hilbert Space (RKHS) MMD: $\mathcal{F} = \{f \in \mathcal{H}, \|f\|_{\mathcal{H}} \leq 1\}$
- Population Kernel MMD

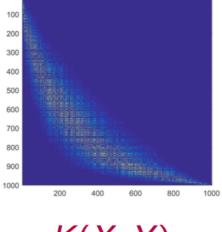
$$MMD^{2}(p,q) = \int \int k(x,y)(p(x) - q(x))(p(y) - q(y))dxdy$$

Discrete Kernel MMD

$$MMD^{2}(X,Y) = \frac{1}{n_{X}^{2}} \sum_{x,x' \in X} k(x,x') + \frac{1}{n_{Y}^{2}} \sum_{y,y' \in Y} k(y,y') - \frac{2}{n_{X}n_{Y}} \sum_{x \in X, y \in Y} k(x,y).$$







K(X, Y)

[Gretton et al. '12]

Review: Kernel MMD

Test consistency and test power analysis

Theorem (Gretton '12, Serfling '81). For fixed p and q, $n := n_X + n_Y$, $n \to \infty$, $\frac{n_X}{n} \to \rho_X \in (0,1)$. Then, under \mathcal{H}_0 , $MMD^2(X,Y) = O\left(\frac{1}{n}\right)$; Under \mathcal{H}_1 , $MMD^2(X,Y) = MMD^2(p,q) + O\left(\frac{1}{\sqrt{n}}\right)$, $MMD^2(p,q) > 0$.

- Convergence in distribution: Chi-square under \mathcal{H}_0 , normal under \mathcal{H}_1 .
- Indicator of density difference

$$\mathrm{MMD}(p,q) = \int f^*(x)(p(x)-q(x))dx$$

$$f^*(x) = \int k(x,y)(p(y)-q(y))dy := w(x) \quad \text{``witness'' function}$$

Empirical witness function

$$\hat{w}(x) = \frac{1}{n_X} \sum_{i=1}^{n_X} k(x, X_i) - \frac{1}{n_Y} \sum_{j=1}^{n_Y} k(x, Y_j)$$

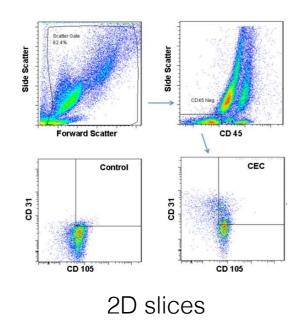
Review: Kernel MMD

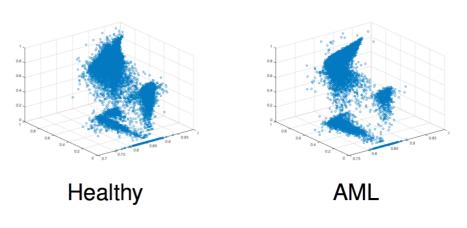
Problems with Kernel MMD:

- Isotropic gaussian kernel may not be optimal
 - Potential loss of power in high dimension [Wasserman et al. '14]
 - Optimization of kernel [Gretton et al. '12b]
- $O(n^2)$ computation
 - Linear algorithm by decoupling [Gretton et al. '12]
 - Mean Embedding test [Chwialkowski et al. '15]

Near-manifold Densities

- The densities lie on or near to low-dimensional manifolds embedded in the ambient space
- Flow cytometry: each patient is represented by a data cloud in 9D





First 3 Principal Components

- Authentic and synthetic images: image patch manifold
- Question: How manifold geometry helps?

Kernel and Data Geometry

Observation in view of kernel spectral decomposition

$$\mathrm{MMD}^2 = \int \int K(x,y)(p(x)-q(x))(p(y)-q(y))dxdy$$

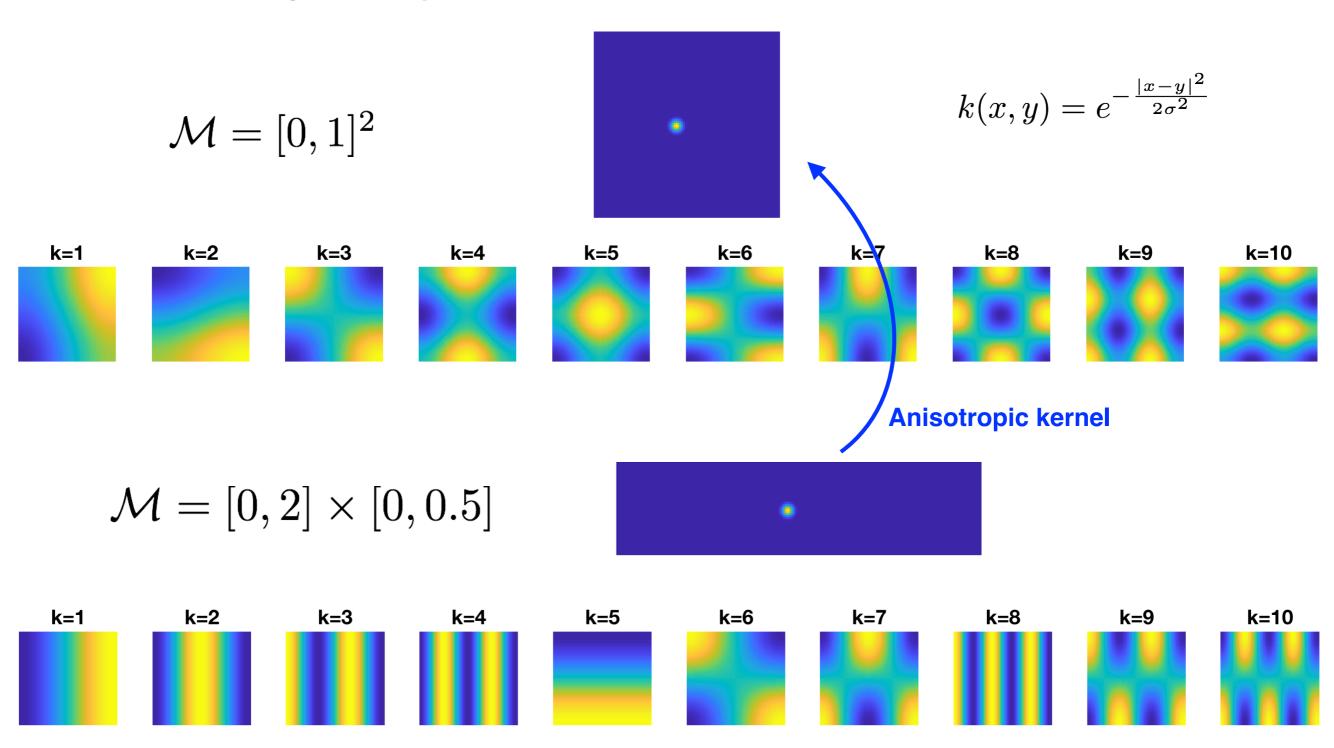
$$:= Ck$$

$$K(x,y) = \sum_k \lambda_k \psi_k(x)\psi_k(y), \quad \mathrm{MMD}^2 = \sum_k \lambda_k \left(\int \psi_k(x)(p-q)(x)dx\right)^2$$
 weights projection to eigenmode

- Idea from traditional manifold learning
 - The eigen-pair $\{\lambda_k, \psi_k\}_k$, when kernel bandwidth $\sigma \to 0$, are determined by intrinsic manifold geometry $\triangle_{\mathcal{M}}$ and data density p.
 - When n large enough, and σ small enough, the kernel matrix spectrally approximate the manifold operator involving $\triangle_{\mathcal{M}}$ and p.
 - The spectrum pattern persists with certain near-manifold perturbation of samples in the ambient space.

Kernel and Data Geometry

• The effect of **geometry** on $\{\lambda_k, \psi_k\}_k$



First 10 non-trivial eigenvectors of the normalized graph laplacian on a uniform grid

Outline

- Background
 - Two-sample problem
 - Kernel MMD and data geometry
- Anisotropic kernel MMD test
 - Test statistic and algorithm
 - Testing power analysis
 - Application: Flow Cytometry data
 - Application: Diffusion MRI imaging
- Discussion: by neural network?

Anisotropic Kernel MMD: Formulation

- MMD test statistic
 - Theoretically, assume reference set R and tensor field $\{\Sigma_r\}_{r\in R}$ are given
 - Generally, reference set distribution μ_R
 - Define asymmetric anisotropic kernel

$$a(r,x) = e^{-\|r-x\|_{\Sigma_r}^2} = \exp\left\{-\frac{1}{2}(x-r)^T \Sigma_r^{-1}(x-r)\right\}, \quad \forall r \in R$$

Kernel MMD computed with

$$k_{L^2}(x,y) = \int a(r,x)a(r,y)d\mu_R(r)$$

Spectral re-weighted kernel

$$k_{\text{spec}}(x,y) = \sum_{k} f_k \psi_k(x) \psi_k(y)$$

where f_k is sufficiently decaying positive sequence,

$$a(r,x) = \sum_{k} \sigma_k \phi_k(r) \psi_k(x), \quad k_{L^2}(x,y) = \sum_{k} \sigma_k^2 \psi_k(x) \psi_k(y)$$

Anisotropic Kernel MMD: Intuition

Population kernel MMD

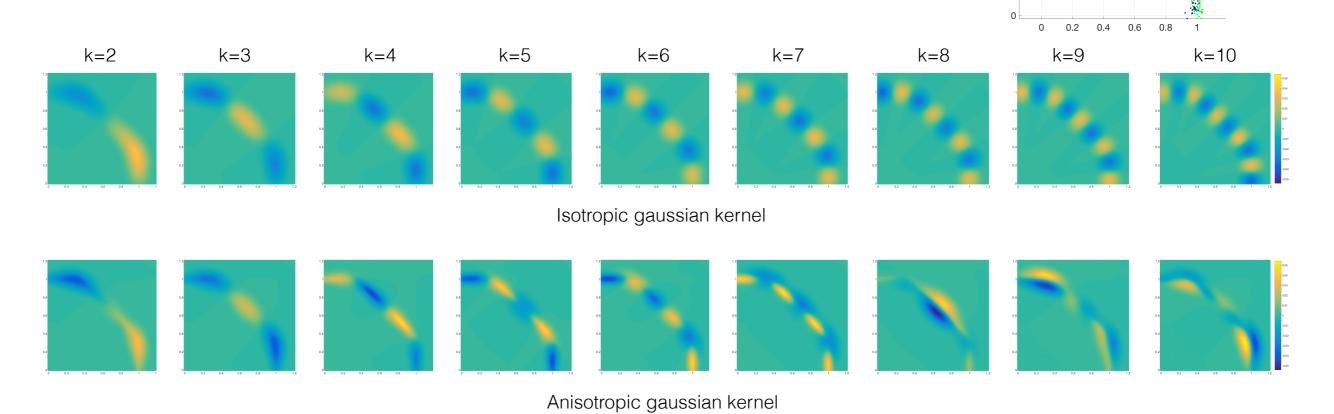
$$MMD^{2} = \sum_{k} \lambda_{k} \left(\int \psi_{k}(x)(p-q)(x)dx \right)^{2} = \sum_{k} \lambda_{k} c_{k}^{2}$$

data X Y

direction of

departure

First 10 eigenfunctions of the isotropic/anisotropic kernel



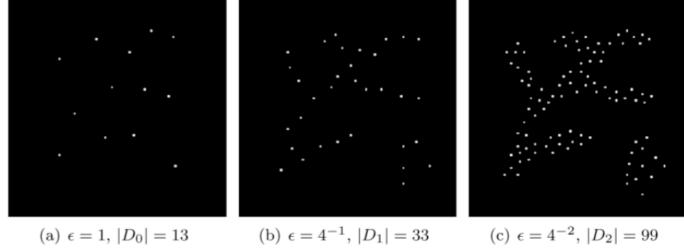
Anisotropic kernel is more sensitive to the direction of density departure!

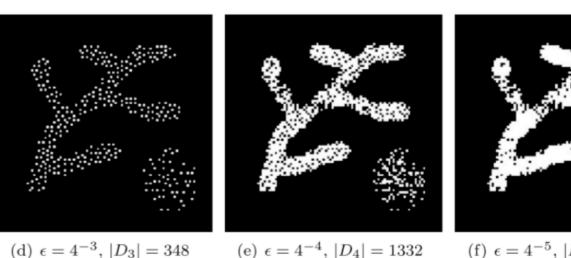
Anisotropic Kernel MMD: Computation

- Algorithm summary
 - Input: two data sets X and Y, reference set R, function handle a(r,x)
 - Output: Acceptance/rejection of \mathcal{H}_0 , the witness function evaluated
 - Choice of threshold au: by permutation test

Square low-rank kernel matrix is over-redundant

- Sampling of R:
 - Random subsample
 - QR with pivoting
- Adaptive construction of $\{\Sigma_r\}_{r\in R}$
 - Local PCA on k nearest neighbors



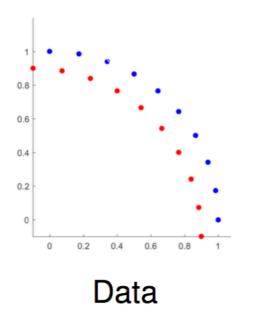


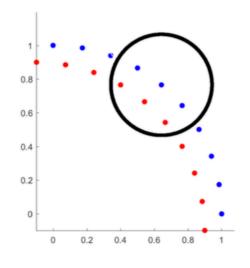
Subsample "reference set" without losing accuracy of computing leading eigenvectors

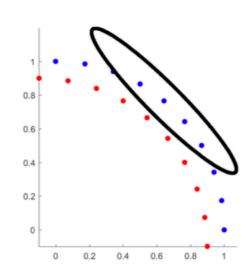
(f) $\epsilon = 4^{-5}$, $|D_5| = 1469$

Anisotropic Kernel MMD: Example

Near-manifold density setting: Toy example in 2D

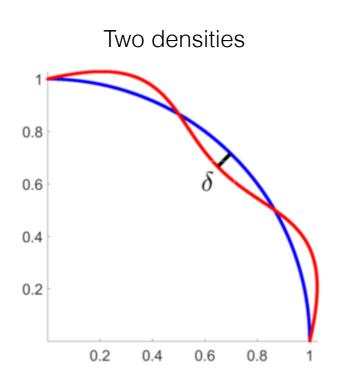


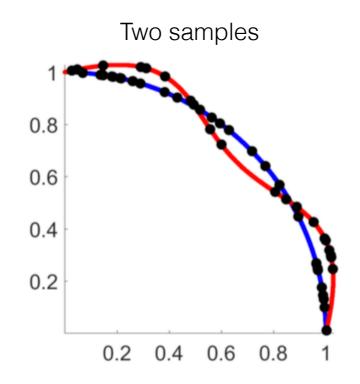


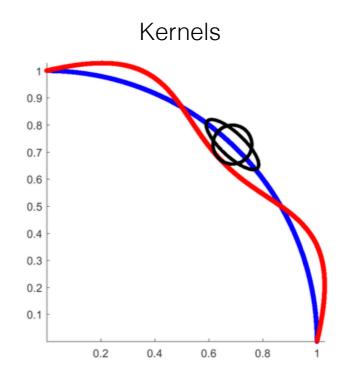


Gretton et al (2011)

C., Cheng, Coifman (2011)

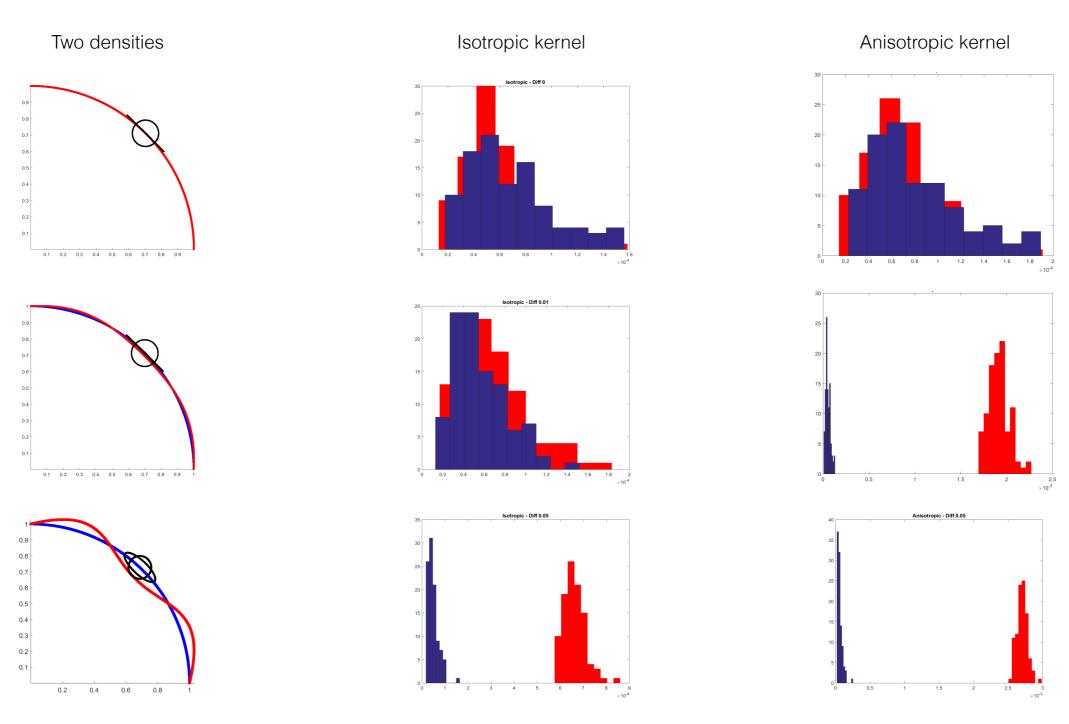






Anisotropic Kernel MMD: Example

Empirical distribution of test statistics



Histograms of test statistics under \mathcal{H}_0 (blue) and \mathcal{H}_1 (red)

Outline

- Background
 - Two-sample problem
 - Kernel MMD and data geometry
- Anisotropic kernel MMD test
 - Test statistic and algorithm
 - Testing power analysis
 - Application: Flow Cytometry data
 - Application: Diffusion MRI imaging
- Discussion: by neural network?

Limiting Distribution of Test Statistics

$$K(x,y) = \sum_{k} f_k \psi_k(x) \psi_k(y), \quad f_k \ge 0$$

- Assumptions (informal)
 - (A1) The kernel is PSD, continuous, $0 \le K(x, x) \le 1$
 - (A2) The alternative q belongs to

$$Q = \left\{ q \mid \int a(r,x)(p(x) - q(x)) dx \neq 0, \text{ a.s. w.r.t } \mu_R \right\}$$

- Define single-parametrized departure $q=p+\tau g$, $c_k:=\int \psi_k(y)g(y)dy$
- Limiting distribution of the test statistic: $n = n_X + n_Y \to \infty, \frac{n_X}{n} \to \rho_X \in (0,1),$

Theorem (C, Cloninger, Coifman '17, informal). All shifts and variance of the test statistic T_n depend on spectral decomposition of the kernel.

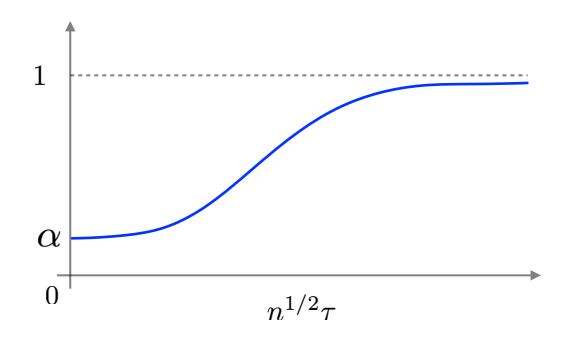
- (1) If $\tau = an^{-1/2}$, $0 \le a < \infty$, then nT_n is asymptotically χ^2 .
- (2) If $\tau = n^{-1/2+\delta}$, $0 < \delta < \frac{1}{2}$, then T_n is asymptotically normal with $O(n^{-1+2\delta})$ shift and $O(n^{-1+\delta})$ standard deviation.
- (3) If $\tau = 1$, then T_n is asymptotically normal with O(1) shift and $O(n^{-1/2})$ standard deviation.

Asymptotic Test Consistency

• Asymptotic test power at/beyond critical regime $\tau \sim n^{-1/2}$

Corollary 1. Let $\pi_n(q)$ be the test power for controlled type-I error $\leq \alpha$, (1) If $\tau = an^{-1/2}$, $0 < a < \infty$, then $\pi_n(q) \to f(a) > \alpha$, where f is a monotonically increasing function.

(2) If $\tau = \Omega(n^{-1/2})$, then $\pi_n(q) \to 1$.



Test Power Lower Bound with Finite Samples

Non-asymptotic lower bound of test power

Theorem (C, Cloninger, Coifman '17, informal). Define $T_1 := \sum_k \lambda_k c_k^2 > 0$. If $n > \frac{16}{0.1} (\frac{1}{\rho_{X,n}^3} + \frac{4}{\rho_{Y,n}^3})$, and $(\tau^2 n)T_1 > C_4 + \sqrt{\frac{C_3 + 0.1}{\alpha}}$, then

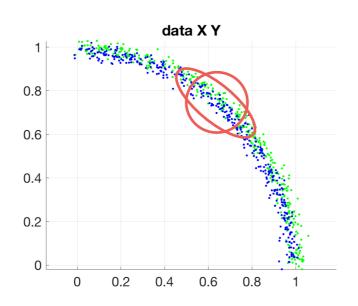
$$1 - \pi_n(q) \le \frac{(\tau^2 n)C_1 + \tau C_2 + C_3 + 0.1}{\left((\tau^2 n)T_1 - (C_4 + \sqrt{\frac{C_3 + 0.1}{\alpha}})\right)^2} \sim \frac{C_1}{T_1^2} \frac{1}{\tau^2 n},$$

where
$$C_1 := 4\left(\frac{1}{\rho_{X,n}}\sum_k \lambda_k^2 c_k^2 + \frac{16}{\rho_{Y,n}}\right)$$
, $C_2 := 128\left(\frac{1}{\rho_{X,n}^2} + \frac{1}{\rho_{Y,n}^2}\right)$, $C_3 := \frac{32}{(\rho_{X,n}\rho_{Y,n})^2}$, $C_4 := \frac{1}{\rho_{X,n}\rho_{Y,n}}\sum_k \lambda_k$.

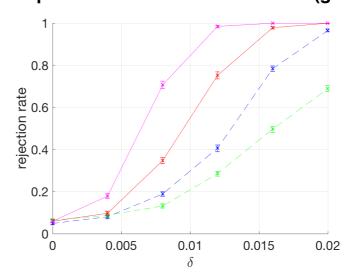
Proof by Chebyshev.

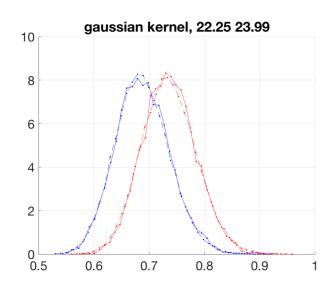
Comparison of Kernels

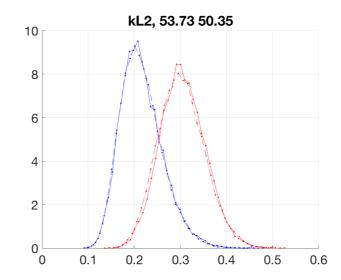
Numerical simulation on 2D synthetic example

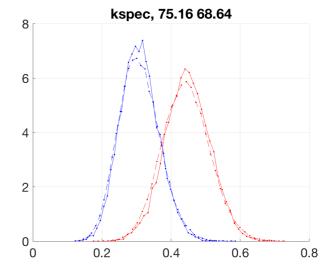


Test power of 3 kernels and KS test (green)









Histograms of test statistics under \mathcal{H}_0 (blue) and \mathcal{H}_1 (red), $\delta=0.02$

Comparison of Kernels

- Mean and variance of test statistic
 - 1st row: estimated value by Monte-Carlo
 - 2nd row: theoretical value by limiting distribution
 - The larger ratio, the more discriminative the test

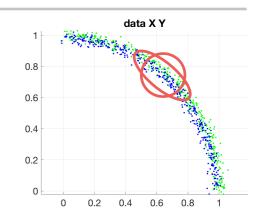
data X Y

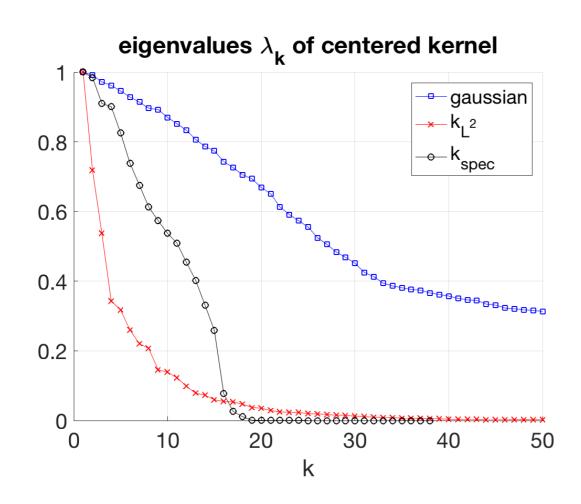
$$\theta_0 = \mathbb{E}[T_n|\mathcal{H}_0], \ \theta_1 = \mathbb{E}[T_n|\mathcal{H}_1], \ \sigma_0^2 = \operatorname{Var}(T_n|\mathcal{H}_0), \ \sigma_1^2 = \operatorname{Var}(T_n|\mathcal{H}_1), \ r = \frac{\theta_1 - \theta_0}{\sigma_1 + \sigma_0}$$
$$\bar{\theta}_0 = \frac{2}{n} \sum_k \lambda_k, \ \bar{\theta}_1 = \sum_k \lambda_k \tau^2 c_k^2 + \frac{2}{n} \sum_k \lambda_k,$$

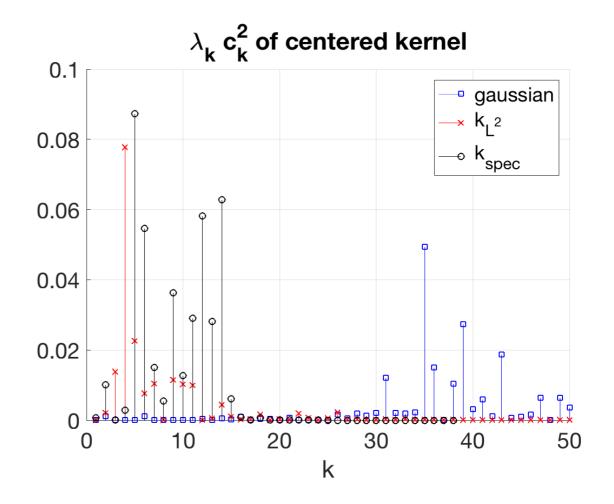
$$\lambda_k,\ c_k,\ au$$

Comparison of Kernels

Contribution per eigenmode







 k_{L^2} anisotropic kernel

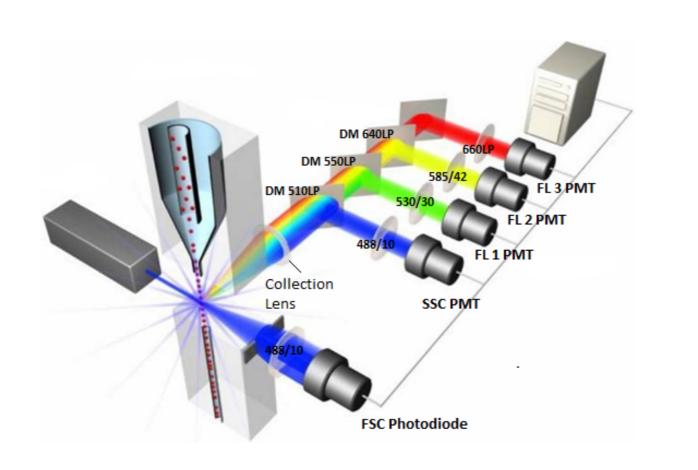
 $k_{
m spec}$ anisotropic kernel with spectral re-weighting

Outline

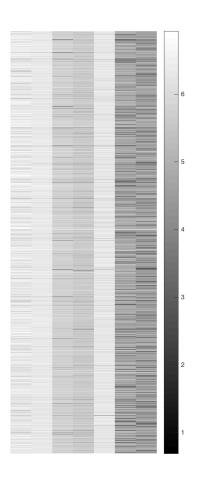
- Background
 - Two-sample problem
 - Kernel MMD and data geometry
- Anisotropic kernel MMD test
 - Test statistic and algorithm
 - Testing power analysis
 - Application: Flow Cytometry data
 - Application: Diffusion MRI imaging
- Discussion: by neural network?

Application: Flow-cytometry Data

Flow Cytometry technology for single-cell analysis



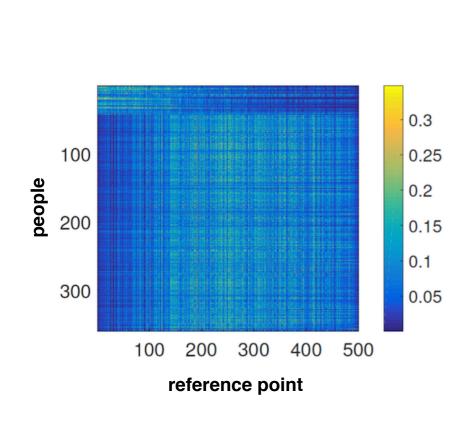
Number of cells $\sim 10^5$

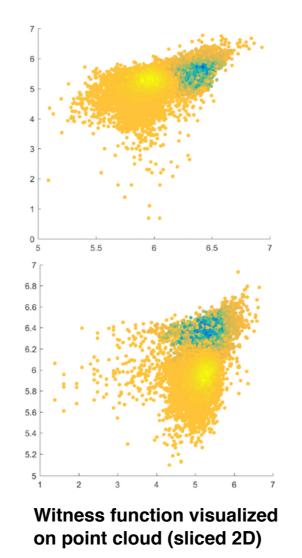


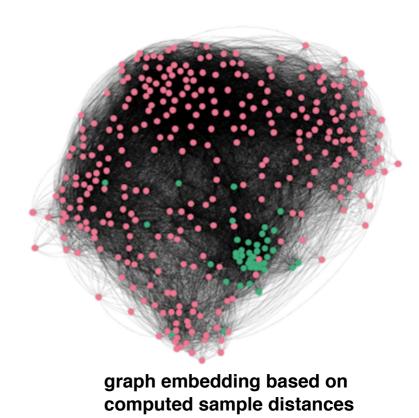
Application: Flow-cytometry Data

- Flow-Cap(I) Competition AML Datasets
 - 359 people: 43 affected, 316 healthy
 - 7 markers

MMD with anisotropic kernel

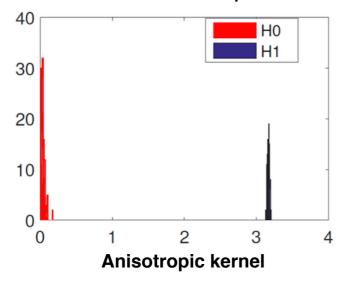


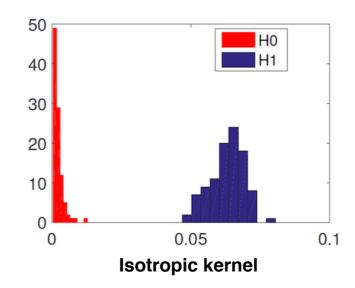




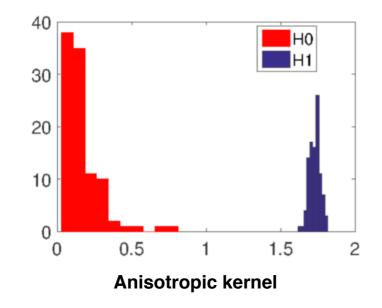
Application: Flow-cytometry Data

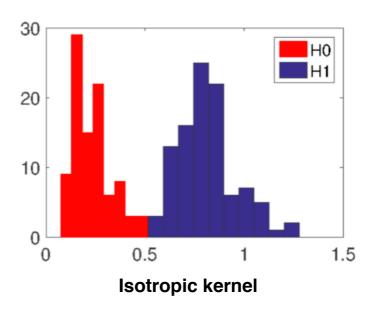
Comparison to isotropic kernel





- On MDS dataset
 - 72 patients, 87 healthy subjects,
 - Each sample: 25,000 cells in 8 dimensions



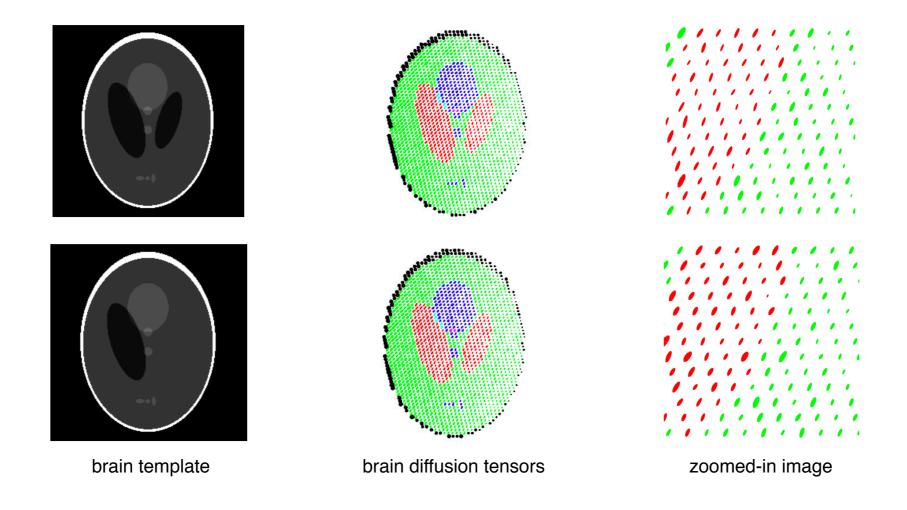


Outline

- Background
 - Two-sample problem
 - Kernel MMD and data geometry
- Anisotropic kernel MMD test
 - Test statistic and algorithm
 - Testing power analysis
 - Application: Flow Cytometry data
 - Application: Diffusion MRI imaging
- Discussion: by neural network?

Application: Diffusion MRI Data

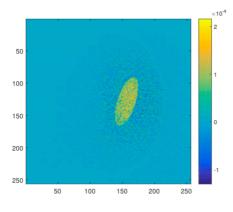
- 3D brain Image of size 200x200x200
- Each pixel ~ a 3x3 tensor (local flow of water molecules)
- Want to identify regions of brain that differ between healthy/sick individuals



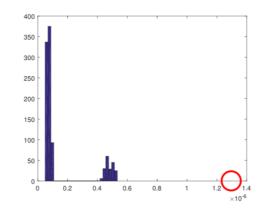
Formulate as two-sample problem:
 comparing the distribution of diffusion tensors in various regions

Application: Diffusion MRI Data

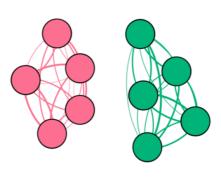
- Downsample pixels by a factor of 5 for reference points
- Synthetic datasets: 5 healthy, 5 sick subjects



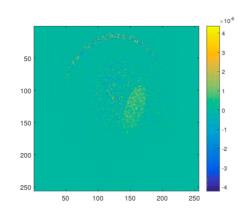
*H*₁ Witness (Anisotropic)



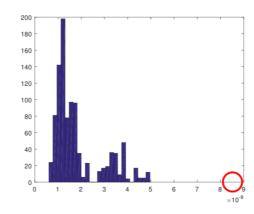
*H*₁ Perm. Test (Anisotropic)



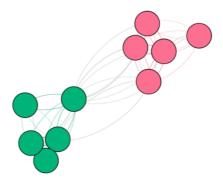
*H*₁ Graph (Anisotropic)



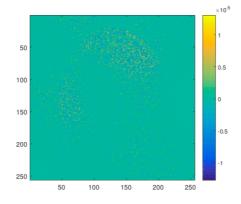
*H*₁ Witness (Isotropic)



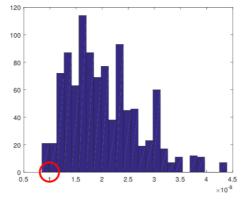
*H*₁ Perm. Test(Isotropic)



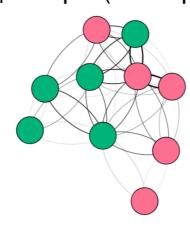
*H*₁ Graph (Isotropic)



*H*₀ Witness (Anisotropic)



*H*₀ Perm. Test (Anisotropic)



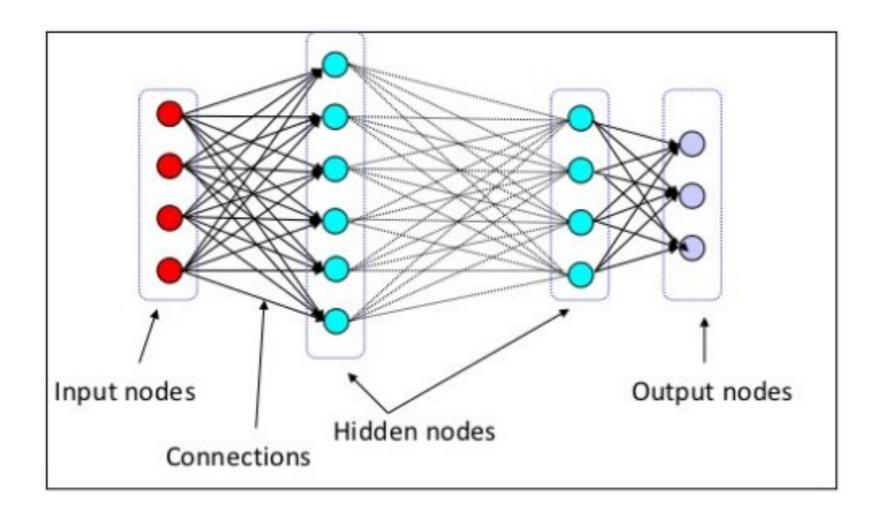
 H_0 Graph (Anisotropic)

Outline

- Background
 - Two-sample problem
 - Kernel MMD and data geometry
- Anisotropic kernel MMD test
 - Test statistic and algorithm
 - Testing power analysis
 - Application: Flow Cytometry data
 - Application: Diffusion MRI imaging
- Discussion: by neural network?

Neural Network Classifier

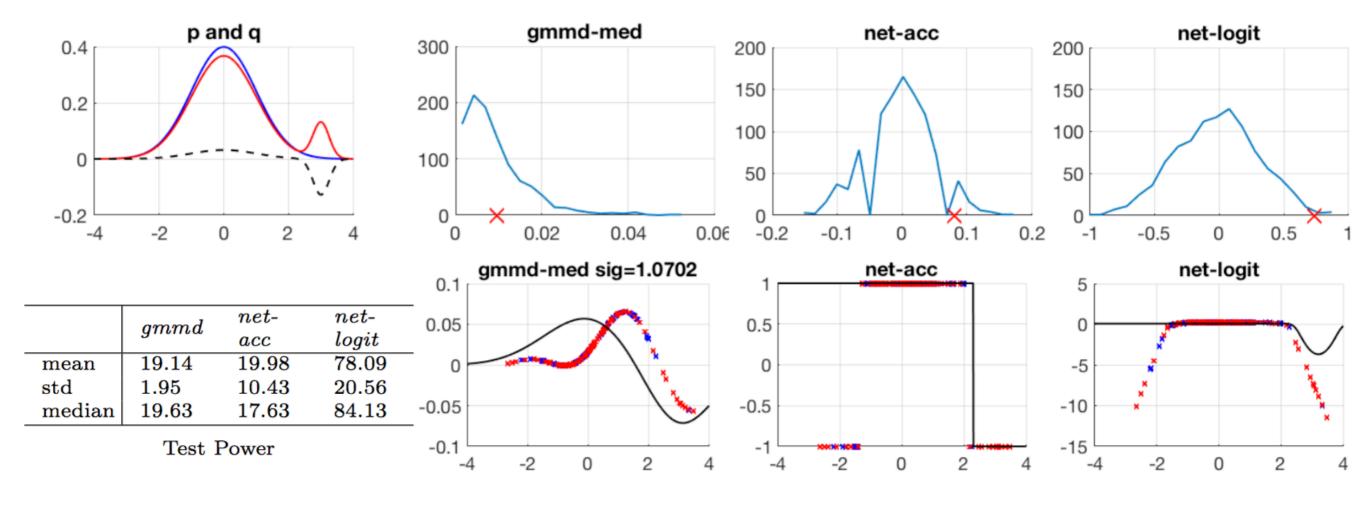
Network classifier two-sample test



- Test statistic:
 - Classification accuracy [Lopez-Paz et al. '16]
 - Net-logit (ours)

Neural Network Classifier

- 1D toy example
 - Fully-connected network with 32 nodes in 2 hidden layers
 - Gaussian mmd with median distance as kernel bandwidth



Papers & Preprints

- X. Cheng, A. Cloninger and R. R. Coifman. "Two-sample statistics based on anisotropic kernels". To appear at *Information and Inference: A Journal of the IMA* (2019). [arXiv:1709.05006]
- X. Cheng, A. Cloninger, "Neural network classifier log-ratio two-sample tests for densities on manifolds", in preparation.

Thank You!