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Motivating Example

Goal: Learn unsupervised clustering of data sets {Xi}K
i=1

Point Cloud
Embedded time series windows
Embedded image patches

Largest issues:
Non-i.i.d. sampling
Shift-invariance
Saliency of foreground
Repeating motifs
Subsequence similarity

Bird Chirp (Kaggle) MPDIST (Keogg, et al. 2018)



Partial Overlap of Distributions

In many situations, distributions don’t perfectly match
Foreground / background patches
Background noise between “chirps”

Motivates questions
Question: How to define a statistic on shared foreground that’s
independent of background
Sub-question: How do we define robust statistic for overlap of
distributions from finite samples
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Importance of Where Distributions Deviate
Problem 1: Detect where two distributions deviate given only finite
samples

Motivation:
Want to highlight region(s) that deviate between two samples
Determine region of uncertainty where points may be from either
distribution

Goals:
Examine stability of deviation detection as n → ∞
Build deviation detection that is robust and cautious

Initial Solution 1: Maximum Mean Discrepancy witness function

MMD(p,q;F) = sup
f∈F

(∫
f (x)dp(x)−

∫
f (x)dq(x)

)



Kernel Differences in Distributions

Take F as unit ball in Reproducing Kernel Hilbert Space H(k)

MMD(p,q; k) := 〈Ex∈pk(·, x)− Ey∈qk(·, y),Ex∈pk(·, x)− Ey∈qk(·, y)〉

Witness function maximizes difference

f ∗ = arg max
f∈F

(∫
f (x)dp(x)−

∫
f (x)dq(x)

)
:= Ex∈pk(·, x)− Ey∈qk(·, y)

Empirical witness can be very noisy and variable

Two Classes Witness Function



Empirical Witness Function
Empirical Witness

f̂ ∗ =
1
N

∑
x∈X

k(·, x)− 1
M

∑
y∈Y

k(·, y)

Question 1: How does empirical witness converge to f ∗?
Question 2: Can we determine a test of whether f ∗(z) 6= 0?

Kernel Choice
For strong convergence guarantees, best to choose kernel as
Mehler kernel

Φn(x , y) =
∑

k∈Zd
+

H

(√
|k |1
n

)
ψk (x)ψk (y)

for ψk (x) multi-dimensional Hermite polynomial
Exists Mahler identity to re-write as weighted exponential kernel
Has fast decay properties but isn’t non-negative ∀(x , y)



Stability of Witness Function

Local Concentration Bound (Mhaskar, Cheng, C. 2019)

Difference between empirical witness function
f̂ ∗(z) = 1

n

∑
x∈X Φn(z, x)− 1

m

∑
y∈Y Φn(z, y) with Mehler kernel and

true witness f ∗ satisfies Hoeffding-type concentration for error
measured in L∞loc . In particular, for

n ∼
(

N
log N

)1/(2d+2γ)

,

and f ∗ ∈W∞,γ(x0) we obtain for r ≥ c1/n2 that

Probτ

(∥∥∥f̂ ∗ − f ∗
∥∥∥
∞,B(x0,r)

≥ c
1 + ‖f ∗‖∞,γ,x0,r

nγ

)
≤ δ(r/n)d .



Permutation Test for Stability

Assess hypothesis f ∗(z) 6= 0 for z ∈ B(x0, r)
Measure through permutation π : ZN → ZN

Sig(z) =
1
K

K∑
i=1

1

[∣∣∣̂f ∗(z)
∣∣∣ < ∣∣∣̂fπi (x0)

∣∣∣] , for

f̂π(x0) =
1
N

N∑
i=1

Φn(x0, xπ(i))−
1
M

N+M∑
i=M+1

Φn(x0, yπ(i))

For multi-class, use gap between largest class and second
largest class as statistic
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Variational AutoEncoder Significant Areas

Variational Autoencoder on MNIST creates 2D latent space
Suggested model is to sample from N (0, I) but:

exist gaps between classes
exist regions where classes blur

Training Data Significant Regions



CIFAR Uncertainty

VGG-16 is state-of-the-art net that attains 6% classification on
CIFAR10 test set
Examine last layer for test points that are significantly within a
class
Choose not to classify others

Remove 7% of points and reduce testing error in half
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Partial Overlap of Distributions

Don’t always have perfect distribution match
Don’t always have i.i.d. sampling of points
Goal: Create statistic to measure whether distributions match
enough of the time
Example: images made into non-i.i.d. point clouds through
patches



Kernel Quantile Algorithm

Related to MP-DIST for time series (Keogg, 2018)
Let µ = (p + q)/2 and witness

f (z) = (Ex∼pk(z, x)− Ey∼qk(z, y))2

Maximum mean discrepancy is average Eµf (z)

Only unbiased if p = q

Instead consider CDF and quantile measure

CDF : λf (t) = µ ({z : f (z) < t})
Quantile : Qp,q(α) = sup

t
{t : λf (t) < α}

Quantile unbiased if p and q agree on α percent of their mass



Theoretical Toy Example

Small Commonalities (Das, Mhaskar, C., 2019)

Consider mixed distributions,

p1 = δp + (1− δ)b1

p2 = δp + (1− δ)b2

X1 ∼ p1,X2 ∼ p2,

for p,b1,b2 with disjoint support. Then for x , x ′ ∼ p and y ∼ b1 and
y ′ ∼ b2, if ‖y − y ′‖ stocastically dominates ‖x − x ′‖ then there exits
α > 0 for Gaussian or Mehler kernel such that

QX1,X2 (δα)→ 0

MMD(X1,X2)→ (1− δ)2MMD(b1,b2).

Similarly for p3 = δq + (1− δ)b3 and X3 ∼ p3, QX1,X2 (δα) nonzero
(greater than min of four quantiles).



Convergence Under non-i.i.d. Sampling

Barry-Essen Convergence (Das, Mhaskar, C., 2019)

Let X ∼ p and Y ∼ q for compact support p,q with exponential
strong mixing, and X independent of Y . Then for the Mehler kernel,

sup
x∈R

∣∣∣P(
√

N(QX ,Y (α)−Qp,q(α)) < x)− Φ(x)
∣∣∣ ≤ C√

N
.

Requires three independent parts:
1 Need f̂ ∗ → f ∗ uniformly (augment Mhaskar, Cheng, C. 2018 with

strong mixing Hoeffding inequality)
2 Uniform convergence of witness gives convergence of empirical

CDFs λ̂f̂∗ → λ̂f∗

3 Need convergence of quantile from empirical CDF to true quantile
under strong mixing (Lahiri, Sun, 2009)
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Time Series Clustering

Seek when time series behave similarly for given fraction of time
AR(5) process that at random time jumps to new state

Anomalous states overlap, start state unique
Two instantiations of each stochastic process

Window of length 20 in 3D, Euclidean norm across all channels
Quantile of α = 0.05



Image Foreground Similarity

Took 5x5 patches of pixels and of edge extracted image (texture)
Quantile of α = 0.1



Conclusions

Using witness function allows ability to create local statistics
Important to answer questions beyond whole distribution
matching
Witness function attains similar statistical guarantees to global
statistic
Ongoing work of time series clustering on:

bird chirp clustering
weekly HSI series clustering for agriculture
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Thank you!

Questions?
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