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Can we learn useful embeddings into Wasserstein spaces?
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2017), and Lorentz models (Nickel & Kiela, 2018). From a modeling perspective, generalization to
other spaces helps models carry information like uncertainty (Vilnis & McCallum, 2015; Bojchevski
& Günnemann, 2018) to the objects being embedded (Vilnis & McCallum, 2015). More importantly,
alternative embedding spaces have the capacity to encode relations like inclusion, exclusion, hier-
archy, and ordering (Mirzazadeh et al., 2015; Vendrov et al., 2015; Athiwaratkun & Wilson, 2018).
Our work share the same themes, since we take point clouds as the embedding targets.

The distance or discrepancy measure between points in an embedding space is another major defin-
ing factor for a representation learning model. For points, the most typical choice is to use an Lp

norm. When embedding into the set of histograms, discrepancy typically is evaluated using KL
divergence (Kullback & Leibler, 1951). KL divergence between two distributions can be problem-
atic, however. In particular, the behavior of KL divergence relies heavily on distributions having
common non-empty support; once the support sets are disjoint, regardless of how close or far the
support points lie on the underlying space, the KL divergence remains the same. As an alternative
discrepancy measure, transport distances (Villani, 2008; Peyré & Cuturi, 2017; Solomon, 2018) do
not suffer from the mentioned problems. Hence, models based on optimal transport are gaining pop-
ularity in machine learning; see (Rubner et al., 1998; Courty et al., 2014; Frogner et al., 2015; Kusner
et al., 2015; Arjovsky et al., 2017; Genevay et al., 2018b; Claici et al., 2018) for some examples.

Learned embeddings into Wasserstein spaces do not have long precedence. A recent line of research
proposes embedding into parameterized sets of distributions (Muzellec & Cuturi, 2018; Zhu et al.,
2018). While restricting to smaller sets facilitates use of closed-form expressions for transport dis-
tances, restriction to Gaussian distributions leads to a less expressive representation space. It is note-
worthy that Courty et al. (2018) study embedding from Wasserstein into Euclidean space. In con-
trast, we learn to embed into the space of discrete probability distributions endowed with the Wasser-
stein distance, well-known to be dense in W2 as the number of support points increases (Kloeckner,
2012; Brancolini et al., 2009).

3 LEARNING WASSERSTEIN EMBEDDINGS

3.1 THE LEARNING PROBLEM

The learning task we consider is that of recovering a pairwise distance or similarity relationship that
is partially or fully observed. We are given a collection of objects C—these can be words, symbols,
images, or any other data—as well as samples

��
u(i), v(i), r(u(i), v(i))

� 
of a target relationship

r : C ⇥ C ! R that tells us the degree to which pairs of objects are related.

Our objective is to find a map � : C ! Wp(X ) such that the relationship r(u, v) can be recovered
from the Wasserstein distance between �(u) and �(v), for any u, v 2 C. Examples include:

1. METRIC EMBEDDING: r is a distance metric and we want Wp(�(u),�(v)) ⇡ r(u, v) for all
u, v 2 C.

2. GRAPH EMBEDDING: C contains the vertices of a graph and r : C⇥C ! {0, 1} is the adjacency
relation; we would like the neighborhood of each �(u) in Wp to coincide with graph adjacency.

3. WORD EMBEDDING: C contains individual words and r is a semantic similarity between
words. We want distances in Wp to predict this semantic similarity.

Although the details of each task require some adjustment to the learning architecture, our basic
representation and training procedure detailed below applies to all three examples.

3.2 OPTIMIZATION

Given a set of training samples S =
��

u(i), v(i), r(i)
� N

i=1
⇢ C ⇥ C ⇥ R, we want to learn a map

� : C ! Wp(X ). We must address two issues.

First we must define the range of our map �. The whole of Wp(X ) is infinite-dimensional, and for a
tractable problem we need a finite-dimensional output. We restrict ourselves to discrete distributions
with an a priori fixed number of support points M , reducing optimal transport to the linear program
in equation 3. Such a distribution is parameterized by the locations of its support points {x(j)

}
M
j=1,

forming a point cloud in the ground metric space X . For simplicity, we restrict to uniform weights
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not suffer from the mentioned problems. Hence, models based on optimal transport are gaining pop-
ularity in machine learning; see (Rubner et al., 1998; Courty et al., 2014; Frogner et al., 2015; Kusner
et al., 2015; Arjovsky et al., 2017; Genevay et al., 2018b; Claici et al., 2018) for some examples.

Learned embeddings into Wasserstein spaces do not have long precedence. A recent line of research
proposes embedding into parameterized sets of distributions (Muzellec & Cuturi, 2018; Zhu et al.,
2018). While restricting to smaller sets facilitates use of closed-form expressions for transport dis-
tances, restriction to Gaussian distributions leads to a less expressive representation space. It is note-
worthy that Courty et al. (2018) study embedding from Wasserstein into Euclidean space. In con-
trast, we learn to embed into the space of discrete probability distributions endowed with the Wasser-
stein distance, well-known to be dense in W2 as the number of support points increases (Kloeckner,
2012; Brancolini et al., 2009).

3 LEARNING WASSERSTEIN EMBEDDINGS

3.1 THE LEARNING PROBLEM

The learning task we consider is that of recovering a pairwise distance or similarity relationship that
is partially or fully observed. We are given a collection of objects C—these can be words, symbols,
images, or any other data—as well as samples

��
u(i), v(i), r(u(i), v(i))

� 
of a target relationship

r : C ⇥ C ! R that tells us the degree to which pairs of objects are related.

Our objective is to find a map � : C ! Wp(X ) such that the relationship r(u, v) can be recovered
from the Wasserstein distance between �(u) and �(v), for any u, v 2 C. Examples include:

1. METRIC EMBEDDING: r is a distance metric and we want Wp(�(u),�(v)) ⇡ r(u, v) for all
u, v 2 C.

2. GRAPH EMBEDDING: C contains the vertices of a graph and r : C⇥C ! {0, 1} is the adjacency
relation; we would like the neighborhood of each �(u) in Wp to coincide with graph adjacency.

3. WORD EMBEDDING: C contains individual words and r is a semantic similarity between
words. We want distances in Wp to predict this semantic similarity.

Although the details of each task require some adjustment to the learning architecture, our basic
representation and training procedure detailed below applies to all three examples.

3.2 OPTIMIZATION

Given a set of training samples S =
��

u(i), v(i), r(i)
� N

i=1
⇢ C ⇥ C ⇥ R, we want to learn a map

� : C ! Wp(X ). We must address two issues.

First we must define the range of our map �. The whole of Wp(X ) is infinite-dimensional, and for a
tractable problem we need a finite-dimensional output. We restrict ourselves to discrete distributions
with an a priori fixed number of support points M , reducing optimal transport to the linear program
in equation 3. Such a distribution is parameterized by the locations of its support points {x(j)

}
M
j=1,

forming a point cloud in the ground metric space X . For simplicity, we restrict to uniform weights

4

Under review as a conference paper at ICLR 2019

2017), and Lorentz models (Nickel & Kiela, 2018). From a modeling perspective, generalization to
other spaces helps models carry information like uncertainty (Vilnis & McCallum, 2015; Bojchevski
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a structural condition on PY |x within that region. An example is manifold learning, where it is

assumed that the marginal PX concentrates locally on a manifold M and the conditional expectation

EPY |x Y |x has small gradients along this manifold. Another example is the transductive support

vector machine, which favors decision boundaries that lie in low-density regions. Both can be viewed

as making a clustering assumption: that the marginal PX exhibits distinct high-density regions within

which the conditional PY |x varies little.

1.3 Active learning

Again we have access to labeled and unlabeled samples {zi}N`
i=1 and {xj}Nu

j=1. Now the question is:

if we can query for the true label at one or more unlabeled points, which points should we choose?

Ideally, we would like the estimated parameters ✓t after t queries to improve upon the previous

estimates, with respect to the expected loss.

2 Distributionally robust active learning

2.1 Ideas

The most informative points might be those at which:

1. The worst-case distribution disagrees most with the current hypothesis.

2. The ambiguity set contains distributions that disagree on the label.

To measure local ambiguity (i.e. disagreement), we want something like

sup
x2X

sup
µ,⌫2P

W(µx, ⌫x)

with µx(A) = µ(dx⇥A) the conditional measure for the label at X = x, and the same for ⌫x.

3 SCRATCH

� : C ! Wp(Rk)
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Can we learn useful embeddings into Wasserstein spaces?

Under review as a conference paper at ICLR 2019

2017), and Lorentz models (Nickel & Kiela, 2018). From a modeling perspective, generalization to
other spaces helps models carry information like uncertainty (Vilnis & McCallum, 2015; Bojchevski
& Günnemann, 2018) to the objects being embedded (Vilnis & McCallum, 2015). More importantly,
alternative embedding spaces have the capacity to encode relations like inclusion, exclusion, hier-
archy, and ordering (Mirzazadeh et al., 2015; Vendrov et al., 2015; Athiwaratkun & Wilson, 2018).
Our work share the same themes, since we take point clouds as the embedding targets.

The distance or discrepancy measure between points in an embedding space is another major defin-
ing factor for a representation learning model. For points, the most typical choice is to use an Lp

norm. When embedding into the set of histograms, discrepancy typically is evaluated using KL
divergence (Kullback & Leibler, 1951). KL divergence between two distributions can be problem-
atic, however. In particular, the behavior of KL divergence relies heavily on distributions having
common non-empty support; once the support sets are disjoint, regardless of how close or far the
support points lie on the underlying space, the KL divergence remains the same. As an alternative
discrepancy measure, transport distances (Villani, 2008; Peyré & Cuturi, 2017; Solomon, 2018) do
not suffer from the mentioned problems. Hence, models based on optimal transport are gaining pop-
ularity in machine learning; see (Rubner et al., 1998; Courty et al., 2014; Frogner et al., 2015; Kusner
et al., 2015; Arjovsky et al., 2017; Genevay et al., 2018b; Claici et al., 2018) for some examples.

Learned embeddings into Wasserstein spaces do not have long precedence. A recent line of research
proposes embedding into parameterized sets of distributions (Muzellec & Cuturi, 2018; Zhu et al.,
2018). While restricting to smaller sets facilitates use of closed-form expressions for transport dis-
tances, restriction to Gaussian distributions leads to a less expressive representation space. It is note-
worthy that Courty et al. (2018) study embedding from Wasserstein into Euclidean space. In con-
trast, we learn to embed into the space of discrete probability distributions endowed with the Wasser-
stein distance, well-known to be dense in W2 as the number of support points increases (Kloeckner,
2012; Brancolini et al., 2009).

3 LEARNING WASSERSTEIN EMBEDDINGS

3.1 THE LEARNING PROBLEM

The learning task we consider is that of recovering a pairwise distance or similarity relationship that
is partially or fully observed. We are given a collection of objects C—these can be words, symbols,
images, or any other data—as well as samples

��
u(i), v(i), r(u(i), v(i))

� 
of a target relationship

r : C ⇥ C ! R that tells us the degree to which pairs of objects are related.

Our objective is to find a map � : C ! Wp(X ) such that the relationship r(u, v) can be recovered
from the Wasserstein distance between �(u) and �(v), for any u, v 2 C. Examples include:

1. METRIC EMBEDDING: r is a distance metric and we want Wp(�(u),�(v)) ⇡ r(u, v) for all
u, v 2 C.

2. GRAPH EMBEDDING: C contains the vertices of a graph and r : C⇥C ! {0, 1} is the adjacency
relation; we would like the neighborhood of each �(u) in Wp to coincide with graph adjacency.

3. WORD EMBEDDING: C contains individual words and r is a semantic similarity between
words. We want distances in Wp to predict this semantic similarity.

Although the details of each task require some adjustment to the learning architecture, our basic
representation and training procedure detailed below applies to all three examples.

3.2 OPTIMIZATION

Given a set of training samples S =
��

u(i), v(i), r(i)
� N

i=1
⇢ C ⇥ C ⇥ R, we want to learn a map

� : C ! Wp(X ). We must address two issues.

First we must define the range of our map �. The whole of Wp(X ) is infinite-dimensional, and for a
tractable problem we need a finite-dimensional output. We restrict ourselves to discrete distributions
with an a priori fixed number of support points M , reducing optimal transport to the linear program
in equation 3. Such a distribution is parameterized by the locations of its support points {x(j)

}
M
j=1,
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2017), and Lorentz models (Nickel & Kiela, 2018). From a modeling perspective, generalization to
other spaces helps models carry information like uncertainty (Vilnis & McCallum, 2015; Bojchevski
& Günnemann, 2018) to the objects being embedded (Vilnis & McCallum, 2015). More importantly,
alternative embedding spaces have the capacity to encode relations like inclusion, exclusion, hier-
archy, and ordering (Mirzazadeh et al., 2015; Vendrov et al., 2015; Athiwaratkun & Wilson, 2018).
Our work share the same themes, since we take point clouds as the embedding targets.

The distance or discrepancy measure between points in an embedding space is another major defin-
ing factor for a representation learning model. For points, the most typical choice is to use an Lp

norm. When embedding into the set of histograms, discrepancy typically is evaluated using KL
divergence (Kullback & Leibler, 1951). KL divergence between two distributions can be problem-
atic, however. In particular, the behavior of KL divergence relies heavily on distributions having
common non-empty support; once the support sets are disjoint, regardless of how close or far the
support points lie on the underlying space, the KL divergence remains the same. As an alternative
discrepancy measure, transport distances (Villani, 2008; Peyré & Cuturi, 2017; Solomon, 2018) do
not suffer from the mentioned problems. Hence, models based on optimal transport are gaining pop-
ularity in machine learning; see (Rubner et al., 1998; Courty et al., 2014; Frogner et al., 2015; Kusner
et al., 2015; Arjovsky et al., 2017; Genevay et al., 2018b; Claici et al., 2018) for some examples.

Learned embeddings into Wasserstein spaces do not have long precedence. A recent line of research
proposes embedding into parameterized sets of distributions (Muzellec & Cuturi, 2018; Zhu et al.,
2018). While restricting to smaller sets facilitates use of closed-form expressions for transport dis-
tances, restriction to Gaussian distributions leads to a less expressive representation space. It is note-
worthy that Courty et al. (2018) study embedding from Wasserstein into Euclidean space. In con-
trast, we learn to embed into the space of discrete probability distributions endowed with the Wasser-
stein distance, well-known to be dense in W2 as the number of support points increases (Kloeckner,
2012; Brancolini et al., 2009).

3 LEARNING WASSERSTEIN EMBEDDINGS

3.1 THE LEARNING PROBLEM

The learning task we consider is that of recovering a pairwise distance or similarity relationship that
is partially or fully observed. We are given a collection of objects C—these can be words, symbols,
images, or any other data—as well as samples

��
u(i), v(i), r(u(i), v(i))

� 
of a target relationship

r : C ⇥ C ! R that tells us the degree to which pairs of objects are related.

Our objective is to find a map � : C ! Wp(X ) such that the relationship r(u, v) can be recovered
from the Wasserstein distance between �(u) and �(v), for any u, v 2 C. Examples include:
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u, v 2 C.
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relation; we would like the neighborhood of each �(u) in Wp to coincide with graph adjacency.

3. WORD EMBEDDING: C contains individual words and r is a semantic similarity between
words. We want distances in Wp to predict this semantic similarity.

Although the details of each task require some adjustment to the learning architecture, our basic
representation and training procedure detailed below applies to all three examples.

3.2 OPTIMIZATION
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u,v / 1, although it is certainly possible to optimize simultaneously over weights and locations. As
noted in (Brancolini et al., 2009; Kloeckner, 2012; Claici et al., 2018), however, when constructing
a discrete M -point approximation to a fixed target distribution, allowing non-uniform weights does
not improve the asymptotic approximation error. 1.

The second issue is that, as noted in §2.2, exact computation of Wp in general is costly, requiring the
solution of a linear program. As in (Genevay et al., 2018b), we instead replace Wp with the Sinkhorn
divergence W

�
p , which is solvable by a simple fixed-point iteration introduced in §2.2, equation 5.

Learning then takes the form of empirical loss minimization,

�⇤ = argmin
�2H

1

N

NX

i=1

L

⇣
W

�
p

⇣
�(u(i)),�(v(i))

⌘
, r(i)

⌘
, (7)

over a hypothesis space of maps H. The loss L is problem-specific and scores the coincidence
between the (regularized) Wasserstein distance W

�
p and the target relationship r, evaluated at the

pair
�
u(i), v(i)

�
. As mentioned in §2.2, gradients are available from automatic differentiation of

the Sinkhorn procedure, and hence with a suitable loss function the learning objective 7 can be
optimized by standard gradient-based methods. In the experiments that follow, we use the Adam
optimizer.

4 EMPIRICAL STUDY

4.1 REPRESENTATIONAL CAPACITY: EMBEDDING COMPLEX NETWORKS

We first demonstrate the representational power of learned Wasserstein embeddings. As discussed
in §2.3, theory suggests that Wasserstein spaces are quite flexible, in that they can embed a wide
variety of metrics with low distortion. We show that this is true in practice as well.

To generate a variety of metrics to embed, we take networks with various patterns of connectivity
and compute the shortest path distances between vertices. The collection of vertices for each net-
work serves as the input space C for our embedding, and our goal is to learn a map � : C ! Wp(Rk)
such that the Wasserstein distance Wp(�(u),�(v)) matches as closely as possible the shortest path
distance between vertices u and v, for all pairs of vertices. We learn a minimum distortion embed-
ding: given a fully observed distance metric dC : C ⇥ C ! R in the input space, we minimize the
mean distortion:

�⇤ = argmin
�

1�n
2

�
X

j>i

|W
�
1 (�(vi),�(vj))� dC(vi, vj)|

dC(vi, vj)
. (8)

� is parameterized as in §3.2, directly specifying the support points of the output distribution.

We examine the performance of Wasserstein embedding using both random networks and real net-
works. The random networks in particular allow us systematically to test robustness of the Wasser-
stein embedding to particular properties of the metric we are attempting to embed. Note that these
experiments do not explore generalization performance: we are purely concerned with the represen-
tational capacity of the learned Wasserstein embeddings.

For random networks, we use three standard generative models: Barabási–Albert (Albert &
Barabási, 2002), Watts–Strogatz (Watts & Strogatz, 1998), and the stochastic block model (Hol-
land et al., 1983). Random scale-free networks are generated from the Barabási–Albert model,
and possess the property that distances are on average much shorter than in a Euclidean spatial
graph, scaling like the log of the number of vertices. Random small-world networks are gener-
ated from the Watts–Strogatz model; in addition to log-scaling of the average path length, Watts–
Strogatz graphs also show clustering of vertices into distinct neighborhoods. Random community-
structured networks are generated from the stochastic block model, which places vertices within
densely-connected communities, with only sparse connections between the different communities.

1In both the non-uniform and uniform cases, the order of convergence in Wp of the nearest weighted point
cloud to the target measure, as we add more points, is O(M�1/d), for a d-dimensional ground metric space.
This assumes the underlying measure is absolutely continuous and compactly-supported.
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as making a clustering assumption: that the marginal PX exhibits distinct high-density regions within

which the conditional PY |x varies little.
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i=1 and {xj}Nu

j=1. Now the question is:

if we can query for the true label at one or more unlabeled points, which points should we choose?

Ideally, we would like the estimated parameters ✓t after t queries to improve upon the previous

estimates, with respect to the expected loss.

2 Distributionally robust active learning

2.1 Ideas

The most informative points might be those at which:

1. The worst-case distribution disagrees most with the current hypothesis.

2. The ambiguity set contains distributions that disagree on the label.

To measure local ambiguity (i.e. disagreement), we want something like
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u,v / 1, although it is certainly possible to optimize simultaneously over weights and locations. As
noted in (Brancolini et al., 2009; Kloeckner, 2012; Claici et al., 2018), however, when constructing
a discrete M -point approximation to a fixed target distribution, allowing non-uniform weights does
not improve the asymptotic approximation error. 1.

The second issue is that, as noted in §2.2, exact computation of Wp in general is costly, requiring the
solution of a linear program. As in (Genevay et al., 2018b), we instead replace Wp with the Sinkhorn
divergence W

�
p , which is solvable by a simple fixed-point iteration introduced in §2.2, equation 5.

Learning then takes the form of empirical loss minimization,
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over a hypothesis space of maps H. The loss L is problem-specific and scores the coincidence
between the (regularized) Wasserstein distance W

�
p and the target relationship r, evaluated at the

pair
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u(i), v(i)

�
. As mentioned in §2.2, gradients are available from automatic differentiation of

the Sinkhorn procedure, and hence with a suitable loss function the learning objective 7 can be
optimized by standard gradient-based methods. In the experiments that follow, we use the Adam
optimizer.
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4.1 REPRESENTATIONAL CAPACITY: EMBEDDING COMPLEX NETWORKS

We first demonstrate the representational power of learned Wasserstein embeddings. As discussed
in §2.3, theory suggests that Wasserstein spaces are quite flexible, in that they can embed a wide
variety of metrics with low distortion. We show that this is true in practice as well.

To generate a variety of metrics to embed, we take networks with various patterns of connectivity
and compute the shortest path distances between vertices. The collection of vertices for each net-
work serves as the input space C for our embedding, and our goal is to learn a map � : C ! Wp(Rk)
such that the Wasserstein distance Wp(�(u),�(v)) matches as closely as possible the shortest path
distance between vertices u and v, for all pairs of vertices. We learn a minimum distortion embed-
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and possess the property that distances are on average much shorter than in a Euclidean spatial
graph, scaling like the log of the number of vertices. Random small-world networks are gener-
ated from the Watts–Strogatz model; in addition to log-scaling of the average path length, Watts–
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Figure 2: Real networks: Learned Wasserstein embeddings achieve lower distortion than Euclidean
and hyperbolic embeddings of real network fragments.
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Table 1: Change in the 5-nearest neighbors when increasing dimensionality of each point cloud with
fixed total length of representation.

4.2 WORD2CLOUD: WASSERSTEIN WORD EMBEDDINGS

In this section, we embed words as point clouds. In a sentence s = (x0, . . . ,xn), a word xi is
associated with word xj if xj is in the context of xi, which is a symmetric window around xi. This
association is encoded as a label r; rxi,xj = 1 if and only if |i� j|  l where l is the window size.
For word embedding, we use a contrastive loss function (Hadsell et al., 2006)
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which tries to embed words xi,xj near each other in terms of 1-Wasserstein distance (here W

�
1 ) if

they co-occur in a sentence; otherwise, it prefers moving them at least distance m away from one
another. This approach is similar to that suggested by Mikolov et al. (2013), up to the loss and
distance functions.

We use a Siamese architecture (Bromley et al., 1993) for our model, with negative sampling (as in
Mikolov et al. (2013)) for selecting words outside the context. The network architecture in each
branch consists of a linear layer with 64 nodes followed by our point cloud embedding layer. The
two branches of the Siamese network connect via the Wasserstein distance, computed as in §2.2.
The training dataset is Text84, which consists of a corpus with 17M tokens from Wikipedia and is
commonly used as a language modeling benchmark. We choose a vocabulary of 8000 words and a
context window size of l = 2 (i.e., 2 words on each side), � = 0.05, number of epochs of 3, negative
sampling rate of 1 per positive and Adam (Kingma & Ba, 2014) for optimization.

We first study the effect of dimensionality of the point cloud on the quality of the semantic neighbor-
hood captured by the embedding. We fix the total number of output parameters, being the product of
the number of support points and the dimension of the support space, to 63 or 64 parameters. Table
1 shows the 5 nearest neighbors in the embedding space. Notably, increasing the dimensionality
directly improves the quality of the learned representation. Interestingly, it is more effective to use a
budget of 64 parameters in a 16-point, 4-dimensional cloud than in a 32-point, 2-dimensional cloud.

Next we evaluate these models on a number of benchmark retrieval tasks from (Faruqui & Dyer,
2014), which score a method by the correlation of its output similarity scores with human similarity
judgments, for various pairs of words. Results are shown in Table 2. Here, for consistency, we pick

4From http://mattmahoney.net/dc/text8.zip
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# # W
�
1 (R2) W

�
1 (R3) W

�
1 (R4) R M S G W

Task Name Pairs Found 17M 17M 17M — 63M 631M 900M 100B
RG-65 65 64 0.18 0.56 0.69 0.27 -0.02 0.50 0.66 0.54
Verb-143 143 144 0.12 0.14 0.29 0.29 0.06 0.36 0.44 0.27
WS-353 353 351 0.14 0.22 0.37 0.24 0.10 0.49 0.62 0.64
WS-353-S 203 201 0.19 0.35 0.47 0.36 0.15 0.61 0.70 0.70
WS-353-R 252 252 0.05 0.12 0.24 0.18 0.09 0.40 0.56 0.61
MC-30 30 30 -0.04 0.43 0.48 0.47 -0.14 0.57 0.66 0.63
Rare-Word 2034 1159 0.08 0.27 0.11 0.29 0.11 0.39 0.06 0.39
MEN 3000 2915 0.20 0.26 0.31 0.24 0.09 0.57 0.31 0.65
MTurk-287 287 284 0.30 0.30 0.43 0.33 0.09 0.59 0.36 0.67
MTurk-771 771 770 0.10 0.24 0.27 0.26 0.10 0.50 0.32 0.57
SimLex-999 999 998 0.06 0.09 0.13 0.23 0.01 0.27 0.10 0.31

Table 2: Performance on a number of similarity benchmarks when dimensionality of point clouds
increase given a fixed total number of parameters. The middle block shows the performance of the
proposed models. The training corpus size when known appears below each model name.

the latent layer before our cloud layer and consider it as the embedding to be compared. The results
of our method appear in the middle block of Table 2. Again, we see gradual improvement with
increasing dimensionality of the point clouds. The right block in Table 2 shows baselines: Respec-
tively, RNN(80D) (Kombrink et al., 2011), Metaoptimize (50D) (Turian et al., 2010), SENNA (50D)
(Collobert, 2011) Global Context (50D) (Huang et al., 2012) and word2vec (80D) (Mikolov et al.,
2013). The reported performance measure is the correlation with ground-truth rankings, computed
as in (Faruqui & Dyer, 2014). Note there are many ways to improve the performance: increas-
ing the vocabulary/window size/number of epochs/negative sampling rate, using larger texts, and
accelerating performance. We defer this tuning to future work focused specifically on NLP.

4.2.1 DIRECT, INTERPRETABLE VISUALIZATION OF HIGH-DIMENSIONAL EMBEDDINGS

Wasserstein embeddings over low-dimensional ground metric spaces have a unique property: We
can directly visualize the embedding, which is a point cloud in the low-dimensional ground space.
This is not true for most existing embedding methods, which rely on dimensionality reduction tech-
niques such as t-SNE for visualization. Whereas dimensionality reduction only approximately cap-
tures proximity of points in the embedding space, with Wasserstein embeddings we can display the
exact embedding of each input, by visualizing the point cloud.

We demonstrate this property by visualizing the learned word representations. Importantly, each
point cloud is strongly clustered, which leads to apparent, distinct modes in its density. We therefore
use kernel density estimation to visualize the densities. In Figure 3a, we visualize three distinct
words, thresholding each density at a low value and showing its upper level set to reveal the modes.
These level sets are overlaid, with each color in the figure corresponding to a distinct embedded
word. The density for each word is depicted by the opacity of the color within each level set.

It is easy to visualize multiple sets of words in aggregate, by assigning all words in a set a single
color. This immediately reveals how well-separated the sets are, as shown in Figure 3b: As expected,
military and political terms overlap, while names of sports are more distant.

Examining the embeddings in more detail, we can dissect relationships (and confusion) between
different sets of words. We observe that each word tends to concentrate its mass in two or more
distinct regions. This multimodal shape allows for multifaceted relationships between words, since
a word can partially overlap with many distinct groups of words simultaneously. Figure 3c shows
the embedding for a word that has multiple distinct meanings (kind), alongside synonyms for both
senses of the word (nice, friendly, type). We see that kind has two primary modes,
which overlap separately with friendly and type. nice is included to show a failure of the
embedding to capture the full semantics: Figure 3d shows that the network has learned that nice
is a city in France, ignoring its interpretation as an adjective. This demonstrates the potential of this
visualization for debugging, helping identify and attribute an error.
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R: RNN (80D) (Kombrink et al. 2011)
M: Metaoptimize (50D) (Turian et al. 2010)
S: SENNA (50D) (Collobert 2011)
G: Global Context (50D) (Huang et al. 2012)
W: word2vec (80D) (Mikolov 2013)

Baseline tasks from (Faruqui & Dyer 2014).



Direct visualization

Learn word embedding.

For a single word: apply KDE to point cloud.

Threshold the density estimate.

Show both upper level set and density.











Learning Entropic Wasserstein embeddings

Wasserstein spaces can embed a wide variety of metrics.

Can learn embeddings into (entropic) Wasserstein spaces.

Learned embeddings of complex networks can achieve lower distortion than Euclidean.

Learned word embeddings comparable to existing work in replicating human similarity judgments.

Can directly visualize the embedding (unlike most methods).


