Learning Embeddings into Entropic Wasserstein Spaces

Charlie Frogner, Farzaneh Mirzazadeh, Justin Solomon

Word embedding: word2vec (*Mikolov 2013*), GloVe (*Pennington* 2014), fastText (*Bojanowski 2017*), ELMo (*Peters 2018*)

Word embedding: word2vec (*Mikolov 2013*), GloVe (*Pennington* 2014), fastText (*Bojanowski 2017*), ELMo (*Peters 2018*)

Graph embedding: Laplacian eigenmaps (Belkin & Niyogi 2001), DeepWalk (Perozzi 2014), node2vec (Grover & Leskovec 2016), Graph Convolutional Networks (Kipf 2017), Poincare embedding (Nickel 2017)

Word embedding: word2vec (*Mikolov 2013*), GloVe (*Pennington* 2014), fastText (*Bojanowski 2017*), ELMo (*Peters 2018*) **Graph embedding**: Laplacian eigenmaps (*Belkin & Niyogi* 2001), DeepWalk (*Perozzi 2014*), node2vec (*Grover & Leskovec* 2016), Graph Convolutional Networks (*Kipf 2017*), Poincare embedding (*Nickel 2017*)

Image representation: AlexNet (Krizhevsky 2012), VGG (Simonyan 2014), ResNet (He 2015).

...

Euclidean: word2vec (*Mikolov 2013*) GloVe (*Pennington 2014*) fastText (*Bojanowski 2017*) ELMo (*Peters 2018*) Laplacian eigenmaps (*Belkin & Niyogi 2001*) DeepWalk (*Perozzi 2014*) node2vec (*Grover & Leskovec 2016*) Graph Convolutional Nets (*Kipf 2017*)

$$W_p(\mu,
u):=\left(\inf_{\gamma\in\Gamma(\mu,
u)}\int_{M imes M}d(x,y)^p\,\mathrm{d}\gamma(x,y)
ight)^{1/p}$$

 $\Gamma(\mu,
u)$ joint distributions with marginals $\mu,
u$ d(x,y) ground metric

1st PDF

transport plan (a.k.a. joint distribution)

Can we learn useful embeddings into Wasserstein spaces?

given only:

samples $\{(u^{(i)}, v^{(i)}, r(u^{(i)}, v^{(i)}))\}$

learn:

map $\phi: \mathcal{C} \to \mathcal{W}_p(\mathbb{R}^k)$

such that:

(metric learning) $\mathcal{W}_p(\phi(u),\phi(v)) \approx r(u,v)$

(graph embedding) $\mathcal{W}_p(\phi(u),\phi(v))$ small iff graph adjacency

(word embedding) $\mathcal{W}_p(\phi(u),\phi(v))$ predicts semantic similarity

data space	${\mathcal C}$
target relationship	$pr: \mathcal{C} \times \mathcal{C} \to \mathbb{R}$

$$\phi: \mathbf{c} \in \mathcal{C} \mapsto \rho \in \mathcal{W}_p(\mathbb{R}^k)$$

$$\rho = \frac{1}{M} \sum_{j=1}^{M} \delta_{\mathbf{x}^{(j)}}$$

$$W_p(\mu,
u):=\left(\inf_{\gamma\in\Gamma(\mu,
u)}\int_{M imes M}d(x,y)^p\,\mathrm{d}\gamma(x,y)
ight)^{1/p}$$

 $\Gamma(\mu,
u)$ joint distributions with marginals $\mu,
u$ d(x,y) ground metric

1st PDF

transport plan (a.k.a. joint distribution)

$$\mu = \frac{1}{M} \sum_{i=1}^{M} \delta_{\mathbf{x}^{(i)}}, \quad \nu = \frac{1}{M} \sum_{j=1}^{M} \delta_{\mathbf{y}^{(j)}}$$
$$\mathcal{W}_p(\mu, \nu) = \left(\inf_{\pi \in \Pi(\mathbf{1}, \mathbf{1})} \sum_{i, j=1}^{M} d(\mathbf{x}^{(i)}, \mathbf{y}^{(j)})^p \pi_{ij} \right)^{1/p}$$

 $\Pi({f 1},{f 1})$ doubly-stochastic matrices of size M x Md(x,y) ground metric

transport plan (a.k.a. joint distribution)

$$\mu = \frac{1}{M} \sum_{i=1}^{M} \delta_{\mathbf{x}^{(i)}}, \quad \nu = \frac{1}{M} \sum_{j=1}^{M} \delta_{\mathbf{y}^{(j)}}$$
 entropic regularizer
$$\mathcal{W}_{p}^{\lambda}(\mu,\nu) = \left(\sum_{i,j=1}^{M} d(\mathbf{x}^{(i)},\mathbf{y}^{(j)})^{p} \pi_{ij}^{\lambda}\right)^{1/p} \qquad \pi^{\lambda} = \inf_{\pi \in \Pi(\mathbf{1},\mathbf{1})} \sum_{i,j=1}^{M} d(\mathbf{x}^{(i)},\mathbf{y}^{(j)})^{p} \pi_{ij} + \lambda \sum_{i,j=1}^{M} \pi_{ij} \log(\pi_{ij})$$

 $\Pi({f 1},{f 1})$ doubly-stochastic matrices of size M x M d(x,y) ground metric

Marco Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal Transport. NIPS (2013).

$$\mu = \frac{1}{M} \sum_{i=1}^{M} \delta_{\mathbf{x}^{(i)}}, \quad \nu = \frac{1}{M} \sum_{j=1}^{M} \delta_{\mathbf{y}^{(j)}}$$
entropic regularizer
$$\mathcal{W}_{p}^{\lambda}(\mu,\nu) = \left(\sum_{i,j=1}^{M} d(\mathbf{x}^{(i)},\mathbf{y}^{(j)})^{p} \pi_{ij}^{\lambda}\right)^{1/p} \qquad \pi^{\lambda} = \inf_{\pi \in \Pi(\mathbf{1},\mathbf{1})} \sum_{i,j=1}^{M} d(\mathbf{x}^{(i)},\mathbf{y}^{(j)})^{p} \pi_{ij} + \lambda \sum_{i,j=1}^{M} \pi_{ij} \log(\pi_{ij})$$

 $\Pi({f 1},{f 1})$ doubly-stochastic matrices of size M x M d(x,y) ground metric

Sinkhorn iteration $\pi^{\lambda} = \operatorname{diag}(\alpha) \operatorname{\mathbf{K}diag}(\beta)$ $\alpha = \mathbf{1} \oslash \operatorname{\mathbf{K}}\beta$ $\beta = \mathbf{1} \oslash \operatorname{\mathbf{K}}^{\mathsf{T}}\alpha$

Marco Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal Transport. NIPS (2013).

$$\mu = \frac{1}{M} \sum_{i=1}^{M} \delta_{\mathbf{x}^{(i)}}, \quad \nu = \frac{1}{M} \sum_{j=1}^{M} \delta_{\mathbf{y}^{(j)}}$$

$$\mathcal{W}_{p}^{\lambda}(\mu,\nu) = \left(\sum_{i,j=1}^{M} d(\mathbf{x}^{(i)},\mathbf{y}^{(j)})^{p} \pi_{ij}^{\lambda}\right)^{1/p}$$

$$\pi^{\lambda} = \inf_{\pi \in \Pi(1,1)} \sum_{i,j=1}^{M} d(\mathbf{x}^{(i)},\mathbf{y}^{(j)})^{p} \pi_{ij} + \lambda \sum_{i,j=1}^{M} \pi_{ij} \log(\pi_{ij})$$

$$\Pi(\mathbf{1},\mathbf{1}) \text{ doubly-stochastic matrices of size M x M}$$

$$d(x,y) \text{ ground metric}$$

$$\begin{array}{c} \pi^{\lambda} = \operatorname{diag}(\alpha) \operatorname{Kdiag}(\beta) \\ \alpha = \mathbf{1} \oslash \operatorname{K\beta} \\ \beta = \mathbf{1} \oslash \operatorname{K}^{\intercal} \alpha \end{array}$$

unroll and differentiate (Genevay 2018)

Marco Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal Transport. NIPS (2013).

Can we learn useful embeddings into Wasserstein spaces?

given only:

samples $\left\{ \left(u^{(i)}, v^{(i)}, r(u^{(i)}, v^{(i)}) \right) \right\}$

learn:

map

$$\phi: \mathcal{C} \to \mathcal{W}_p^\lambda(\mathbb{R}^k)$$

data space
$$\mathcal{C}$$

target relationship $r:\mathcal{C} imes\mathcal{C} o\mathbb{R}$

$$\phi_* = \operatorname*{arg\,min}_{\phi \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^N \mathcal{L}\left(\mathcal{W}_p^\lambda\left(\phi(u^{(i)}), \phi(v^{(i)})\right), r^{(i)}\right)$$

such that:

(metric learning) $\mathcal{W}_p^{\lambda}(\phi(u), \phi(v)) \approx r(u, v)$ (graph embedding) $\mathcal{W}_p^{\lambda}(\phi(u), \phi(v))$ small iff graph adjacency (word embedding) $\mathcal{W}_p^{\lambda}(\phi(u), \phi(v))$ predicts semantic similarity

Representational capacity

Generate **random network**. (C = nodes.)

Compute **input metric** = shortest path distance.

Learn **embedding** $\phi : \mathcal{C} \to \mathcal{W}_p^{\lambda}(\mathbb{R}^k)$ such that $\mathcal{W}_p^{\lambda}(\phi(u), \phi(v))$ matches input metric.

Minimize **distortion**:

$$\phi_* = \underset{\phi}{\operatorname{arg\,min}} \frac{1}{\binom{n}{2}} \sum_{j>i} \frac{|\mathcal{W}_1^{\lambda}(\phi(v_i), \phi(v_j)) - d_{\mathcal{C}}(v_i, v_j)|}{d_{\mathcal{C}}(v_i, v_j)}$$

Compare with Euclidean and hyperbolic (Nickel & Kiela 2017) embeddings.

(a) arXiv co-authorship.

(b) Amazon product co-purchases.

(c) Google web graph.

Word embedding

Define a **vocabulary** of many words. (C = words.)

Given a corpus (many sentences).

Define a **positive example =** pair of words co-occurring in a sentence

For each positive example, define a **negative example** = same first word, second word not in sentence.

Learn **embedding** $\phi: \mathcal{C} \to \mathcal{W}_p^{\lambda}(\mathbb{R}^k)$ s.t. positive pairs are close, negative pairs are far.

Minimize contrastive divergence:

$$\phi_* = \operatorname*{arg\,min}_{\phi} \sum_{\mathbf{x}_i, \mathbf{x}_j} r_{\mathbf{x}_i, \mathbf{x}_j} \left(\mathcal{W}_1^{\lambda} \big(\phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \big) \right)^2 + (1 - r_{\mathbf{x}_i, \mathbf{x}_j}) \left(\left[m - \mathcal{W}_1^{\lambda} \big(\phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \big) \right]_+ \right)^2 \right)^2$$

		one:	f, two, i, after, four				
	$\mathcal{W}_1^\lambda(\mathbb{R}^2)$	united:	series, professional, team, east, central				
		algebra:	skin, specified, equation, hilbert, reducing				
	$\mathcal{W}_1^\lambda(\mathbb{R}^3)$	one:	two, three, s, four, after				
		united:	kingdom, australia, official, justice, officially				
		algebra:	binary, distributions, reviews, ear, combination				
		one:	six, eight, zero, two, three				
	$\mathcal{W}_1^{\lambda}(\mathbb{R}^4)$	united:	army, union, era, treaty, federal				
		algebra:	tables, transform, equations, infinite, differential				

	#	#	$\mathcal{W}_1^\lambda(\mathbb{R}^2)$	$\mathcal{W}_1^\lambda(\mathbb{R}^3)$	$\mathcal{W}_1^\lambda(\mathbb{R}^4)$	R	М	S	G	W
Task Name	Pairs	Found	17M	17M	17M		63M	631M	900M	100 B
RG-65	65	64	0.18	0.56	0.69	0.27	-0.02	0.50	0.66	0.54
Verb-143	143	144	0.12	0.14	0.29	0.29	0.06	0.36	0.44	0.27
WS-353	353	351	0.14	0.22	0.37	0.24	0.10	0.49	0.62	0.64
WS-353-S	203	201	0.19	0.35	0.47	0.36	0.15	0.61	0.70	0.70
WS-353-R	252	252	0.05	0.12	0.24	0.18	0.09	0.40	0.56	0.61
MC-30	30	30	-0.04	0.43	0.48	0.47	-0.14	0.57	0.66	0.63
Rare-Word	2034	1159	0.08	0.27	0.11	0.29	0.11	0.39	0.06	0.39
MEN	3000	2915	0.20	0.26	0.31	0.24	0.09	0.57	0.31	0.65
MTurk-287	287	284	0.30	0.30	0.43	0.33	0.09	0.59	0.36	0.67
MTurk-771	771	770	0.10	0.24	0.27	0.26	0.10	0.50	0.32	0.57
SimLex-999	999	998	0.06	0.09	0.13	0.23	0.01	0.27	0.10	0.31

R: RNN (80D) (Kombrink et al. 2011)
M: Metaoptimize (50D) (Turian et al. 2010)
S: SENNA (50D) (Collobert 2011)
G: Global Context (50D) (Huang et al. 2012)
W: word2vec (80D) (Mikolov 2013)

Baseline tasks from (Faruqui & Dyer 2014).

Direct visualization

Learn word embedding.

For a single word: apply **KDE** to point cloud.

Threshold the density estimate.

Show both **upper level set** and **density**.

(a) Densities of three embedded words.

(b) Class separation.

(c) Word with multiple meanings: kind.

(d) Explaining a failed association: nice.

Learning Entropic Wasserstein embeddings

Wasserstein spaces can embed a wide variety of metrics.

Can learn embeddings into (entropic) Wasserstein spaces.

Learned embeddings of **complex networks** can achieve **lower distortion** than Euclidean.

Learned word embeddings comparable to existing work in replicating human similarity judgments.

Can directly visualize the embedding (unlike most methods).

