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• Background
- Entropy-regularized Optimal Transport (OT)

• Information geometry of entropy-regularized OT 
- Optimal transportation plan as exponential family
- Dually flat structure

• Alternative divergence to entropy-regularized cost
- An information geometric viewpoint 
- Barycenter of patterns
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Optimal Transport Problem in 𝑆𝑛−1
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(a.k.a. Hitchcock Problem)

Optimal 𝑃 is solvable by linear programming

Metric:𝑀𝑖𝑗

ex. distance |𝑖 − 𝑗|2

Wasserstein distance:

• Probability simplex: 

Π 𝒑, 𝒒 : Set of joint distributions 𝑃
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Wasserstein distance:
• Computationally demanding

𝑂(𝑛3ln 𝑛 )
• Solution is not necessarily unique
• Undifferentiable with 𝒑 and 𝒒

Entropy-regularized OT [M. Cuturi, NIPS 2013]:

• Fast O (𝑛2) and GPU-friendly
• Unique solution
• Differentiable 

Difficulties

Advantages

Optimal Transport Problem in 𝑆𝑛−1
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KL divergence

Wasserstein

Spatially close pixels tend to take 
similar values 

[Cuturi&Doucet, ICML 2014]

Entropy-R Optimal Transport in 𝑆𝑛−1

• Barycenter of images 𝒒𝑖 (𝑖 = 1, 2, … , 𝑁)
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Application

[Bonneel+, SIGGRAPH 2016]

[Solomon+, SIGGRAPH 2015]

Imaging

Color Grading

Dictionary learning [Schmitz+ 2018],  generative models [Genevay+ 2017], …

Color histogram



Kullback-Leibler (KL) divergence

Information Geometry [Amari 1985]: Fisher information metric (Riemannian metric), 
dual affine connections

Invariant under reversible transformations of random variables
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Discretization

Permutation

Destruction of 
neighboring structure

Geometrical structures of probabilistic distributions



Kullback-Leibler (KL) divergence

Invariant under reversible transformations of random variables
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Wasserstein distance

Reflects the ground metric
supporting probability measures  

Information Geometry [Amari 1985]

Is Information Geometry not related?

Geometry of probabilistic distributions



Kullback-Leibler (KL) divergence

Invariant under reversible transformations of random variables
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Wasserstein distance

Reflects the ground metric
supporting probability measures  

Entropy

Information Geometry [Amari 1985]

Geometry of probabilistic distributions

We can introduce Information Geometry of OT plans
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Entropy-regularized OT [M. Cuturi, NIPS 2013] :

Entropy-regularized OT in 𝑆𝑛−1

• How to solve:  Method of Lagrange multiplier   

Multipliers: 𝛼𝑖 , 𝛽𝑗

Probability simplex:

Marginal distributions:

Metric between  𝑝𝑖 and 𝑞𝑗 : 𝑀𝑖𝑗
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Entropy-regularized OT: Unique Solution 

• Multipliers (𝜶, 𝜷) are determined by iterative computations

Entropy-regularized OT has a unique optimal solution 𝑃λ
∗

with

Multipliers: 𝛼𝑖 , 𝛽𝑗
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Sinkhorn algorithm: 

[M. Cuturi, NIPS 2013] revealed
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Entropy-regularized cost                  convex over (𝒑, 𝒒)Lemma. 

• Cost function 𝜑λ

Proof sketch :  Wasserstein distance (linear in P) + Entropy (convex over P) 

Entropy-regularized OT: Convexity

- 2(𝑛 − 1)-dimensional manifold;

• Set of OT plans is an Exponential Family 

- Normalization factor 𝜓λ is convex over (α, β)



Theorem.  Normalization factor 𝜓𝜆 and cost 𝜑λ are both 
convex and connected by the Legendre Transformation; 

,
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Information geometry of entropy-regularized OT



,
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Information geometry of entropy-regularized OT

• Generalized Pythagorean Theorem 

Optimal transportation plansfor

𝑃

𝑄𝑅

m-geodesic:

e-geodesic:

• The set of  𝑃λ
∗ is a 2(𝑛 − 1)-dimensional dually flat manifold

m-flat

e-flat



Riemannian metric of dually flat manifold：

Information Geometry of Optimal Transportation Plans

Fisher information matrix (in the 𝜃-coordinates) is 
explicitly given by  

Dual affine connections : By using a cubic tensor , 

[𝑖𝑗; 𝑘]: Levi-Civita connection

,
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- Useful in estimation; 
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Sinkhorn algorithm = iterations of e-projection 

Sinkhorn algorithm：

,

・ e-projection to

,

・ e-projection to

[Amari, Karakida & Oizumi, Information Geometry (2018)]

: Subspace conditioned by a fixed 𝒑

: Subspace conditioned by a fixed 𝒒
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[AKOC’19]



Disadvantage of entropy-regularized cost

• It does not satisfy a criterion of divergence (distance);
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Entropy regularized cost: 

• Minimum is given by

Conditional metric
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Divergence derived from entropy-regularized cost

- Convex with respect to 𝒑 and 𝒒

• A new divergence

Proof based on the Riemannian metric
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- Convergence to a squared distance (                   )

- Convergence to Wasserstein distance (                )

Divergence derived from entropy-regularized cost

• A new divergence

: Symmetric matrix determined by 

This overcomes disadvantage of

which cannot measure the distance between 𝒑 and 𝒒
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• Sharpening

Barycenter of Patterns

Discrete diffusion operator

Conditional metric

• Find the barycenter of input samples 𝒑𝑖 (𝑖 = 1, 2, … , 𝑁)

; sharper barycenter by ‘’Inverse diffusion’’ 

Under certain conditions, 



24

• Shape-location separation

Barycenter of Patterns

Remark: λ-Divergence

- Canonical divergence from the Legendre duality
- It does not satisfy sharpening & shape-location separation 

is located at the barycenter of
𝒑𝑖’s locations  

[AKO’18]



Barycenter of Patterns

Two patterns

Right barycenter

Left barycenter

𝐷λ-barycenters are obtained by a gradient method



Summary

• The set of entropy-regularized OT plans is an exponential family 
and naturally deｆｉnes the dually flat manifold  
- We obtained its Riemannian metric & dual affine connections 

• A new divergence 𝐷λ

- Inherits essential properties of Wasserstein geometry
Sharpening, shape-location separation 

- Better than 𝐶λ
satisfying criterion of divergence, shaper barycenter   

Future work
Information geometry of Entropy-regularized OT with continuous measures

- continuous 𝒑 vs. continuous 𝒒, discrete 𝒑 vs. continuous  𝒒
- Generative model
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