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- Entropy-regularized Optimal Transport (OT)

Information geometry of entropy-regularized OT
- Optimal transportation plan as exponential family
- Dually flat structure

Alternative divergence to entropy-regularized cost
- An information geometric viewpoint
- Barycenter of patterns



Optimal Transport Problem in S,,_4

(a.k.a. Hitchcock Problem)

* Probability simplex:

Sn_lz{pER”Isz:L p@ZO} P1 Jl m N

P.q € Sn_1 Pz o I

[1(p, q): Set of joint distributions P Pj o o 4
Y Pj=p; Y Pij=uq :

‘ J Pn @O o ﬂ_ an
Wasserstein distance: Metric: M;;

W(p,q) = min M;; P;; ex. distance |i — j|?

Pell(p,q) v

Optimal P is solvable by linear programming



Optimal Transport Problem in S,,_4

Wasserstein distance:
Wip, q min ]WZ P;;
(P, q) = Pl 2 iPij
P, q € Sn—l

4

Difficulties

Computationally demanding
O(n’lnn)

Solution is not necessarily unique
Undifferentiable with p and q

Entropy-regularized OT [m. cuturi, NIPS 2013]:

Z M;;Pij+A)  Pijln P

min

0%
P.q) = Pell(p,q)

(A > 0)

tJ

Advantages -« Fast O (n?)and GPU-friendly

* Unique solution

e Differentiable



Entropy-R Optimal Transportin §,,_4

Barycenter of images q; (i = 1,2, ...,N)
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Spatially close pixels tend to take

[Cuturi&Doucet, ICML 2014]

similar values
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Application

lmaging
[Solomon+, SIGGRAPH 2015]

Color Grading
PH 2016]

s 3

Dictionary learning [Schmitz+ 2018], generative models [Genevay+ 2017], ... 7



Geometrical structures of probabilistic distributions

Kullback-Leibler (KL) divergence

Invariant under reversible transformations of random variables
N

] dp(m)ln% @ Permutation | 4> (o

Discretization Destruction of
neighboring structure

O

N

)

Information Geometry [Amari 1985]: Fisher information metric (Riemannian metric),
dual affine connections



Geometry of probabilistic distributions

Kullback-Leibler (KL) divergence
Invariant under reversible transformations of random variables

p(z)

f dp(x) In m @

Information Geometry [Amari 1985]

Wasserstein distance
Reflects the ground metric @

supporting probability measures
( inf /d(m,y)de(x,y))

Pell(p,v)
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Is Information Geometry not related?



Geometry of probabilistic distributions

Kullback-Leibler (KL) divergence
Invariant under reversible transformations of random variables

Di
piln —
> )| PLic
Information Geometry [Amari 1985]
Wasserstein distance
Reflects the ground metric @
supporting probability measures
min Mijpij + )\Zpij In P?;j @

Pell(p,q) <
L] Lj
l Entropy @

We can introduce Information Geometry of OT plans
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Entropy-regularized OT in S,,_4

Probability simplex: S,_1 = {p e R" |Zp?; =1, p;> O}
Marginal distributions: p.gq € S,,_1

Metric between p; and q; : M;;

Entropy-regularized OT [\. Cuturi, NIPS 2013] :

1 A
(M, P) — 1+—)\H(P) (A >0)

ox(p,q) = min T——

<MJP ZMZQP?,:;; H(P ZP” logPU

)

* How to solve: Method of Lagrange multiplier

A

(M.P) - —H(P) - (a:+5) F;  Multipliers: a;, B;

Ly(P) = ——
A(P) 1+ N 1+ N —

12



Entropy-regularized OT: Unique Solution

L\(P) = H%(Mf) - H%H(P) — Z (i +5)) ;- Multipliers: a;, 5

[M. Cuturi, NIPS 2013] revealed

Entropy-regularized OT has a unique optimal solution P;

. M;
a; = ex 1+)\a- b; = ex ﬂﬁ' = !
i — €XP \ il j — €XP ) R C_Zaiijz’j

g

* Multipliers (&, ) are determined by iterative computations

[ Sinkhorn algorithm: a <+ p./K'b, b+ q./Ka

13




Entropy-regularized OT: Convexity

: 1 A
* Cost function @, (P, q) = T ML PY) = == H (P

Lemma. Entropy-regularized cost ¥(P,4q) convex over (p, q)

Proof sketch : Wasserstein distance (linear in P) + Entropy (convex over P)

e Set of OT plans is an Exponential Family

14 M;;
.. i = T o) - M
Py (x;0) = exp Z 0% 65 () — P
i.J dij(z) =1 when x = (1,j),

0 otherwise

- Normalization factor y, is convex over (a, 6)

- 2(n — 1)-dimensional manifold; a, 3¢ R"*
14



Information geometry of entropy-regularized OT

n

=(a)" 0=(a,8)"

N\

Theorem. Normalization factor 1, and cost @, are both

convex and connected by the Legendre Transformation;

UA(B) +pa(m) =0-1m, 0=Vy0\(n), n=Ver(0)

~

J
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Information geometry of entropy-regularized OT

[ UA(O) +ox(n) =0-11 0 =Vypor(n), n—Vaw,\(H)j

* The setof P, isa2(n= 1)-dimensional dually flat manifold

Py(x;0) = exp {Z 00,5 (x) ?PA}

4,9

Sn2_1

m-geodesic:

(1— )P +1Q

T

n=(p,q) m-flat

0= (a,3)" e-flat

e-geodesic:
Q= R?
* Generalized Pythagorean Theorem
KL|P:R|=KL[P:Q|+ KL|Q : R]
for P,Q, R € Optimal transportation plans

16



Information Geometry of Optimal Transportation Plans

Riemannian metric of dually flat manifold:
Gy =V,Vaer(n), G,'=VeVaethy(0)

4 )
Fisher information matrix (in the 8-coordinates) is

explicitly given by -l pibi; — pis| Pij — pigy
A Pij — pigs |90 — 4i4y
- J
- Useful in estimation; min ¢, (p, q)
q

Dual affine connections : By using a cubic tensor Tijx = 0;0;0x¢x
1 1

Lijg = [ij;k]_iTijk', Lk = [ij;k]+§ ik

[ij; k]: Levi-Civita connection

17



Sinkhorn algorithm = iterations of e-projection

[Amari, Karakida & Oizumi, Information Geometry (2018)]

Sinkhorn algorithm: | @ < p./K"b
b+ (I/KG P;:?:j = ca,?;ij?;j

M (p,-) :Subspace conditioned by a fixed p

* e-projection to M (p,-) M(-,q) :Subspace conditioned by a fixed q
Pi M(p, -
TAP = (P)  a;= (P, ) K
[ A ( J) Zj Pij ]

KL[TAP:P]+ KL[P*:T4P] = KL[P*:P]
KL[T4+P :P*| < KL[P :P*]

- e-projectionto M(-,q)

;
[ TP = (bjP;j) + b Z'inj J M(-, q)

18
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Disadvantage of entropy-regularized cost

Entropy regularized cost:

Cx(p,q) = min (M,P) - H(P) = (1+Mex(p,q)
Pell(p,q)

* |t does not satisfy a criterion of divergence (distance);
39 Ci(p,p) > Ci(p,q)

e Minimum is given by g* = K p

Conditional metric /

Ci(p.q)

_ Kil Kk, = (_Mz'j) _/
K, = |: ﬂ" :| §= =P A \./ P
721K =) K 9 =Kp




Divergence derived from entropy-regularized cost

* A new divergence

Dilp: gl = 1+ 1) (C.(p. Kpqg) — Ci(p. K,.p))

- Convex with respect to p and q

Proof based on the Riemannian metric Gy =V, V,0\(7n)

Cx(p, q) Di[p: g
//
[P a D a
g =Kp

21



Divergence derived from entropy-regularized cost

A new divergence

Dilp: gl = 1+ 1) (C.(p. Kpg) — Ci(p. K,.p))

- Convergence to Wasserstein distance ( A, — ())
- Convergence to a squared distance (A — o0 )
. 1 ~
Ahm Dy[p:q|= =(q—p)' M(q - p)
—00 2
M : Symmetric matrix determined by M

This overcomes disadvantage of C'y
Jim Cx(p.q) = =AH(p) + H(q))

which cannot measure the distance between p and q
22



Barycenter of Patterns

Dilp:ql =1+ 1) (Ci(p, Kig) — Ci(p, Kip))

* Find the barycenter of input samples p; (i=1,2,..,N)

go = argmin ) Ci(pi,q)  gp =argmin ) Di[p;i : ]

q i q 1

* Sharpening Conditional metric gkl
~ 1 —14/|e
=i g [2] | = A
= — £
Kj. 1;; A0 //__

Discrete diffusion operator

Under certain conditions, |

> —1
qp = K, q¢ ; sharper barycenter by “Inverse diffusion” .



Barycenter of Patterns

Dilp:ql =1+ 1) (Ci(p, Kig) — Ci(p, Kip))

* Shape-location separation D '
3

1
qp = argminz Dy[pi : q] y dp
q p p ‘
is located at the barycenter of ‘
P4

p;’s locations 1

Remark: A-Divergence [AKO’18]

P

Di[p:q]=ox(p,pP) — ox(P,q) — Vgor(p.q) - (P — q)

- Canonical divergence from the Legendre duality

- It does not satisfy sharpening & shape-location separation
24



Barycenter of Patterns

D1 A=5 = 20 = 30 A =40
- 5.7918 6 1788 6 3542 6.504
- H n

Two patterns 5.5947 5.7679 5.8339 5.9005

5.6138 5.7384 5.7554 5.7687

Left barycenter
ap = argminz Dilq : pi
9 i

D,-barycenters are obtained by a gradient method

Right barycenter

q7, = argminz D, [p; : q|
L i



Summary

* The set of entropy-regularized OT plans is an exponential family
and naturally defines the dually flat manifold
- We obtained its Riemannian metric & dual affine connections

* Anew divergence D,
- Inherits essential properties of Wasserstein geometry
Sharpening, shape-location separation
- Better than Gy
satisfying criterion of divergence, shaper barycenter

Future work

Information geometry of Entropy-regularized OT with continuous measures
- continuous p vs. continuous q, discrete p vs. continuous q
- Generative model



