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3D modeling
Image Processing
Medical Imaging
………

Manifold-structured data in 3D

Intrinsic comparison
(Data from TOSCA)

Data from XYZT Lab
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Nonrigid manifold matching: Challenges
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Extrinsic: Different poses (each person has 10 poses)

Intrinsic: Different metrics

Compute Invariant Features!

FAUST
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Isometric (nearly isometric) shape matching
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Laplace-Beltrami operator: A Bridge from Local to Global
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Spherical Harmonics

Shape DNA [M. Reuter et al]
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Laplace-Beltrami Eigen embedding
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Nice properties for LB eigenembedding:

Intrinsic and invariant to scaling and isometric transformation.

[GPS, Rustamov]

Original              n=20               n=50            n=100                n=150             n=200

A natural multiscale characterization with global information. A good 
candidate for nonlinear dimension reduction for point clouds in higher 
dimensions. 
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Registration in embedding space
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Spectral l2-distance [Lai-Shi-Toga-Chan’10]

10



R. Lai@ RPI Non-isometric shape matching

Rotation invariant sliced Wasserstein distance [Lai-Zhao’17]
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Intrinsic comparisons using LB eigenmaps + optimal transportation [Lai-Zhao’17]
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Non-isometric manifolds
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Deform manifolds to make them isometric.
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Challenges:
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1. Do not know the amount of deformation without knowing correspondence 

2. The eigesystem of the deformed manifold relies on the reconstruction of the manifold

3. Ambiguities of the eigensystem

4. Representation of deformation (characterization of the shape space)
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Extrinsic representation V.S. Intrinsic representation
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Extrinsic representation 

Use the embedding coordinates (x, y, z). Hard to preserve diffeomorphism 

Intrinsic representation: Genus-0 surfaces are conformally equivalent  

Genus g>1

Intrinsic representation: high genus surfaces

Genus 1
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LB eigensystem via conformal deformation
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Unsupervised: Nonisometric mapping via conformal deformation  [Shi-Lai-Toga’ 11, 14. ]
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Hippocampl mapping [Shi-Lai-Toga’14] 
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Two hippocampal surfaces
Use 30 eigenfunctions in constructing the embedding space
Start with constant weights

The weight of the source mesh are updated iteratively to 
compensate for the non isometric differences
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Clinical application of hippocampus mapping 
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Population study: hippocampal 
atrophy in multiple sclerosis (MS) 
patients with depression

109 female patient split into 
two groups with the CES-D 
scale: low depression (CES-
D≤20) and high depression 
(CES-D>20)
Statistically significant group 
differences were localized on 
hippocampus (P=0.019)
Correlates well with clinical 
measure of depression
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Cortical surface mapping [Shi-Lai-Toga’14]
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Semi-superivsed: LB eigenbasis pursuit via conformal deformation [Schonsheck-Bronstein-Lai’18]
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Functional Map
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LB eigenbasis pursuit via conformal deformation
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Proximal alternating method
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Curvilinear search with BB step size [Wen-Yin’13]
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Cayley transformation
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Convergence 

26



R. Lai@ RPI Non-isometric shape matching

Results of LB basis pursuit and conformal factor
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Accuracy and Robustness
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Noisy case
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Results on FAUST and human brain mapping
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Combining modeling and learning [MS A1-1-1, 18/07, 14:30]
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Traditional modeling based on understanding prior knowledge of the objects, not relying too 
much on large amount of available data sets. 

Learning methods require large amount of training data sets, however, it is hard to achieve 
reasonable performance of our problems as the data has representation ambiguities as a high 
dimensional isometric group.

Can we combine advantages of both methods in our problem?  

No need to design and solve a specific variational PDE model, instead, use data driving methods.

Convolution is certain discretization of differential operators.

Use certain modeling method to overcome representation ambiguities.
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Parallel transport convolution, translation, dilation, rotation
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Original Kernel Translation Dilation Rotation Mixed
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Manifold registration using PTCNN
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Training group, 70 surfaces Validation Test 

FAUST data 
set

• 100 surfaces of 10 persons in 
10 poses;

• 7  (70 surfaces) for training

• 1 (10 surfaces) for validation

• 2 (20 surfaces) for testing
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We combine the spectral geometry and optimal transport to conduct
shape matching.

We use conformal deformation to characterize the shape space.

We propose variational PDE methods to compute deformation and LB
eigenbasis.

Summary

Thanks for your attention!
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