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I In many machine learning problems, we are given a family of
kernels at(x, y), t ≥ 0, measuring the similarity of two data
points at scale t.
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I On the right is an affinity matrix for the curve shown on the
left, based on a local Gaussian kernel. (Red is high affinity,
blue is low affinity.)
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X will denote a measure space equipped with a family of integral
operators At, t ≥ 0, with kernels at(x, y). The kernels are assumed
to satisfy the following:

I (The semigroup property.) For all t, s > 0, AtAs = At+s. This
property can be expressed in terms of the kernels at(x, y) as

at+s(x, y) =

∫
X
at(x,w)as(w, y)dw.

I (The conservation property.) If 1 is the constant function 1
on X, then for all t > 0, At1 = 1. This property can be
expressed in terms of the kernels at(x, y) as∫

X
at(x, y)dy = 1.
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I (The integrability property.) There is a constant C > 0 such
that for all t > 0 and x ∈ X,∫

X
|at(x, y)|dy ≤ C.

I (The regularity property.) There are constants C > 0 and
0 < α < 1 such that for every 1 ≥ s ≥ t > 0 and every x ∈ X,∫

X
|at(x, y)| · ‖as(x, ·)− as(y, ·)‖1dy ≤ C

(
t

s

)α
.
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I The only strange-looking property is the regularity property∫
X
|at(x, y)| · ‖as(x, ·)− as(y, ·)‖1dy ≤ C

(
t

s

)α
.

I This holds in many cases of interest, including:

I The heat kernel on a “nice” Riemannian manifold;

I Radial semigroups Kt(x− y) on Rn with Fourier transform

K̂t(ξ) = e−t|ξ|
θ

where 0 < θ ≤ 2 (this includes the Gaussian and Poisson
kernels);

I The heat kernel on fractals such as the Sierpinski Gasket;

I And many more...
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I In our setting, we are not given a distance d(x, y) on X.
However, we can use the affinity kernel at(x, y) to define a
distance between points x and y.

I A conceptually meaningful and robust distance is the diffusion
distance introduced by Coifman and Lafon.

I For each time t, the diffusion distance is defined by

dt(x, y) = ‖at(x, ·)− at(y, ·)‖2

with respect to a suitably defined measure on X.
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I We define a different metric, namely the weighted sum of L1

diffusion distances over all scales from 0 to 1:

ρα(x, y) =

∫ 1

0
tα−1‖at(x, ·)− at(y, ·)‖1dt

where 0 < α < 1.

I This distance is equivalent to

dα(x, y) =

∞∑
k=0

2−kα‖a2−k(x, ·)− a2−k(y, ·)‖1.
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In many examples of interest, dα(x, y) ∼ ρ(x, y)δ, where 0 < δ < 1
and ρ(x, y) is the “natural” distance on X. For example:

I For radial semigroups Kt(x− y) on Rn with Fourier transform

K̂t(ξ) = e−t|ξ|
θ
, dα(x, y) is locally equivalent to |x− y|αθ.

I If at(x, y) is a product of such kernels with scaling parameter
θi in the ith variable, then dα(x, y) is locally equivalent to the
mixed-homogeneity distance

∑n
i=1 |xi − yi|αθi .

I If at(x, y) is the heat kernel on a “nice” Riemannian manifold
M, then dα(x, y) is equivalent to dgeod(x, y)2α.
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We plot the distances dα(x, y) to a fixed point x on the real line
using the Gaussian kernel. Red is α = .1, green is α = .3, and blue
is α = .45. The curve approaches the origin like |y|2α.
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I We consider the space Λα of functions f that are Lipschitz
with respect to the distance dα(x, y); that is,

‖f‖Λα = ‖f‖∞ + sup
x 6=y

f(x)− f(y)

dα(x, y)
<∞.

I Since in most examples of interest dα(x, y) is equivalent to
ρ(x, y)δ for some 0 < δ < 1, such functions are usually called
Hölder functions; we call them Hölder-Lipschitz functions.
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I The Hölder-Lipschitz space provides a convenient model for
functions in non-parametric statistics and machine learning.

I Characterizing these spaces is useful for regression and signal
denoising. For example, Donoho and Johnstone use the
equivalence of the Hölder norm of f with

sup
j,k

2k(α+1/2)|〈f, ψj,k〉|

for wavelet bases {ψj,k}j,k for optimal denoising.

I These and similar characterizations relate the variation of a
function in space to its variation across scales.
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I We show that the norm ‖f‖Λα is equivalent to the norms

‖f‖∞ + sup
k≥0

2kα‖∆kf‖∞

and

‖f‖∞ + sup
k≥0

2kα‖δkf‖∞

where

∆k = A2−k −A2−(k+1)

and

δk = I −A2−k .
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I We also study the space Λ∗α dual to Λα; this contains
measures T such that

‖T‖Λ∗α = sup
‖f‖Λα≤1

〈f, T 〉 <∞.

I The norm ‖T‖Λ∗α is equivalent to the norms

‖A∗1T‖1 +
∑
k≥0

2−kα‖∆∗kT‖1

and

‖A∗1T‖1 +
∑
k≥0

2−kα‖D∗kT‖1

where

Dk = A2−k −A1.
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I The dual norm is related to the Earth Mover’s Distance
(EMD) between probability measures.

I Informally, the EMD between distributions p1 and p2 is the
minimal cost of turning p1 into p2 by rearranging mass.
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I For example, the EMD between the blue and red distributions
will be the size of the shift separating them.
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I The Kantorovich-Rubinstein Theorem says that EMD(p1, p2)
is equal to:

sup
f :|f(x)−f(y)|≤d(x,y)

{∫
f(x)(p1(x)− p2(x))dx

}

I This holds in great generality, and in particular for the
metric/measure spaces we consider here.

I The Kantorovich-Rubinstein Theorem says that the dual norm
‖p1 − p2‖Λ∗α of p1 − p2 is equivalent to EMD(p1, p2).
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I Our approximation to EMD(p1, p2) is a weighted `1 distance
between the functions A2−k(p1) and A2−k(p2).

I We can exploit existing machinery for rapid application of
A2−k to get fast approximations to EMD – e.g. diffusion
wavelets (Coifman and Maggioni), fast Gauss transform
(Greengard and Strain), etc.

I Often, the entire computation of approximate EMD can be
done with O(n× logk n) operations.

I Furthermore, the heavy load is done for each distribution
individually, yielding fast methods for computing all pairwise
distances between p1, p2, p3, . . . .
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To illustrate the performance of these approximations, we took
2000 random pairs from the USPS dataset (16-by-16 pixel images
of handwritten digits). We compared their true EMD to the
Gaussian approximations, with α = .45.
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The left scatterplot is the ∆-approximation, the right is the
D-approximation.
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I Comparing functions on datasets arises in matrix organization.

I Each row is a function over the columns, and each column is
a function over the rows.

I This is the MMPI2 database of yes/no answers to a
psychological questionnaire.
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I We use EMD-based affinities to organize and embed the
people from the MMPI2 database using diffusion maps:

I One on end of embedding are the clinically healthy people.
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I On the other end are the clinically unhealthy people.

I Note that the embedding does not make use of the scores,
but is only based on the questionnaire itself.
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Our characterizations of the Hölder-Lipschitz space and its dual
defined with respect to a single semigroup At on X can be
extended to the setting of multiparameter semigroups.

I Here, there are two spaces X and Y , each with its own
semigroup As and Bt, with kernels as(x, x

′) and bt(y, y
′).

I The operators AsBt, s ≥ 0, t ≥ 0 are given by

AsBtf(x, y) =

∫
Y

∫
X
as(x, x

′)bt(y, y
′)f(x′, y′)dx′dy′
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I We define metrics dα on X and dβ on Y as in the
one-parameter case, for 0 < α < 1 and 0 < β < 1; specifically,

dα(x, x′) =
∑
k≥0

2−kα‖a2−k(x, ·)− a2−k(x′, ·)‖1

and

dβ(y, y′) =
∑
l≥0

2−lβ‖b2−l(y, ·)− b2−l(y′, ·)‖1
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I The natural measure of a function’s regularity in this context
is its mixed Hölder-Lipschitz norm, the interesting term of
which is

M(f) = sup
x6=x′,y 6=y′

f(x, y)− f(x, y′)− f(x′, y) + f(x′, y′)

dα(x, x′)dβ(y, y′)
.

I We also require control on the size of the one-variable
difference quotients

VX(f) = sup
y,x6=x′

B1f(x, y)−B1f(x′, y)

dα(x, x′)

and

VY (f) = sup
x,y 6=y′

A1f(x, y)−A1f(x, y′)

dβ(y, y′)
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I We define the mixed Hölder-Lipschitz space Λα,β to be those
functions f such that:

‖f‖Λα,β = M(f) + VX(f) + VY (f) + ‖f‖∞ <∞

I Mixed Lipschitz functions have better denoising and
compressibility properties than ordinary Lipschitz functions,
using sparse grids, tensor wavelet coefficients, etc.

I As for one-parameter semigroups, we have derived simple
formulas equivalent to this norm and its dual.
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I This norm is equivalent to the following two other norms:

‖f‖∞ + sup
k≥0

2kα‖∆A,kf‖∞ + sup
l≥0

2lβ‖∆B,lf‖∞

+ sup
k,l≥0

2kα+lβ‖∆A,k∆B,lf‖∞

and

‖f‖∞ + sup
k≥0

2kα‖δA,kf‖∞ + sup
l≥0

2lβ‖δB,lf‖∞

+ sup
k,l≥0

2kα+lβ‖δA,kδB,lf‖∞
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I The norm of a measure T in the dual space is equivalent to
the norms

‖A∗1T‖1 +
∑
k≥0

2−kα‖∆∗A,kT‖1 +
∑
l≥0

2−lβ‖∆∗B,lT‖1

+
∑
k,l≥0

2−(kα+lβ)‖∆∗A,k∆∗B,lT‖1

and

‖A∗1T‖1 +
∑
k≥0

2−kα‖D∗A,kT‖1 +
∑
l≥0

2−lβ‖D∗B,lT‖1

+
∑
k,l≥0

2−(kα+lβ)‖D∗A,kD∗B,lT‖1
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I In recent work, Mishne et al (2016) use equivalent dual
metrics for organizing three-dimensional databases.

I They have a three-dimensional array X[r, t, j], where r is a
neuron, t a short time scale, and j the experiment number.
The 3-D structure is organized by comparing 2-D slices using
the dual norm.

28 / 32



Calderón, A.P. (1964)

Intermediate spaces and interpolation: the complex method

Studia Mathematica 24(2), 113-190.

Coifman, R.R., and Lafon, S. (2006)

Diffusion maps

Applied and Computational Harmonic Analysis 21(1), 5-30.

Coifman, R.R., and Maggioni, M. (2006)

Diffusion wavelets

Applied and Computational Harmonic Analysis 21(1), 53-94.

Donoho, D. L., & Johnstone, I. M. (1996).

Neo-classical minimax problems, thresholding and adaptive function
estimation

Bernoulli, 39-62.

Greengard, L., and Strain, J. (1991)

The fast Gauss transform

SIAM Journal on Scientific and Statistical Computing 12(1), 79-94.

29 / 32



Kuroiwa, S., Tsuge, S., Kita, M., and Ren, F. (2007)

Speaker Identification Method Using Earth Mover’s Distance for CCC
Speaker Recognition Evaluation 2006

Computational Linguistics and Chinese Language Processing 12(3),
239-254.

Meyer, Y. (1992)

Wavelets and Operators

Vol. 37. Cambridge: Cambridge University Press.

Mishne, G., Talmon, R., Meir, R., Schiller, J., Lavzin, M., Dubin, U.,
Coifman, R. R. (2016)

Hierarchical Coupled-Geometry Analysis for Neuronal Structure and
Activity Pattern Discovery

IEEE Journal of Selected Topics in Signal Processing 10(7), 1238-1253.

Pele, O., and Werman, M. (2009)

Fast and robust earth mover’s distances

Computer vision, 2009 IEEE 12th international conference on 460-467.

Rubner, Y., Tomasi, C., and Guibas, L.J. (2000)

The Earth Mover’s Distance as a Metric for Image Retrieval

International Journal of Computer Vision 40(2), 99-121.
30 / 32



Sandler, R. and Lindenbaum, M. (2009)

Non-negative Matrix Factorization with Earth Mover’s Distance metric

2009 IEEE Conference on Computer Vision and Pattern Recognition
1873-1880.

Shirdhonkar, S., and Jacobs, D.W. (2008)

Approximate earth mover’s distance in linear time

Computer Vision and Pattern Recognition. CVPR 2008. IEEE Conference
on 1-8.

Typke, R., Wiering, F., and Veltkamp, R.C. (2007)

Transportation distances and human perception of melodic similarity

Musicae Scientae Discussion Forum 4A, 153-181.

Villani, C. (2003)

Topics in Optimal Transportation

No. 58. American Mathematical Soc.

31 / 32



Thank you

32 / 32


