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> In many machine learning problems, we are given a family of
kernels a;(z,y),t > 0, measuring the similarity of two data
points at scale t.

» On the right is an affinity matrix for the curve shown on the
left, based on a local Gaussian kernel. (Red is high affinity,
blue is low affinity.)
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X will denote a measure space equipped with a family of integral
operators Ay, t > 0, with kernels a¢(x,y). The kernels are assumed
to satisfy the following:

» (The semigroup property.) For all t,s > 0, AyAs = Aiys. This
property can be expressed in terms of the kernels a;(z,y) as

at+s(x,y):/Xat(:v,w)as(w,y)dw.

» (The conservation property.) If 1 is the constant function 1
on X, then for all t > 0, A;1 = 1. This property can be
expressed in terms of the kernels a;(x,y) as

/ ar(z,y)dy = 1.
X



» (The integrability property.) There is a constant C' > 0 such
that for all ¢ > 0 and z € X,

/ lar(sy)|dy < C.
X

» (The regularity property.) There are constants C' > 0 and
0 < o < 1 such that forevery 1 > s>t >0 and every z € X,

[ sl -, ) = auto. iy < c(t)



» The only strange-looking property is the regularity property

[l -l ) = asto. i < c(t)

» This holds in many cases of interest, including:

» The heat kernel on a “nice” Riemannian manifold;

» Radial semigroups K;(z —y) on R™ with Fourier transform
Xt(g) = e—t|g|9

where 0 < 6 < 2 (this includes the Gaussian and Poisson
kernels);

» The heat kernel on fractals such as the Sierpinski Gasket;

» And many more...



» In our setting, we are not given a distance d(z,y) on X.
However, we can use the affinity kernel a;(z,y) to define a
distance between points x and y.

» A conceptually meaningful and robust distance is the diffusion
distance introduced by Coifman and Lafon.

» For each time ¢, the diffusion distance is defined by

di(z,y) = llar(z, ) = ar(y, )2

with respect to a suitably defined measure on X.
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» We define a different metric, namely the weighted sum of L!
diffusion distances over all scales from 0 to 1:

1
palz,y) = /0 £ Y ag(z, ) — arly, Il dt

where 0 < o < 1.

» This distance is equivalent to

[e.9]

do(z,y) = > 27 ay-(2, ) = ag-r(y, )1
k=0



In many examples of interest, d(z,y) ~ p(z,y)°, where 0 < § < 1
and p(z,y) is the “natural” distance on X. For example:

» For radial semigroups K;(x —y) on R™ with Fourier transform
K (€) = e " d,(x,y) is locally equivalent to |z — y|*?.

» If a;(x,y) is a product of such kernels with scaling parameter
6; in the i*" variable, then d(z,v) is locally equivalent to the
mixed-homogeneity distance Y"1 | |z; — y;|*%.

» If a;(x,y) is the heat kernel on a “nice” Riemannian manifold
M, then du(z,y) is equivalent to dgeoa(T, y)**.



We plot the distances d,(z,y) to a fixed point  on the real line
using the Gaussian kernel. Red is o = .1, green is a = .3, and blue
is a = .45. The curve approaches the origin like |y|?<.
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» We consider the space A, of functions f that are Lipschitz
with respect to the distance d,(x,y); that is,

_ f@) = fly)
1 £llaa = I fllc +§1;Iy) YRERN < .

» Since in most examples of interest d,(z,y) is equivalent to
p(x,4)° for some 0 < § < 1, such functions are usually called
Holder functions; we call them Hélder-Lipschitz functions.
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» The Holder-Lipschitz space provides a convenient model for
functions in non-parametric statistics and machine learning.

» Characterizing these spaces is useful for regression and signal
denoising. For example, Donoho and Johnstone use the
equivalence of the Holder norm of f with

sup RO/ f 4p; 1)
J7

for wavelet bases {1} 1} ;1 for optimal denoising.

» These and similar characterizations relate the variation of a
function in space to its variation across scales.
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» We show that the norm || f||s, is equivalent to the norms

£ lloo + sup 25 [ A £l o
k>0

and
[ £lloo + sup 2°165 £ |
k>0
where
Ap = Ay — Ag—(ern)
and

(5k == I— A27k.



» We also study the space A}, dual to A,; this contains
measures 1" such that

|T||ax = sup (f,T) < oc.
Il fllaq <1

» The norm |||z is equivalent to the norms

IATT I+ 271 ALT |

k>0
and
|ATT ][+ 275 DT |
k>0
where
Dy = Ay — Ay
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» The dual norm is related to the Earth Mover’s Distance
(EMD) between probability measures.

» Informally, the EMD between distributions p; and ps is the
minimal cost of turning p; into p2 by rearranging mass.

0 500 1000 1500 2000

» For example, the EMD between the blue and red distributions
will be the size of the shift separating them.
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» The Kantorovich-Rubinstein Theorem says that EMD(p1, p2)
is equal to:

s [ o) - m)d )

Tl f (@)= f(y)|<d(z,y)

» This holds in great generality, and in particular for the
metric/measure spaces we consider here.

» The Kantorovich-Rubinstein Theorem says that the dual norm
lp1 — p2l|ax of p1 — p2 is equivalent to EMD(py, p2).
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Our approximation to EMD(p1, p2) is a weighted ¢; distance
between the functions Ay« (p1) and Ay—x(p2).

We can exploit existing machinery for rapid application of
Aqs-k to get fast approximations to EMD — e.g. diffusion
wavelets (Coifman and Maggioni), fast Gauss transform
(Greengard and Strain), etc.

Often, the entire computation of approximate EMD can be
done with O(n x log® n) operations.

Furthermore, the heavy load is done for each distribution
individually, yielding fast methods for computing all pairwise
distances between pi,po,ps,. ...
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To illustrate the performance of these approximations, we took
2000 random pairs from the USPS dataset (16-by-16 pixel images
of handwritten digits). We compared their true EMD to the
Gaussian approximations, with o = .45.




The left scatterplot is the A-approximation, the right is the
D-approximation.
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» Comparing functions on datasets arises in matrix organization.

» Each row is a function over the columns, and each column is
a function over the rows.

» This is the MMPI2 database of yes/no answers to a
psychological questionnaire.
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» We use EMD-based affinities to organize and embed the
people from the MMPI2 database using diffusion maps:

Sensor lovel 6/ | Re-Organize | Point level 7/11
T o)

Sensor folder 1/8 Point folder 14/16

points embedding +

¥ Highlight selected folder

» One on end of embedding are the clinically healthy people.
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» On the other end are the clinically unhealthy people.

Sensor level 69 _Re-Organize | Point vl 711
Sensor foide 1/8 Paint flder 316
Ppoints embedding L2 4 mapx
2 — mapy 05
¥ Highlight selected folder - *) mepz b
() Gid i iffuson Time | 48 =~~~ — —
RS0 RV FD PA PT S WA S FOD Aol RS2 AG Aol s RO AGB R
ihi foder % more © Rotatesd

Note that the embedding does not make use of the scores,
but is only based on the questionnaire itself.
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Our characterizations of the Holder-Lipschitz space and its dual
defined with respect to a single semigroup A; on X can be
extended to the setting of multiparameter semigroups.

» Here, there are two spaces X and Y, each with its own
semigroup Ag and By, with kernels ag(x,2’) and by (y,y').

» The operators A;By, s > 0,t > 0 are given by

ABif(a,y) = /Y /X as(, 2ol ') (' of 'y

N
N
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» We define metrics d, on X and dg on Y as in the

one-parameter case, for 0 < a < 1 and 0 < 8 < 1; specifically,

do(w,2') = 27" ag-r(2,") — ag-r(', )l
k>0

and

ds(y,y') =Y 27 byi(y, ) = byt (¢, ) I
>0



» The natural measure of a function’s regularity in this context
is its mixed Holder-Lipschitz norm, the interesting term of
which is

a0 Sy S+ 1)
M= a5 5. '

» We also require control on the size of the one-variable
difference quotients

Blf(xvy) B Blf(x/vy)
, do(x,2")

and

Alf(xvy) — Alf(xvy/)
z,y#y’ dﬁ (y7 y,)




» We define the mixed Hélder-Lipschitz space A, g to be those
functions f such that:

1 l[Aas = M) + Vx () + W (f) + [ flloo < o0

» Mixed Lipschitz functions have better denoising and
compressibility properties than ordinary Lipschitz functions,
using sparse grids, tensor wavelet coefficients, etc.

> As for one-parameter semigroups, we have derived simple
formulas equivalent to this norm and its dual.



» This norm is equivalent to the following two other norms:

1 £lloo + 5up 2** [ A4 g flloo + sup 27 [ Ap 1 f oo
k>0 1>0

+ sup 2T A kA flloo
k>0

and

£ lloo + sup 2516 4.1 flloo + sup 21051 ]|
k>0 1>0

+ sup 25854 1681 f|loo
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» The norm of a measure T in the dual space is equivalent to
the norms

IATT |+ D 27 AL T+ ) 27 AR T

k>0 1>0
+ > 27 e AN AR T
k,1>0

and

AT+ > 27%| D%, Tl + 27D T
k>0 >0
+ Z 27(ka+lﬁ)HDZ,kD*B,zT||1
k>0



> In recent work, Mishne et al (2016) use equivalent dual
metrics for organizing three-dimensional databases.

Neuron

» They have a three-dimensional array X|[r, t, j], where r is a
neuron, t a short time scale, and j the experiment number.
The 3-D structure is organized by comparing 2-D slices using
the dual norm.
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