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MMD	loss	with	a	deep	kernelMMD	loss	with	a	deep	kernel

	from	pretrained	Inception	net

	simple:	exponentiated	quadratic	or	polynomial
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Just	need	to	stay	away	from	tiny	bandwidths	

…deep	kernel	analogue	is	hard.

Instead,	keep	witness	function	from	being	too	steep

Control	 	on	average,	near	the	data
[ 	/	 	/	 ]Gulrajani+	NeurIPS-17 Roth+	NeurIPS-17 Mescheder+	ICML-18
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Original	MMD-GAN	paper	[ ]:	box	constraintLi+	NeurIPS-17
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Smoothness	of	Smoothness	of	

Theorem:	 	is	continuous.

If	 	has	a	density;	 	is	Gaussian/linear/…;	
	is	fully-connected,	Leaky-ReLU,	non-increasing	width;	

all	weights	in	 	have	bounded	condition	number;	then

19
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Model	on	Model	on	 	CelebA	CelebA

SN-SMMD-GAN

KID:	0.006

WGAN-GP

KID:	0.022
21
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Training	process	on	CelebATraining	process	on	CelebA
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Model	on	Model	on	 	ImageNet	ImageNet

SN-SMMDGAN

KID:	0.035

SN-GAN

KID:	0.044

BGAN

KID:	0.047
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RecapRecap

Can	train	generative	models	by	minimizing	
a	flexible,	smooth	distance	between	distributions

Combine	kernels	with	gradient	penalties

Strong	practical	results,	some	understanding	of	theory

Demystifying	MMD	GANs
Bińkowski*,	Sutherland*,	Arbel,	and	Gretton [ICLR	2018]

On	Gradient	Regularizers	for	MMD	GANs
Arbel*,	Sutherland*,	Bińkowski,	and	Gretton [NeurIPS	2018]

Links	+	code:	see	dougal.me

24

http://dougal.me/


RecapRecap

Can	train	generative	models	by	minimizing	
a	flexible,	smooth	distance	between	distributions

Combine	kernels	with	gradient	penalties

Strong	practical	results,	some	understanding	of	theory

But	haven't	totally	solved	GANs	yet!

Demystifying	MMD	GANs
Bińkowski*,	Sutherland*,	Arbel,	and	Gretton [ICLR	2018]

On	Gradient	Regularizers	for	MMD	GANs
Arbel*,	Sutherland*,	Bińkowski,	and	Gretton [NeurIPS	2018]

Links	+	code:	see	dougal.me

24

http://dougal.me/


RecapRecap

Can	train	generative	models	by	minimizing	
a	flexible,	smooth	distance	between	distributions

Combine	kernels	with	gradient	penalties

Strong	practical	results,	some	understanding	of	theory

But	haven't	totally	solved	GANs	yet!

Demystifying	MMD	GANs
Bińkowski*,	Sutherland*,	Arbel,	and	Gretton [ICLR	2018]

On	Gradient	Regularizers	for	MMD	GANs
Arbel*,	Sutherland*,	Bińkowski,	and	Gretton [NeurIPS	2018]

Links	+	code:	see	

Thanks!
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MMD	GANs	versus	WGANsMMD	GANs	versus	WGANs

Linear-kernel	MMD	GAN,	 :

WGAN	has:

Linear-kernel	MMD	GAN-GP	and	WGAN-GP	almost	the	same

MMD	GAN	“o�oads”	some	of	the	critic's	work	
to	closed-form	optimization	in	the	RKHS

25 . 1



Keeping	weight	condition	numbers	boundedKeeping	weight	condition	numbers	bounded

Spectral	parameterization	[ ]:

;	learn	 	and	 	freely

Encourages	diversity	without	limiting	representation

Miyato+	ICLR-18

25 . 2

https://arxiv.org/abs/1802.05927/


Rank	collapseRank	collapse

Occasional	optimization	failure	without	spectral	param:
Generator	doing	reasonably	well

Critic	�lters	become	low-rank

Generator	corrects	it	by	breaking	everything	else

Generator	gets	stuck

25 . 3



What	if	we	just	did	spectral	normalization?What	if	we	just	did	spectral	normalization?

,	so	that	 ,	

Works	well	for	original	GANs	[ ]

…but	doesn't	work	at	all	as	only	constraint	in	a	WGAN

Limits	representation	too	much
In	DiracGAN,	only	allows	bandwidth	1

Miyato+	ICLR-18

25 . 4
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Hard	to	compare	models	beyond	certain	threshold

Need	better,	quantitative	methods

Our	method:	Kernel	Inception	Distance	(KID)
,	 	cubic	on	pretrained	Inception	rep

tf.contrib.gan.eval.kernel_inception_distance

25 . 6

https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/contrib/gan/eval
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New	method:	Kernel	Inception	Distance	(KID)New	method:	Kernel	Inception	Distance	(KID)

	between	Inception	hidden	layer	activations

Use	default	polynomial	kernel:	

Unbiased	estimator,	reasonable	with	few	samples

In	tensorflow.contrib.gan.eval	( )tensor�ow#21066

25 . 9

https://github.com/tensorflow/tensorflow/pull/21066


Automatic	learning	rate	adaptation	with	KIDAutomatic	learning	rate	adaptation	with	KID

Models	need	appropriate	learning	rate	schedule	to	work	well

Automate	with	three-sample	MMD	test	[ ]:Bounliphone+	ICLR-16

25 . 10

https://arxiv.org/abs/1511.04581/


Controlling	critic	complexityControlling	critic	complexity
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