Kernel distances between distributions for generative models

Dougal J. Sutherland

Gatsby Computational Neuroscience Unit, University College London

Michael Arbel Mikołaj Bińkowski Arthur Gretton UCL Imperial UCL

ICIAM 2019

Distance Metrics and Mass Transfer Between High Dimensional Point Clouds

 $\mathcal{D}_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{f\in\mathcal{F}} \mathop{\mathbb{E}}_{X\sim\mathbb{P}}[f(X)] - \mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[f(Y)]$

 $f:\mathcal{X}
ightarrow\mathbb{R}$ is a critic function

 $\mathcal{D}_\mathcal{F}(\mathbb{P},\mathbb{Q}) = \sup_{f\in\mathcal{F}} \mathop{\mathbb{E}}_{X\sim\mathbb{P}}[f(X)] - \mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[f(Y)]$

 $f:\mathcal{X}
ightarrow\mathbb{R}$ is a critic function

$$\mathcal{D}_\mathcal{F}(\mathbb{P},\mathbb{Q}) = \sup_{f\in\mathcal{F}} \mathop{\mathbb{E}}_{X\sim\mathbb{P}}[f(X)] - \mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[f(Y)]$$

 $f:\mathcal{X}
ightarrow\mathbb{R}$ is a critic function

Total variation: $\mathcal{F} = \{f : f \text{ continuous}, |f(x)| \leq 1\}$

$$\mathcal{D}_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{f\in\mathcal{F}} \mathop{\mathbb{E}}_{X\sim\mathbb{P}}[f(X)] - \mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[f(Y)]$$

 $f:\mathcal{X}
ightarrow\mathbb{R}$ is a critic function

Total variation: $\mathcal{F} = \{f: f \text{ continuous}, |f(x)| \leq 1\}$ Wasserstein: $\mathcal{F} = \{f: \|f\|_{ ext{Lip}} \leq 1\}$

$$\mathcal{D}_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{f\in\mathcal{F}} \mathop{\mathbb{E}}_{X\sim\mathbb{P}}[f(X)] - \mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[f(Y)]$$

 $f:\mathcal{X}
ightarrow\mathbb{R}$ is a critic function

Total variation: $\mathcal{F} = \{f: f \text{ continuous}, |f(x)| \leq 1\}$ Wasserstein: $\mathcal{F} = \{f: \|f\|_{ ext{Lip}} \leq 1\}$

$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{f:\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$

$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{f:\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{f:\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$f^*(t) \propto \mathop{\mathbb{E}}\limits_{X \sim \mathbb{P}} k(t,X) - \mathop{\mathbb{E}}\limits_{Y \sim \mathbb{Q}} k(t,Y)$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{f:\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$f^*(t) \propto \mathop{\mathbb{E}}\limits_{X \sim \mathbb{P}} k(t,X) - \mathop{\mathbb{E}}\limits_{Y \sim \mathbb{Q}} k(t,Y)$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{f:\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$f^*(t) \propto \mathop{\mathbb{E}}\limits_{X \sim \mathbb{P}} k(t,X) - \mathop{\mathbb{E}}\limits_{Y \sim \mathbb{Q}} k(t,Y)$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{f:\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$f^*(t) \propto \mathop{\mathbb{E}}\limits_{X \sim \mathbb{P}} k(t,X) - \mathop{\mathbb{E}}\limits_{Y \sim \mathbb{Q}} k(t,Y)$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{f:\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$f^*(t) \propto \mathop{\mathbb{E}}\limits_{X \sim \mathbb{P}} k(t,X) - \mathop{\mathbb{E}}\limits_{Y \sim \mathbb{Q}} k(t,Y)$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{f:\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$f^*(t) \propto \mathop{\mathbb{E}}\limits_{X \sim \mathbb{P}} k(t,X) - \mathop{\mathbb{E}}\limits_{Y \sim \mathbb{Q}} k(t,Y)$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{f:\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$f^*(t) \propto \mathop{\mathbb{E}}\limits_{X \sim \mathbb{P}} k(t,X) - \mathop{\mathbb{E}}\limits_{Y \sim \mathbb{Q}} k(t,Y)$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{f:\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

$$f^*(t) \propto \mathop{\mathbb{E}}\limits_{X \sim \mathbb{P}} k(t,X) - \mathop{\mathbb{E}}\limits_{Y \sim \mathbb{Q}} k(t,Y)$$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{f:\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

Kernel $k:\mathcal{X} imes\mathcal{X} o\mathbb{R}$ – a "similarity" function

$$f^*(t) \propto \mathop{\mathbb{E}}_{X \sim \mathbb{P}} k(t,X) - \mathop{\mathbb{E}}_{Y \sim \mathbb{Q}} k(t,Y)$$

For many kernels, $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

Reproducing property: if $f\in \mathcal{H}_k$, $f(x)=\langle f,arphi(x)
angle_{\mathcal{H}_k}$

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

Reproducing property: if $f \in \mathcal{H}_k$, $f(x) = \langle f, \varphi(x) \rangle_{\mathcal{H}_k}$ $\operatorname{MMD}_k(\mathbb{P}, \mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$ $= \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[\langle f, \varphi(X) \rangle_{\mathcal{H}_k}] - \mathbb{E}_{Y \sim \mathbb{Q}}[\langle f, \varphi(Y) \rangle_{\mathcal{H}_k}]$

Reproducing property: if $f \in \mathcal{H}_k$, $f(x) = \langle f, \varphi(x) \rangle_{\mathcal{H}_k}$ $\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$ $= \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[\langle f, arphi(X)
angle_{\mathcal{H}_k}] - \mathbb{E}_{Y \sim \mathbb{Q}}[\langle f, arphi(Y)
angle_{\mathcal{H}_k}]$ $= \sup_{\|f\|_{\mathcal{H}_L} \leq 1} \left\langle f, \mathop{\mathbb{E}}_{X \sim \mathbb{P}} [arphi(X)] - \mathop{\mathbb{E}}_{Y \sim \mathbb{Q}} [arphi(Y)]
ight
angle_{\mathcal{H}_L}
ight
angle$

Reproducing property: if $f \in \mathcal{H}_k$, $f(x) = \langle f, \varphi(x) \rangle_{\mathcal{H}_k}$ $\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$ $= \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[\langle f, arphi(X)
angle_{\mathcal{H}_k}] - \mathbb{E}_{Y \sim \mathbb{Q}}[\langle f, arphi(Y)
angle_{\mathcal{H}_k}]$ $= \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \left\langle f, \mathop{\mathbb{E}}_{X \sim \mathbb{P}} [arphi(X)] - \mathop{\mathbb{E}}_{Y \sim \mathbb{Q}} [arphi(Y)]
ight
angle_{\mathcal{H}_k}$ $= \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \left\langle f, \mu^k_\mathbb{P} - \mu^k_\mathbb{Q}
ight
angle_{\mathcal{H}_k}$

Reproducing property: if $f \in \mathcal{H}_k$, $f(x) = \langle f, \varphi(x) \rangle_{\mathcal{H}_k}$ $\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$ $= \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[\langle f, arphi(X)
angle_{\mathcal{H}_k}] - \mathbb{E}_{Y \sim \mathbb{Q}}[\langle f, arphi(Y)
angle_{\mathcal{H}_k}]$ $= \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \left\langle f, \mathop{\mathbb{E}}_{X \sim \mathbb{P}} [arphi(X)] - \mathop{\mathbb{E}}_{Y \sim \mathbb{Q}} [arphi(Y)]
ight
angle_{\mathcal{H}_k}$ $= \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \left\langle f, \mu^k_{\mathbb{P}} - \mu^k_{\mathbb{Q}}
ight
angle_{\mathcal{H}_k} = \left\| \mu^k_{\mathbb{P}} - \mu^k_{\mathbb{Q}}
ight\|_{\mathcal{H}_k}$

Reproducing property: if $f \in \mathcal{H}_k$, $f(x) = \langle f, \varphi(x) \rangle_{\mathcal{H}_k}$ $\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$ $= \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[\langle f, arphi(X)
angle_{\mathcal{H}_k}] - \mathbb{E}_{Y \sim \mathbb{Q}}[\langle f, arphi(Y)
angle_{\mathcal{H}_k}]$ $= \sup_{\|f\|_{\mathcal{H}_L} \leq 1} \left\langle f, \mathop{\mathbb{E}}_{X \sim \mathbb{P}} [arphi(X)] - \mathop{\mathbb{E}}_{Y \sim \mathbb{Q}} [arphi(Y)]
ight
angle_{\mathcal{H}_L}$ $= \sup_{\|f\|_{\mathcal{H}_k} \leq 1} \left\langle f, \mu^k_{\mathbb{P}} - \mu^k_{\mathbb{Q}}
ight
angle_{\mathcal{H}_k} = \left\| \mu^k_{\mathbb{P}} - \mu^k_{\mathbb{Q}}
ight\|_{\mathcal{H}_k}$ $\langle \mu^k_{\mathbb{P}}, \mu^k_{\mathbb{Q}}
angle_{\mathcal{H}_k} = \mathop{\mathbb{E}}_{\substack{X \sim \mathbb{P} \ Y \sim \mathbb{Q}}} \langle \varphi(X), \varphi(Y)
angle_{\mathcal{H}_k} = \mathop{\mathbb{E}}_{\substack{X \sim \mathbb{P} \ Y \sim \mathbb{Q}}} k(X, Y)$

MMD as feature matching

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \left\| \mathop{\mathbb{E}}_{X\sim\mathbb{P}}[arphi(X)] - \mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[arphi(Y)]
ight\|_{\mathcal{H}_k}$$

• $arphi:\mathcal{X} o\mathcal{H}_k$ is the *feature map* for $k(x,y)=\langle arphi(x),arphi(y)
angle$

MMD as feature matching

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \left\| \mathop{\mathbb{E}}_{X\sim\mathbb{P}}[arphi(X)] - \mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[arphi(Y)]
ight\|_{\mathcal{H}_k}$$

- $arphi:\mathcal{X} o\mathcal{H}_k$ is the *feature map* for $k(x,y)=\langle arphi(x),arphi(y)
 angle$
- If $k(x, y) = x^{\mathsf{T}} y$, $\varphi(x) = x$; MMD is distance between means

MMD as feature matching

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \left\| \mathop{\mathbb{E}}_{X\sim\mathbb{P}}[arphi(X)] - \mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[arphi(Y)]
ight\|_{\mathcal{H}_k}$$

- $arphi:\mathcal{X} o\mathcal{H}_k$ is the *feature map* for $k(x,y)=\langle arphi(x),arphi(y)
 angle$
- If $k(x, y) = x^{\mathsf{T}} y$, $\varphi(x) = x$; MMD is distance between means
- Many kernels: **infinite-dimensional** \mathcal{H}_k

 $\mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) = \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2 \mathop{\mathbb{E}}_{\substack{X\sim\mathbb{P}} Y\sim\mathbb{Q}}[k(X,Y)]$

 $egin{aligned} \mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) &= \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2 \mathop{\mathbb{E}}_{\substack{X\sim\mathbb{P}\\Y\sim\mathbb{Q}}}[k(X,Y)] \ & \widehat{\mathrm{MMD}}_k^2(X,Y) = \mathrm{mean}(K_{XX}) + \mathrm{mean}(K_{YY}) - 2 \mathop{\mathrm{mean}}(K_{XY}) \end{aligned}$

 $egin{aligned} \mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) &= \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2\mathop{\mathbb{E}}_{\substack{X\sim\mathbb{P}} Y\sim\mathbb{Q}}[k(X,Y)] \ & \widehat{\mathrm{MMD}}_k^2(X,Y) = \mathrm{mean}(K_{XX}) + \mathrm{mean}(K_{YY}) - 2\,\mathrm{mean}(K_{XY}) \end{aligned}$

 $egin{aligned} \mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) &= \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2\mathop{\mathbb{E}}_{\substack{X\sim\mathbb{P}} Y\sim\mathbb{Q}}[k(X,Y)] \ & \widehat{\mathrm{MMD}}_k^2(X,Y) = \mathrm{mean}(K_{XX}) + \mathrm{mean}(K_{YY}) - 2\,\mathrm{mean}(K_{XY}) \end{aligned}$

 K_{XX}

 K_{YY}

$$egin{aligned} \mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) &= \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2 \mathop{\mathbb{E}}_{X\sim\mathbb{P}}_{Y\sim\mathbb{Q}}[k(X,Y)] \ & \widehat{\mathrm{MMD}}_k^2(X,Y) = \mathrm{mean}(K_{XX}) + \mathrm{mean}(K_{YY}) - 2 \mathop{\mathrm{mean}}(K_{XY}) \end{aligned}$$

 K_{XX}

Implicit generative models

Given samples from a distribution \mathbb{P} over \mathcal{X} , we want a model that can produce new samples from $\mathbb{Q}_{\theta} \approx \mathbb{P}$

 $X \sim \mathbb{P}$

 $Y \sim \mathbb{Q}_{\theta}$

Why implicit generative models?

Why implicit generative models?

VS

 $X\sim \mathbb{P}$

 $Y \sim \mathbb{Q}_{ heta}$

Why implicit generative models?

Uses of generative models:

• Automated animation (anime characters)

 $X \sim \mathbb{P}$

 $Y \sim \mathbb{Q}_A$

Uses of generative models:

• Automated animation (anime characters)

 $X \sim \mathbb{P}$

 $Y \sim \mathbb{Q}_A$

Uses of generative models:

- Automated animation (anime characters)
- Learn calligraphic font style (zi2zi)

 $X\sim \mathbb{P}$

 $Y \sim \mathbb{O}_{A}$

Automated	字	種	成	東	字	推			
• Learn callig	符	利	對	亞	型	斷			
	到	用	抗	話	進	的			
	字	條	網		行	新			
	符	件	絡	字	自	方			
		生	對	體	動	法			
	1	Ш			-	K B	,		

Uses of generative models:

- Automated animation (anime characters)
- Learn calligraphic font style (zi2zi)

 $X\sim \mathbb{P}$

 $Y \sim \mathbb{O}_{A}$

Uses of generative models:

- Automated animation (anime characters)
- Learn calligraphic font style (zi2zi)
- Image translation (pix2pix, Wolf+ 17, Everybody Dance Now)

 $X\sim \mathbb{P}$

 $Y \sim \mathbb{O}$

Uses of generative models:

- Automated animation (anime characters)
- Learn calligraphic font style (zi2zi)

Uses of generative models:

- Automated animation (anime characters)
- Learn calligraphic font style (zi2zi)
- Image translation (pix2pix, Wolf+ 17, Everybody Dance Now)

 $X\sim \mathbb{P}$

 $Y \sim \mathbb{O}$

Uses of generative models:

- Automated animation (anime characters)
- Learn calligraphic font style (zi2zi)
- Image translation (pix2pix, Wolf+ 17, Everybody Dance Now)
- Help musicians improvise, "natural" image editing, plan robot actions, anonymize datasets, ...

 $X \sim \mathbb{P}$

Uses of generative models:

- Automated animation (anime characters)
- Learn calligraphic font style (zi2zi)
- Image translation (pix2pix, Wolf+ 17, Everybody Dance Now)
- Help musicians improvise, "natural" image editing, plan robot actions, anonymize datasets, ...
- Make \$432,500 selling a generated image

 $X \sim \mathbb{P}$

Why implicit apparative models?

- Automated
- Learn callig
- Image trans
- Help musici plan robot
- Make \$432,

Is artificial intelligence set to become art's next medium?

Al artwork sells for \$432,500 — nearly 45 times its high estimate — as Christie's becomes the first auction house to offer a work of art created by an algorithm

The portrait in its gilt frame depicts a portly gentleman, possibly French and — to judge by his dark frockcoat and plain white collar — a man of the church. The work appears unfinished: the facial features are somewhat indistinct and there are blank areas of canvas. Oddly, the whole composition is displaced slightly to the north-west. A label on the wall states that the sitter is a man named Edmond Belamy, but the giveaway clue as to the origins of the work is the artist's signature at the bottom right. In cursive Gallic script it reads:

 $\min_{G} \max_{D} \mathbb{E}_{x}[\log(D(x))] + \mathbb{E}_{z}[\log(1 - D(G(z)))]$

Image © Obvious

y Dance Now)

ling,

Uses of generative models:

- Automated animation (anime characters)
- Learn calligraphic font style (zi2zi)
- Image translation (pix2pix, Wolf+ 17, Everybody Dance Now)
- Help musicians improvise, "natural" image editing, plan robot actions, anonymize datasets, ...
- Make \$432,500 selling a generated image

 $X \sim \mathbb{P}$

Model: generator network

Fixed distribution of latents: $Z \sim \text{Uniform}\left([-1,1]^{100}
ight)$

Maps through a network: $G_{m{ heta}}(Z) \sim \mathbb{Q}_{m{ heta}}$

Model: generator network

Fixed distribution of latents: $Z \sim \text{Uniform}([-1, 1]^{100})$

Maps through a network: $G_{m{ heta}}(Z) \sim \mathbb{Q}_{m{ heta}}$


```
Choose 	heta to minimize \mathcal{D}(\mathbb{P}_{\mathrm{data}},\mathbb{Q}_{	heta})
```

Model: generator network

Fixed distribution of latents: $Z \sim \text{Uniform}([-1, 1]^{100})$

Maps through a network: $G_{m{ heta}}(Z) \sim \mathbb{Q}_{m{ heta}}$


```
Choose \theta to minimize \mathcal{D}(\mathbb{P}_{data}, \mathbb{Q}_{\theta})
Very flexible generative model
```

Traditional choices for ${\cal D}$

 $\operatorname{argmin}_{\theta} \operatorname{KL}(\mathbb{P}_{\operatorname{data}} \| \mathbb{Q}_{\theta})$

maximum likelihood

 $\operatorname{argmin}_{\theta} \operatorname{JS}(\mathbb{P}_{\operatorname{data}}, \mathbb{Q}_{\theta})$

original GANs (ish)

• Problem: \mathbb{P}_{data} and \mathbb{Q}_{θ} don't have full-dimensional support

$\begin{aligned} & \text{Traditional choices for } \mathcal{D} \\ & \arg\min_{\theta} \mathrm{KL}(\mathbb{P}_{\mathrm{data}} \| \mathbb{Q}_{\theta}) \qquad \arg\min_{\theta} \mathrm{JS}(\mathbb{P}_{\mathrm{data}}, \mathbb{Q}_{\theta}) \end{aligned}$

original GANs (ish)

- Problem: \mathbb{P}_{data} and \mathbb{Q}_{θ} don't have full-dimensional support
- Supports almost surely don't align [Arjovsky/Bottou ICLR-17]

maximum likelihood

Traditional choices for ${\cal D}$

- Problem: \mathbb{P}_{data} and \mathbb{Q}_{θ} don't have full-dimensional support
- Supports almost surely don't align [Arjovsky/Bottou ICLR-17]
- No "partial credit": loss is flat at maximum, never improves

MMD as loss [Li+ ICML-15, Dziugaite+ UAI-15]

- Does give "partial credit" to nearby points
- Can directly minimize $\widehat{\mathrm{MMD}}^2(X,G_{{m heta}}(Z))$ with SGD

MMD as loss [Li+ ICML-15, Dziugaite+ UAI-15]

- Does give "partial credit" to nearby points
- Can directly minimize $\widehat{\mathrm{MMD}}^2(X,G_{ heta}(Z))$ with SGD

MNIST, mix of Gaussian kernels

MMD as loss [Li+ ICML-15, Dziugaite+ UAI-15]

- Does give "partial credit" to nearby points
- Can directly minimize $\widehat{\mathrm{MMD}}^2(X,G_{ heta}(Z))$ with SGD

MNIST, mix of Gaussian kernels

Celeb-A, mix of rational quadratic + linear kernels

 \mathbb{P}_{data}

^{II} data

ĽĤ

Celeb-A, mix of rational quadratic + linear kernels

Deep kernels

$$egin{aligned} k_\psi(x,y) &= k_{ ext{top}}(\phi_\psi(x),\phi_\psi(y)) \ \phi_\psi:\mathcal{X} & o \mathbb{R}^D \qquad k_\psi:\mathbb{R}^D imes \mathbb{R}^D o \mathbb{R} \end{aligned}$$

• $k_{
m top}$ usually Gaussian, linear, ...

MMD loss with a deep kernel

$$k(x,y) = k_{ ext{top}}(\phi(x),\phi(y))$$

- $\phi: \mathcal{X}
 ightarrow \mathbb{R}^{2048}$ from pretrained Inception net
- $k_{
 m top}$ simple: exponentiated quadratic or polynomial

MMD loss with a deep kernel

$$k(x,y) = k_{ ext{top}}(\phi(x),\phi(y))$$

- $\phi: \mathcal{X}
 ightarrow \mathbb{R}^{2048}$ from pretrained Inception net
- $k_{
 m top}$ simple: exponentiated quadratic or polynomial

 \mathbb{P}_{data}

MMD loss with a deep kernel

$$k(x,y) = k_{ ext{top}}(\phi(x),\phi(y))$$

- $\phi: \mathcal{X}
 ightarrow \mathbb{R}^{2048}$ from pretrained Inception net
- $k_{
 m top}$ simple: exponentiated quadratic or polynomial

nită.	Æ	đ.	
	 	Æ.	

Optimized MMD: MMD GANs [Li+ NeurIPS-17]

• Don't just use one kernel, use a *class* parameterized by ψ :

$$k_\psi(x,y) = k_{ ext{top}}(\phi_\psi(x),\phi_\psi(y))$$

Optimized MMD: MMD GANs [Li+ NeurIPS-17]

• Don't just use one kernel, use a *class* parameterized by ψ :

$$k_\psi(x,y) = k_{ ext{top}}(\phi_\psi(x),\phi_\psi(y))$$

• New distance based on *all* these kernels:

$$\mathcal{D}^{\Psi}_{\mathrm{MMD}}(\mathbb{P},\mathbb{Q}) = \sup_{\psi\in\Psi}\mathrm{MMD}_{\psi}(\mathbb{P},\mathbb{Q})$$

Optimized MMD: MMD GANs [Li+ NeurIPS-17]

• Don't just use one kernel, use a *class* parameterized by ψ :

$$k_\psi(x,y) = k_{ ext{top}}(\phi_\psi(x),\phi_\psi(y))$$

• New distance based on *all* these kernels:

$$\mathcal{D}^{\Psi}_{\mathrm{MMD}}(\mathbb{P},\mathbb{Q}) = \sup_{\psi\in\Psi}\mathrm{MMD}_{\psi}(\mathbb{P},\mathbb{Q})$$

• Minimax optimization problem

$$\inf_{\substack{ heta \ \psi}} \operatorname{MMD}_{\psi}(\mathbb{P}_{\operatorname{data}}, \mathbb{Q}_{ heta})$$

Non-smoothness of Optimized MMD

Illustrative problem in \mathbb{R} , DiracGAN [Mescheder+ ICML-18]:

Non-smoothness of Optimized MMD

Illustrative problem in \mathbb{R} , DiracGAN [Mescheder+ ICML-18]:

- ...deep kernel analogue is hard.
- Instead, keep witness function from being too steep

$$-5.0 -2.5 0.0 2.5 5.0 0 5 10 \theta$$

- Just need to stay away from tiny bandwidths ψ
- ...deep kernel analogue is hard.
- Instead, keep witness function from being too steep
- Control $\|
 abla f(ilde X)\|$ on average, near the data
 - [Gulrajani+ NeurIPS-17 / Roth+ NeurIPS-17 / Mescheder+ ICML-18]

-5.0	-2.5	0.0	2.5	5.0	0	5	10
		θ				θ	

- If Ψ gives uniformly Lipschitz critics, $\mathcal{D}^{\Psi}_{\mathrm{MMD}}$ is smooth
- Original MMD-GAN paper [Li+ NeurIPS-17]: box constraint

- If Ψ gives uniformly Lipschitz critics, $\mathcal{D}^{\Psi}_{\mathrm{MMD}}$ is smooth
- Original MMD-GAN paper [Li+ NeurIPS-17]: box constraint
- We [Bińkowski+ ICLR-18] used gradient penalty on critic instead

- If Ψ gives uniformly Lipschitz critics, $\mathcal{D}^{\Psi}_{\mathrm{MMD}}$ is smooth
- Original MMD-GAN paper [Li+ NeurIPS-17]: box constraint
- We [Bińkowski+ ICLR-18] used gradient penalty on critic instead
 - Better in practice, but doesn't fix the Dirac problem...

- If Ψ gives uniformly Lipschitz critics, $\mathcal{D}^{\Psi}_{\mathrm{MMD}}$ is smooth
- Original MMD-GAN paper [Li+ NeurIPS-17]: box constraint
- We [Bińkowski+ ICLR-18] used gradient penalty on critic instead
 - Better in practice, but doesn't fix the Dirac problem...

New distance: Scaled MMD Want to ensure $\mathbb{E}_{ ilde{X}\sim\mathbb{S}}[\| abla f(ilde{X})\|^2]\leq 1$

Want to ensure $\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\| abla f(ilde{X}) \|^2] \leq 1$

Can do directly with kernel properties...but too expensive!

Want to ensure
$$\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] \leq 1$$

Can do directly with kernel properties...but too expensive!

Guaranteed if
$$\|f\|_{\mathcal{H}_k} \leq \sigma_{\mathbb{S},k,\lambda}$$

 $\sigma_{\mathbb{S},k,\lambda} := \left(\lambda + \mathop{\mathbb{E}}_{\tilde{X} \sim \mathbb{S}} \left[k(\tilde{X}, \tilde{X}) + [\nabla_1 \cdot \nabla_2 k](\tilde{X}, \tilde{X})\right]\right)^{-\frac{1}{2}}$

Want to ensure
$$\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] \leq 1$$

Can do directly with kernel properties...but too expensive!

Guaranteed if
$$\|f\|_{\mathcal{H}_k} \leq \sigma_{\mathbb{S},k,\lambda}$$

 $\sigma_{\mathbb{S},k,\lambda} := \left(\lambda + \mathop{\mathbb{E}}_{\tilde{X}\sim\mathbb{S}}\left[k(\tilde{X},\tilde{X}) + [\nabla_1 \cdot \nabla_2 k](\tilde{X},\tilde{X})\right]\right)^{-\frac{1}{2}}$

Gives distance $\mathrm{SMMD}_{\mathbb{S},k,\lambda}(\mathbb{P},\mathbb{Q})=\sigma_{\mathbb{S},k,\lambda}\ \mathrm{MMD}_k(\mathbb{P},\mathbb{Q})$

Want to ensure
$$\mathbb{E}_{ ilde{X} \sim \mathbb{S}}[\|
abla f(ilde{X})\|^2] \leq 1$$

Can do directly with kernel properties...but too expensive!

Guaranteed if
$$\|f\|_{\mathcal{H}_k} \leq \sigma_{\mathbb{S},k,\lambda}$$

 $\sigma_{\mathbb{S},k,\lambda} := \left(\lambda + \mathop{\mathbb{E}}_{\tilde{X}\sim\mathbb{S}}\left[k(\tilde{X},\tilde{X}) + [\nabla_1 \cdot \nabla_2 k](\tilde{X},\tilde{X})\right]\right)^{-\frac{1}{2}}$

Gives distance $\mathrm{SMMD}_{\mathbb{S},k,\lambda}(\mathbb{P},\mathbb{Q})=\sigma_{\mathbb{S},k,\lambda}\ \mathrm{MMD}_k(\mathbb{P},\mathbb{Q})$

$$egin{aligned} \mathcal{D}^{\Psi}_{ ext{MMD}} & ext{has} \ \mathcal{F} = igcup_{\psi \in \Psi} \left\{ f : \|f\|_{\mathcal{H}_{\psi}} \leq 1
ight\} \ \mathcal{D}^{\mathbb{S},\Psi,\lambda}_{ ext{SMMD}} & ext{has} \ \mathcal{F} = igcup_{\psi \in \Psi} \left\{ f : \|f\|_{\mathcal{H}_{\psi}} \leq \sigma_{\mathbb{S},k,\lambda}
ight\} \end{aligned}$$

$\mathop{\mathbb{E}}_{ ilde{X}\sim\mathbb{S}}[\| abla f(ilde{X})\|^2] \leq 1$

 $\mathop{\mathbb{E}}_{ ilde{X}\sim\mathbb{S}}[f(ilde{X})^2] + \mathop{\mathbb{E}}_{ ilde{X}\sim\mathbb{S}}[\|
abla f(ilde{X})\|^2] + \lambda \|f\|_{\mathcal{H}}^2 \leq 1$

$$egin{aligned} &\mathbb{E}_{ ilde{X}\sim\mathbb{S}}[f(ilde{X})^2] + \mathbb{E}_{ ilde{X}\sim\mathbb{S}}[\|
abla f(ilde{X})\|^2] + \lambda \|f\|_{\mathcal{H}}^2 \leq 1 \ &\mathbb{E}_{ ilde{X}\sim\mathbb{S}}[f(ilde{X})^2] = \left\langle f, \mathbb{E}_{ ilde{X}\sim\mathbb{S}}[arphi(ilde{X})\otimesarphi(ilde{X})]f
ight
angle_{\mathcal{H}} \end{aligned}$$

$$\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [f(ilde{X})^2] + \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] + \lambda \|f\|_{\mathcal{H}}^2 \leq 1$$
 $\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [f(ilde{X})^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [arphi(ilde{X}) \otimes arphi(ilde{X})] f
ight
angle_{\mathcal{H}}$
 $\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}} \left[\sum_{i=1}^d \partial_i arphi(ilde{X}) \otimes \partial_i arphi(ilde{X})
ight] f
ight
angle_{\mathcal{H}}$

$$\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [f(ilde{X})^2] + \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] + \lambda \|f\|_{\mathcal{H}}^2 \leq 1$$
 $\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [f(ilde{X})^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\varphi(ilde{X}) \otimes \varphi(ilde{X})] f
ight
angle_{\mathcal{H}}$
 $\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}} \left[\sum_{i=1}^d \partial_i \varphi(ilde{X}) \otimes \partial_i \varphi(ilde{X})
ight] f
ight
angle_{\mathcal{H}}$

$$\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [f(ilde{X})^2] + \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] + \lambda \|f\|_{\mathcal{H}}^2 \leq 1$$
 $\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [f(ilde{X})^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [arphi(ilde{X}) \otimes arphi(ilde{X})] f
ight
angle_{\mathcal{H}}$
 $\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}} \left[\sum_{i=1}^d \partial_i arphi(ilde{X}) \otimes \partial_i arphi(ilde{X})
ight] f
ight
angle_{\mathcal{H}}$

$$\langle f, D_\lambda f
angle_{\mathcal{H}}$$

$$\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [f(ilde{X})^2] + \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] + \lambda \|f\|_{\mathcal{H}}^2 \leq 1$$
 $\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [f(ilde{X})^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [arphi(ilde{X}) \otimes arphi(ilde{X})] f
ight
angle_{\mathcal{H}}$
 $\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}} \left[\sum_{i=1}^d \partial_i arphi(ilde{X}) \otimes \partial_i arphi(ilde{X})
ight] f
ight
angle_{\mathcal{H}}$

$$\langle f, D_\lambda f
angle_{\mathcal{H}} \leq \| D_\lambda \| \, \| f \|_{\mathcal{H}}^2$$

$$\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [f(ilde{X})^2] + \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] + \lambda \|f\|_{\mathcal{H}}^2 \leq 1$$
 $\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [f(ilde{X})^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [arphi(ilde{X}) \otimes arphi(ilde{X})] f
ight
angle_{\mathcal{H}}$
 $\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}} \left[\sum_{i=1}^d \partial_i arphi(ilde{X}) \otimes \partial_i arphi(ilde{X})
ight] f
ight
angle_{\mathcal{H}}$

$$\langle f, D_\lambda f
angle_{\mathcal{H}} \leq \| D_\lambda \| \, \| f \|_{\mathcal{H}}^2 \leq \sigma_{\mathbb{S},k,\lambda}^{-2} \| f \|_{\mathcal{H}}^2$$

Smoothness of $\mathcal{D}_{\mathrm{SMMD}}$

Smoothness of $\mathcal{D}_{\mathrm{SMMD}}$

Theorem: $\mathcal{D}_{\mathrm{SMMD}}^{\mathbb{S},\Psi,\lambda}$ is continuous.

If \mathbb{S} has a density; k_{top} is Gaussian/linear/...; ϕ_{ψ} is fully-connected, Leaky-ReLU, non-increasing width; all weights in Ψ have bounded condition number; then $\mathcal{W}(\mathbb{Q}_n, \mathbb{P}) \to 0$ implies $\mathcal{D}_{SMMD}^{\mathbb{S}, \Psi, \lambda}(\mathbb{Q}_n, \mathbb{P}) \to 0$.

Target \mathbb{P} and model \mathbb{Q}_{θ} samples

Kernels from $\mathrm{SMMD}_{\mathbb{P},k,\lambda}$, early in optimization

Critic gradients from $\mathrm{SMMD}_{\mathbb{P},k,\lambda}$ (early)

SMMDGAN (target)

Critic gradients from MMD_k (early)

MMDGAN (no GP)

Kernels from $\mathrm{SMMD}_{\mathbb{P},k,\lambda}$, late in optimization

SMMDGAN (target)

Critic gradients from $\mathrm{SMMD}_{\mathbb{P},k,\lambda}$ (late)

Critic gradients from MMD_k (late)

Model on 160×160 CelebA

SN-SMMD-GAN

WGAN-GP

KID: 0.006

KID: 0.022

$\textbf{Model on } 64 \times 64 \textbf{ ImageNet}$

SN-SMMDGAN

SN-GAN

BGAN

KID: 0.047

KID: 0.035

KID: 0.044

Recap

- Can train generative models by minimizing a *flexible*, *smooth* distance between distributions
- Combine kernels with gradient penalties
- Strong practical results, some understanding of theory

Demystifying MMD GANs

Bińkowski^{*}, <u>Sutherland</u>^{*}, Arbel, and Gretton [ICLR 2018]

On Gradient Regularizers for MMD GANs

Arbel^{*}, <u>Sutherland</u>^{*}, Bińkowski, and Gretton [NeurIPS 2018]

Links + code: see dougal.me

Recap

- Can train generative models by minimizing a *flexible*, *smooth* distance between distributions
- Combine kernels with gradient penalties
- Strong practical results, some understanding of theory
- But haven't totally solved GANs yet!

Demystifying MMD GANs

Bińkowski^{*}, <u>Sutherland</u>^{*}, Arbel, and Gretton [ICLR 2018]

On Gradient Regularizers for MMD GANs

Arbel^{*}, <u>Sutherland</u>^{*}, Bińkowski, and Gretton [NeurIPS 2018]

Links + code: see dougal.me

Recap

- Can train generative models by minimizing a *flexible*, *smooth* distance between distributions
- Combine kernels with gradient penalties
- Strong practical results, some understanding of theory
- But haven't totally solved GANs yet!

Demystifying MMD GANs

Bińkowski^{*}, <u>Sutherland</u>^{*}, Arbel, and Gretton [ICLR 2018]

On Gradient Regularizers for MMD GANs

Arbel^{*}, <u>Sutherland</u>^{*}, Bińkowski, and Gretton [NeurIPS 2018]

Links + code: see dougal.me

Thanks!

Backup slides

MMD GANs versus WGANs

- Linear-kernel MMD GAN, $k(x, y) = \phi(x)\phi(y)$: $\log x = |\underset{\mathbb{P}}{\mathbb{E}}\phi(X) - \underset{\mathbb{Q}}{\mathbb{E}}\phi(Y)|$ $f(t) = \operatorname{sign}\left(\underset{\mathbb{P}}{\mathbb{E}}\phi(X) - \underset{\mathbb{Q}}{\mathbb{E}}\phi(Y)\right)\phi(t)$
- WGAN has:

$$egin{aligned} &\mathrm{loss} = \mathop{\mathbb{E}}\limits_{\mathbb{P}} \phi(X) - \mathop{\mathbb{E}}\limits_{\mathbb{Q}} \phi(Y) \ &f(t) = \phi(t) \end{aligned}$$

MMD GANs versus WGANs

- Linear-kernel MMD GAN, $k(x, y) = \phi(x)\phi(y)$: $\log x = |\underset{\mathbb{P}}{\mathbb{E}} \phi(X) - \underset{\mathbb{Q}}{\mathbb{E}} \phi(Y)|$ $f(t) = \operatorname{sign}\left(\underset{\mathbb{P}}{\mathbb{E}} \phi(X) - \underset{\mathbb{Q}}{\mathbb{E}} \phi(Y)\right)\phi(t)$
- WGAN has:

$$egin{aligned} & \log & = \mathop{\mathbb{E}}\limits_{\mathbb{P}} \phi(X) - \mathop{\mathbb{E}}\limits_{\mathbb{Q}} \phi(Y) \ & f(t) = \phi(t) \end{aligned}$$

- Linear-kernel MMD GAN-GP and WGAN-GP almost the same
- MMD GAN "offloads" some of the critic's work to closed-form optimization in the RKHS

Keeping weight condition numbers bounded

- Spectral parameterization [Miyato+ ICLR-18]:
- $W=\gamma ar{W}/\|ar{W}\|_{
 m op}$; learn γ and $ar{W}$ freely
- Encourages diversity without limiting representation

Rank collapse

- Occasional optimization failure without spectral param:
 - Generator doing reasonably well
 - Critic filters become low-rank
 - Generator corrects it by breaking everything else
 - Generator gets stuck

What if we just did spectral normalization?

- $W=ar{W}/\|ar{W}\|_{ ext{op}}$, so that $\|W\|_{ ext{op}}=1$, $\|\phi_{\psi}\|_{L}\leq 1$
- Works well for original GANs [Miyato+ ICLR-18]
- ...but doesn't work at all as only constraint in a WGAN
- Limits representation too much
 - In DiracGAN, only allows bandwidth 1
 - $\|x\mapsto \sigma(W_n\cdots\sigma(W_1x))\|_L \ll \|W_n\|_{\mathrm{op}}\cdots\|W_1\|_{\mathrm{op}}$

• $k_{\psi}(x,y) = k_{ ext{top}}(\phi_{\psi}(x),\phi(y))$ means $d_{\psi}(x,y) = \|k_{\psi}(x,\cdot) - k_{\psi}(y,\cdot)\|_{\mathcal{H}_{k_{\psi}}} \leq L_{k_{ ext{top}}}\|\phi_{\psi}\|_{ ext{Lip}}\|x-y\|$

•
$$k_{\psi}(x,y) = k_{ ext{top}}(\phi_{\psi}(x),\phi(y))$$
 means
 $d_{\psi}(x,y) = \|k_{\psi}(x,\cdot) - k_{\psi}(y,\cdot)\|_{\mathcal{H}_{k_{\psi}}} \leq L_{k_{ ext{top}}}\|\phi_{\psi}\|_{ ext{Lip}}\|x-y\|$

• Can show $\mathrm{MMD}_\psi \leq \mathcal{W}_{d_\psi} \leq L_{k_{\mathrm{top}}} \| \phi_\psi \|_{\mathrm{Lip}} \, \mathcal{W}$

•
$$k_{\psi}(x,y) = k_{ ext{top}}(\phi_{\psi}(x),\phi(y))$$
 means
 $d_{\psi}(x,y) = \|k_{\psi}(x,\cdot) - k_{\psi}(y,\cdot)\|_{\mathcal{H}_{k_{\psi}}} \leq L_{k_{ ext{top}}}\|\phi_{\psi}\|_{ ext{Lip}}\|x-y\|$

- Can show $\mathrm{MMD}_\psi \leq \mathcal{W}_{d_\psi} \leq L_{k_{\mathrm{top}}} \| \phi_\psi \|_{\mathrm{Lip}} \, \mathcal{W}$
- By assumption on $k_{ ext{top}}$, $\sigma_{\mathbb{S},k,\lambda}^{-2} \geq \gamma_{k_{ ext{top}}}^2 \ \mathbb{E}[\|
 abla \phi_\psi(ilde X)\|_F^2]$

•
$$k_{\psi}(x,y) = k_{ ext{top}}(\phi_{\psi}(x),\phi(y))$$
 means
 $d_{\psi}(x,y) = \|k_{\psi}(x,\cdot) - k_{\psi}(y,\cdot)\|_{\mathcal{H}_{k_{\psi}}} \leq L_{k_{ ext{top}}}\|\phi_{\psi}\|_{ ext{Lip}}\|x-y\|$

- Can show $\operatorname{MMD}_\psi \leq \mathcal{W}_{d_\psi} \leq L_{k_{\operatorname{top}}} \| \phi_\psi \|_{\operatorname{Lip}} \, \mathcal{W}$
- By assumption on $k_{ ext{top}}$, $\sigma_{\mathbb{S},k,\lambda}^{-2} \geq \gamma_{k_{ ext{top}}}^2 \ \mathbb{E}[\|
 abla \phi_\psi(ilde X)\|_F^2]$

$$\bullet \; \mathrm{SMMD}^2 \leq \frac{L^2_{k_{\mathrm{top}}} \| \phi_\psi \|^2_{\mathrm{Lip}}}{\gamma^2_{k_{\mathrm{top}}} \, \mathbb{E} \, \| \nabla_{\tilde{X}} \phi_\psi(\tilde{X}) \|^2_F} \, \mathcal{W}$$

•
$$k_{\psi}(x,y) = k_{ ext{top}}(\phi_{\psi}(x),\phi(y))$$
 means
 $d_{\psi}(x,y) = \|k_{\psi}(x,\cdot) - k_{\psi}(y,\cdot)\|_{\mathcal{H}_{k_{\psi}}} \leq L_{k_{ ext{top}}}\|\phi_{\psi}\|_{ ext{Lip}}\|x-y\|$

- Can show $\operatorname{MMD}_\psi \leq \mathcal{W}_{d_\psi} \leq L_{k_{\operatorname{top}}} \| \phi_\psi \|_{\operatorname{Lip}} \, \mathcal{W}$
- By assumption on $k_{ ext{top}}$, $\sigma_{\mathbb{S},k,\lambda}^{-2} \geq \gamma_{k_{ ext{top}}}^2 \ \mathbb{E}[\|
 abla \phi_\psi(ilde X)\|_F^2]$

$$\bullet \; \mathrm{SMMD}^2 \leq \frac{L^2_{k_{\mathrm{top}}} \| \phi_\psi \|^2_{\mathrm{Lip}}}{\gamma^2_{k_{\mathrm{top}}} \; \mathbb{E} \, \| \nabla_{\tilde{X}} \phi_\psi(\tilde{X}) \|_F^2} \, \mathcal{W}$$

- Because Leaky-ReLU, $\phi_\psi(X) = lpha(\psi) \phi_{ar\psi}(X)$, $\|\phi_{ar\psi}\|_{ ext{Lip}} \leq 1$

•
$$k_{\psi}(x,y) = k_{ ext{top}}(\phi_{\psi}(x),\phi(y))$$
 means $d_{\psi}(x,y) = \|k_{\psi}(x,\cdot) - k_{\psi}(y,\cdot)\|_{\mathcal{H}_{k_{\psi}}} \leq L_{k_{ ext{top}}}\|\phi_{\psi}\|_{ ext{Lip}}\|x-y\|$

- Can show $\operatorname{MMD}_\psi \leq \mathcal{W}_{d_\psi} \leq L_{k_{\operatorname{top}}} \| \phi_\psi \|_{\operatorname{Lip}} \, \mathcal{W}$
- By assumption on $k_{ ext{top}}$, $\sigma_{\mathbb{S},k,\lambda}^{-2} \geq \gamma_{k_{ ext{top}}}^2 \ \mathbb{E}[\|
 abla \phi_\psi(ilde X)\|_F^2]$

$$\bullet \; \mathrm{SMMD}^2 \leq \frac{L^2_{k_{\mathrm{top}}} \| \phi_\psi \|^2_{\mathrm{Lip}}}{\gamma^2_{k_{\mathrm{top}}} \, \mathbb{E} \, \| \nabla_{\tilde{X}} \phi_\psi(\tilde{X}) \|_F^2} \, \mathcal{W}$$

- Because Leaky-ReLU, $\phi_\psi(X) = lpha(\psi) \phi_{ar\psi}(X)$, $\|\phi_{ar\psi}\|_{ ext{Lip}} \leq 1$
- For Lebesgue-almost all $ilde{X}$, $\|
 abla_{ ilde{X}} \phi_{ar{\psi}}(ilde{X}) \|_F^2 \geq rac{d_{ ext{top}} lpha^L}{\kappa^L}$

•
$$k_{\psi}(x,y) = k_{ ext{top}}(\phi_{\psi}(x),\phi(y))$$
 means $d_{\psi}(x,y) = \|k_{\psi}(x,\cdot) - k_{\psi}(y,\cdot)\|_{\mathcal{H}_{k_{\psi}}} \leq L_{k_{ ext{top}}}\|\phi_{\psi}\|_{ ext{Lip}}\|x-y\|$

- Can show $\operatorname{MMD}_\psi \leq \mathcal{W}_{d_\psi} \leq L_{k_{\operatorname{top}}} \| \phi_\psi \|_{\operatorname{Lip}} \, \mathcal{W}$
- By assumption on $k_{ ext{top}}$, $\sigma_{\mathbb{S},k,\lambda}^{-2} \geq \gamma_{k_{ ext{top}}}^2 \ \mathbb{E}[\|
 abla \phi_\psi(ilde X)\|_F^2]$
- $\bullet \ \mathrm{SMMD}^2 \leq \frac{L_{k_{\mathrm{top}}}^2 \|\phi_\psi\|_{\mathrm{Lip}}^2}{\gamma_{k_{\mathrm{top}}}^2 \, \mathbb{E} \, \|\nabla_{\tilde{X}} \phi_\psi(\tilde{X})\|_F^2} \, \mathcal{W} \leq \frac{L_{k_{\mathrm{top}}}^2 \, \kappa^L}{\gamma_{k_{\mathrm{top}}}^2 \, d_{\mathrm{top}} \alpha^L} \, \mathcal{W}$
- Because Leaky-ReLU, $\phi_\psi(X) = lpha(\psi) \phi_{ar\psi}(X)$, $\|\phi_{ar\psi}\|_{ ext{Lip}} \leq 1$
- For Lebesgue-almost all $ilde{X}$, $\|
 abla_{ ilde{X}} \phi_{ar{\psi}}(ilde{X}) \|_F^2 \geq rac{d_{ ext{top}} lpha^L}{\kappa^L}$

Implicit generative model evaluation

• No likelihoods, so...how to compare models?

Implicit generative model evaluation

- No likelihoods, so...how to compare models?
- Main approach:

look at a bunch of pictures and see if they're pretty or not
- No likelihoods, so...how to compare models?
- Main approach:
 - look at a bunch of pictures and see if they're pretty or not
 - Easy to find (really) bad samples

- No likelihoods, so...how to compare models?
- Main approach:
 - look at a bunch of pictures and see if they're pretty or not
 - Easy to find (really) bad samples
 - Hard to see if modes are missing / have wrong probabilities

- No likelihoods, so...how to compare models?
- Main approach:
 - look at a bunch of pictures and see if they're pretty or not
 - Easy to find (really) bad samples
 - Hard to see if modes are missing / have wrong probabilities
 - Hard to compare models beyond certain threshold

- No likelihoods, so...how to compare models?
- Main approach:
 - look at a bunch of pictures and see if they're pretty or not
 - Easy to find (really) bad samples
 - Hard to see if modes are missing / have wrong probabilities
 - Hard to compare models beyond certain threshold
- Need better, quantitative methods

- No likelihoods, so...how to compare models?
- Main approach: look at a bunch of pictures and see if they're pretty or not
 - Easy to find (really) bad samples
 - Hard to see if modes are missing / have wrong probabilities
 - Hard to compare models beyond certain threshold
- Need better, quantitative methods
- Our method: Kernel Inception Distance (KID)
 - $\mathrm{MMD}_k(\mathbb{P}_{\mathrm{data}},\mathbb{Q}_{ heta})^2$, k cubic on pretrained Inception rep

- No likelihoods, so...how to compare models?
- Main approach: look at a bunch of pictures and see if they're pretty or not
 - Easy to find (really) bad samples
 - Hard to see if modes are missing / have wrong probabilities
 - Hard to compare models beyond certain threshold
- Need better, quantitative methods
- Our method: Kernel Inception Distance (KID)
 - $\mathrm{MMD}_k(\mathbb{P}_{\mathrm{data}},\mathbb{Q}_{ heta})^2$, k cubic on pretrained Inception rep
 - tf.contrib.gan.eval.kernel_inception_distance

- Previously standard quantitative method
- Based on ImageNet classifier label predictions
 - Classifier should be confident on individual images
 - Predicted labels should be diverse across sample

- Previously standard quantitative method
- Based on ImageNet classifier label predictions
 - Classifier should be confident on individual images
 - Predicted labels should be diverse across sample
- No notion of target distribution \mathbb{P}_{data}

- Previously standard quantitative method
- Based on ImageNet classifier label predictions
 - Classifier should be confident on individual images
 - Predicted labels should be diverse across sample
- No notion of target distribution \mathbb{P}_{data}
- Scores completely meaningless on LSUN, Celeb-A, SVHN, ...

- Previously standard quantitative method
- Based on ImageNet classifier label predictions
 - Classifier should be confident on individual images
 - Predicted labels should be diverse across sample
- No notion of target distribution \mathbb{P}_{data}
- Scores completely meaningless on LSUN, Celeb-A, SVHN, ...
- Not great on CIFAR-10 either

• Previously standard quantitative method

- Fit normals to Inception hidden layer activations of ${\mathbb P}$ and ${\mathbb Q}$
- Compute Fréchet (Wasserstein-2) distance between fits

- Fit normals to Inception hidden layer activations of ${\mathbb P}$ and ${\mathbb Q}$
- Compute Fréchet (Wasserstein-2) distance between fits
- Meaningful on not-ImageNet datasets

- Fit normals to Inception hidden layer activations of $\mathbb P$ and $\mathbb Q$
- Compute Fréchet (Wasserstein-2) distance between fits
- Meaningful on not-ImageNet datasets

- Fit normals to Inception hidden layer activations of ${\mathbb P}$ and ${\mathbb Q}$
- Compute Fréchet (Wasserstein-2) distance between fits
- Meaningful on not-ImageNet datasets
- Estimator extremely biased, tiny variance

- Fit normals to Inception hidden layer activations of ${\mathbb P}$ and ${\mathbb Q}$
- Compute Fréchet (Wasserstein-2) distance between fits
- Meaningful on not-ImageNet datasets
- Estimator extremely biased, tiny variance
- $\operatorname{FID}(\mathbb{P}_1,\mathbb{Q}) < \operatorname{FID}(\mathbb{P}_2,\mathbb{Q}), \mathbb{E}\operatorname{FID}(\hat{\mathbb{P}}_1,\mathbb{Q}) > \mathbb{E}\operatorname{FID}(\hat{\mathbb{P}}_2,\mathbb{Q})$

New method: Kernel Inception Distance (KID)

- $\widehat{\mathrm{MMD}}^2$ between Inception hidden layer activations
- Use default polynomial kernel: $k(x,y) = \left(rac{1}{d} \langle x,y
 angle + 1
 ight)^3$

New method: Kernel Inception Distance (KID)

- $\widehat{\mathrm{MMD}}^2$ between Inception hidden layer activations
- Use default polynomial kernel: $k(x,y) = \left(rac{1}{d} \langle x,y
 angle + 1
 ight)^3$
- Unbiased estimator, reasonable with few samples

New method: Kernel Inception Distance (KID)

- $\widehat{\mathrm{MMD}}^2$ between Inception hidden layer activations
- Use default polynomial kernel: $k(x,y) = \left(rac{1}{d} \langle x,y
 angle + 1
 ight)^3$
- Unbiased estimator, reasonable with few samples
- In tensorflow.contrib.gan.eval (tensorflow#21066)

Automatic learning rate adaptation with KID

- Models need appropriate learning rate schedule to work well
- Automate with three-sample MMD test [Bounliphone+ ICLR-16]:

Controlling critic complexity

