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An efficient representation for an image

▶ In neuropsycological studies, the importance of directional sensitivity in the

efficient processing of natural images by the human brain has been a major

finding, as in a seminal work of Field and Olshausen (1996)1.

▶ The research for efficient representations for images has also been developed

in the both fields of harmonic analysis and signal processing.

1B. Olshausen and D. Field, Emergence of simple-cell receptive field properties by learning a

sparse code for natural images, Nature 381, 607–609 (1996).
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Introduction

▶ Wavelet-based methods have shown substantial success in multiscale

image analysis including edge detection, compression, and denoising.

▶ However, wavelets do not provide good directional selectivity, which

results in some failure in geometrical image analysis.

▶ Several directional wavelet-based methods have been proposed, such as

dual-tree complex wavelets, curvelets, contourlets, and shearlets.

▶ One of the key ideas behind these methods is to allow redundancy in their

construction, which allows for more flexibility in the design of a wavelet

transform, such as having good directional selectivity.

▶ Although they frequently outperform the traditional discrete wavelet

transform (DWT) in geometrical analysis, the redundancy makes a

transform or a system computationally expensive.
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Our work

▶ We have proposed a new wavelet-based transform, DLWT (directional
lifting wavelet transform).
▶ Pure discrete setting on a plane.
▶ 2D discrete wavelet transform with directional selectivity N = 12.
▶ It has good tradeoff between directional selectivity and redundancy.

SWT DTCWT DLWT

Directions N = 3 N = 6 N = 12

Redundancy N × J + 1 4 (N × J + 1)/4

▶ We also have shown that the directional property of the DLWT plays an

important role in the analysis of image edge components.

▶ In this talk, taking advantage of its directional selectivity, we show

properties of edge analysis using the DLWT.
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Preliminary

▶ Let {cj [t]}t∈Z2 be an image with resolution level j ∈ N ∪ {0}.
▶ The DWT decomposes an image {cj [t]}t∈Z2 into its coarse component

{cj−1[t]}t∈Z2 and three detail components {dk,j−1[t]}t∈Z2,k=1,2,3, which

consist of horizontal, vertical and diagonal degrees. This can also be written

as

{cj [t]}t∈Z2 7→ {dk,j−1[t], cj−1[t]}t∈Z2,k=1,2,3 .

▶ We say that the directional selectivity is N = 3. Each component has a half

resolution.

▶ This decomposition can be iterated to an arbitrary decomposition level

J ≥ 1 with the resulting coarse component as a new signal.
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DLWT: Directional lifting wavelet transform

▶ As a result, the following sequences of coefficients are obtained by the DWT:

{cj [t]}t∈Z2 7→ {dk,j−1[t], dk,j−2[t], . . . , dk,j−J [t], cj−J [t]}t∈Z2,k=1,2,3 .

▶ The DLWT also gives a similar decomposition but it has 12 directional

components. The J-th level decomposition with the DLWT can be written

by

{cj [t]}t∈Z2 7→ {dk,j−1[t], dk,j−2[t], . . . , dk,j−J [t], cj−J [t]}t∈Z2,k∈D ,

where D = {ℓ ∈ Z | 1 ≤ ℓ ≤ N} with N = 12.

▶ This is a redundant transform, but an efficient computational algorithm

owing to the lifting implementation is available.
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▶ We define directional vectors {sm ∈ Z2}Nm=0 (s0 = 0) that represent the

following approximated angles

θ ≈
(
180 (d− 1)

N

)◦

, d ∈ D .
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N = 12 ⇒ θ ≈ {0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 150◦, 165◦}.
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Modified lifting scheme in 2D

For a signal {x[t]}t∈Z2 , we define two bounded linear operators, prediction

operators {Pk}k∈D and an update operator {U}k∈D by

(Pk x) [t] := (p ∗ x) [t] =
∑
ℓ∈Z2

pk[ℓ]x[t− ℓ],

(Uk x) [t] := (u ∗ x) [t] =
∑
ℓ∈Z2

uk[ℓ]x[t− ℓ].

▶ {pk[t] ∈ R | k ∈ D, t ∈ Z2} are prediction filters.

▶ {uk[t] ∈ R | k ∈ D, t ∈ Z2} are update filters．
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Decomposition algorithm with the modified lifting scheme

Let {Pk}k∈D and {Uk}k∈D be convolution operators.

1. Split: Decompose a signal {cj [t]}t∈Z2 into an even component

{c0,j−1[t]}t∈Z2 and directional components {ck,j−1[t]}t∈Z2,k∈D by

c0,j−1[t] = cj [2t], ck,j−1[t] = cj [2t+ sk].

2. Prediction：Calculate N–th detail components {dk,j−1[t]}t∈Z2,k∈D with

prediction operators {Pk}k∈D by

dk,j−1[t] = ck,j−1[t]− (Pk c0,j−1 ) [t].

3. Update：Calculate a coarse component {cj−1[t]}t∈Z2 with update

operators {Uk}k∈D by

cj−1[t] = c0,j−1[t] +
3∑

n=1

(
αn

∑
k∈Dn

(Uk dk,j−1) [t]

)
.

4. Scaling：Normalize {cj−1[t], dk,j−1[t]}t∈Z2,k∈D.
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Frequency responses of 12 HP filters
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Application to image decomposition

c9 ∈ R512×512

↓ decompose

c8 ∈ R256×256

d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1
165◦ 150◦ 135◦ 120◦ 105◦ 90◦ 75◦ 60◦ 45◦ 30◦ 15◦ 0◦
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Image decomposition

N = 6

d11 d9 d7 d5 d3 d1
150◦ 120◦ 90◦ 60◦ 30◦ 0◦
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Reconstruction from each level of detail component {dk,j [t]}k∈D.

j − 1 j − 2 j − 3 j − 4

DWT

DTCWT

Proposed
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Edge enhancement

The procedure of our edge enhancement method is described as follow:

1. Apply the J-th level decomposition of the DLWT to an image to get a

collection of the coarse component and the directional components

{dk,j−L[t], cj−J [t]}t∈Z2, k∈D, 1≤L≤J .

2. Set zero to all the elements of the coarsest component {cj−J [t]}t∈Z2 .

3. Among the 12 detail components at each resolution level, select the detail

components that contain the most energy for reconstruction.

4. Reconstruct the decomposed images from the components calculated in

above steps 1 and 2 to get an image {c̃j [t]}t∈Z2 that only consists of

essentially edge components.

5. Apply a Gaussian filter to {c̃j [t]}t∈Z2 for smoothing in order to reduce small

edges as well as noise.

6. Finally, do binarization process.
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Edge enhancement

We evaluated the quantitative measure of these edge images by using the

Pratt’s figure of merit (FOM), which is one of the major metrics for an edge

detector. The FOM is calculated by

F =
1

max (Ne, Nd)

Nd∑
k=1

1

1 + αd(k)2
,

where Ne and Nd are the number of actual edge points and detected edge

points respectively, and d(k) is the distance between the k-th detected edge

points and actual edge points. The scaling constant α was taken as 1/9.
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Edge enhancement

(a) Original (b) Canny (F = 0.52) (c) DWT (F = 0.61)

(d) DTCWT (F = 0.63) (e) Shearlet (F = 0.64) (f) DLWT (F = 0.66)
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Edge enhancement

(a) Original (b) Canny (F = 0.38) (c) DWT (F = 0.66)

(d) DTCWT (F = 0.67) (e) Shearlet (F = 0.68) (f) DLWT (F = 0.69)
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Edge enhancement

(a) Original (b) Canny (F = 0.43) (c) DWT (F = 0.44)

(d) DTCWT (F = 0.45) (e) Shearlet (F = 0.49) (f) DLWT (F = 0.51)
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Computational cost

▶ We show the computational cost of the proposed method by measuring an

execution speed.

▶ We ran each edge enhancement/detection by MATLAB2022a with Apple

M1 MAX 10 cores, and took the average over 100 trials.

▶ We see that our method is the fastest wavelet-based edge detector

compared here. Notably, it is almost as fast as the Prewitt or Sobel method

which is one of the simplest filtering-based edge detector, and thus it is

sufficient for practical use.

Detector Time [sec]

Sobel 0.0108

Prewitt 0.0122

Canny 0.0223

DWT 0.0156

DTCWT 0.0450

Shearlet 0.3587

DLWT 0.0142
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Summary

▶ We introduced the directional lifting transform (DLWT).

1. Pure discrete setting on a 2D lattice.

2. Directional selectivity: N = 3 −→ N = 12.

3. Angles: 0◦ ≤ θ < 180◦, every 15◦.

4. The transform is designed and implemented on a real plane.

5. Fast computation is possible by the lifting-based implementation.

▶ Numerical experiments on edge analysis involving a comparison with several

conventional edge detection methods demonstrated the advantages of the

proposed method in terms of capturing both global and local edge structures

well.
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