Multiscale Monogenic Image Representations Using Poisson Kernels

Minisymposium on Recent Advances in Multiscale
Transforms for Image Analysis
ICIAM 2023
Waseda University, Tokyo, Japan
August 24, 2023

Brian Knight and Naoki Saito*

UC Davis TETRAPODS Institute of Data Science
Department of Mathematics, University of California, Davis

Outline

About This Minisymposium

Acknowledgment

Motivation

1D Analytic Signal

2D Analytic Signal

Summary

Outline

About This Minisymposium

Acknowledgment

Motivation

1D Analytic Signal

2D Analytic Signal

Summary

This Minisymposium Focuses on:

- Multiscale image transforms beyond wavelets
- Deeper connections between harmonic analysis and image analysis
- Various methods to decompose an image into "predictable" local segments and their residuals that allow efficient and sparse image approximation

[^0]Ashizawa:

Fujinoki:

This Minisymposium Focuses on:

- Multiscale image transforms beyond wavelets
- Deeper connections between harmonic analysis and image analysis
- Various methods to decompose an image into "predictable" local segments and their residuals that allow efficient and sparse image approximation

Saito: Exploration of multiscale "monogenic" image representations
Morita: Image interpolation using PCA based on gradient information and boundary data
Ashizawa: An improved coding scheme using multi-neighbor predictors and residual orthogonal transformations
Fujinoki: A new 2D discrete wavelet transform that can handle 12 multiscale directions

Outline

About This Minisymposium

Acknowledgment

Motivation

1D Analytic Signal

2D Analytic Signal

Summary

Acknowledgment

- NSF Grants: DMS-1418779, DMS-1912747, CCF-1934568, DMS-2012266
- ONR Grants: N00014-16-1-2255, N00014-20-1-2381
- And my collaborator on this project:

Brian Knight (UCD)

Outline

About This Minisymposium
 Acknowledgment

Motivation

1D Analytic Signal

2D Analytic Signal

Summary

Motivation

- The analytic signal is a ubiquitous tool in 1D signal processing and is used to analyze signals with time-varying frequencies as a natural way to compute the instantaneous phase and amplitude.
- The core idea is, given a real-valued signal, $f: \mathbb{R} \rightarrow \mathbb{R}$, i.e. some measured data, there is a 'natural' choice for an imaginary component, \tilde{f}, to pair it with, which 'completes' the data in some sense, perhaps in allowing f to take the form

$$
f(t)=a(t) \cos (\phi(t)) .
$$

- Gabor (1946) proposed that the natural choice is the Hilbert transform of f.

Outline

About This Minisymposium
Acknowledgment
Motivation
1D Analytic Signal
2D Analytic Signal
Summary

1D Analytic Signal

- Vakman (1972) showed that the Hilbert transform is a unique choice for \tilde{f} under certain assumptions, and called $u(t)=f(t)+\mathrm{i} \tilde{f}(t)=f(t)+\mathrm{i} \mathscr{H} f(t)$ the analytic signal. The assumptions are as follows:
- \tilde{f} must be derived from f
- continuity of amplitude: a small change in f gives a small change in $a(t)$
- phase independence of scale: scaling f does not alter the phase function of the resulting complex signal
- harmonic correspondence: if $f(t)=a_{0} \cos \left(\omega_{0} t+\phi_{0}\right)$, then $a(t)=a_{0}$ and $\phi(t)=\omega_{0} t+\phi_{0}$, i.e., $\tilde{f}(t)=a_{0} \sin \left(\omega_{0} t+\phi_{0}\right)$.
- We will focus on periodic signals $f: \mathbb{T} \rightarrow \mathbb{R}$ in which case

$$
\mathscr{H} f(t):=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\tau) \cot \left(\frac{t-\tau}{2}\right) \mathrm{d} \tau
$$

- The Hilbert kernel $h(t):=\frac{1}{2 \pi} \cot \left(\frac{t}{2}\right)$ has Fourier coefficients $\hat{h}_{n}=-\mathrm{i} \operatorname{sign}(n)$, whence $u(t)=\hat{f}_{0}+2 \sum_{n \geq 1} \hat{f}_{n} \mathrm{e}^{\mathrm{i} n t}$.

IAP Representation

- Even with the uniqueness of the analytic signal, its instantaneous amplitude and phase (IAP) representation $u(t)=a(t) \mathrm{e}^{\mathrm{i} \phi(t)}$ is not unique [Cohen-Loughlin-Vakman (1999)]. Either we require
- $a(t) \geq 0$, in which case $\phi(t)$ may be discontinuous; or
- $\phi(t)$ to be continuous, in which case $a(t)$ may be negative.
- A good example of this is given in their paper:

$$
f(t)=\frac{1}{2} \cos \left(\omega_{a} t\right)+\frac{1}{2} \cos \left(\omega_{b} t\right)=\cos \left(\omega_{1} t\right) \cos \left(\omega_{2} t\right)
$$

where $\omega_{a}=\omega_{2}+\omega_{1}, \omega_{b}=\omega_{2}-\omega_{1}$.

- With $\omega_{2}>\omega_{1} \geq 0$, the analytic signal is given by $u(t)=\cos \left(\omega_{1} t\right) \mathrm{e}^{\mathrm{i} \omega_{2} t}$ (a nice instance of Bedrosian's theorem), but a usual procedure for computing amplitude and phase gives the IAP representation

$$
u(t)=\left|\cos \left(\omega_{1} t\right)\right| \mathrm{e}^{\mathrm{i} \omega_{2} t}
$$

which implies $\operatorname{Re} u(t)=\left|\cos \left(\omega_{1} t\right)\right| \cos \left(\omega_{2} t\right) \neq f(t)=\cos \left(\omega_{1} t\right) \cos \left(\omega_{2} t\right)$.

- We will look at a similar example in the case of the 2D analytic signal! 11/33

1D Analytic Signal

- Given $f \in L^{2}(\mathbb{T})$, since u has only positive Fourier coefficients, we have that $u \in H^{2}(\mathbb{T})$, so u can be viewed as the boundary value of an analytic function,

$$
U(z)=F(z)+\mathrm{i} \tilde{F}(z), \quad z \in \mathbb{D},
$$

where

$$
U(z)=U\left(r \mathrm{e}^{\mathrm{i} t}\right)=\int_{-\pi}^{\pi}\left(P_{r}(\tau)+\mathrm{i} Q_{r}(\tau)\right) f(t-\tau) \mathrm{d} \tau
$$

with $P_{r}(t):=\frac{1}{2 \pi} \frac{1-r^{2}}{1-2 r \cos (t)+r^{2}}, Q_{r}(t):=\frac{1}{2 \pi} \frac{2 r \sin (t)}{1-2 r \cos (t)+r^{2}}$, are the Poisson kernel and the conjugate Poisson kernel for \mathbb{D}, respectively.

The Blaschke Product

- By viewing our real-valued signal f on \mathbb{T} as the real part of the boundary value of an analytic function U on \mathbb{D}, and using the Blaschke product-based factorization method, we can avoid the ambiguity issues in the previous IAP representation [Picinbono (1997); Nahon (2000); Qian (2009); Qian-Wang (2011); Coifman-Steinerberger (2017)].
- Supposing that $U \in H^{p}(\mathbb{D})$ for $\exists p>0$. Then we can factorize U as

$$
U(z)=B(z) G(z)
$$

where $B(z)$ is a Blaschke product containing all zeros of U in \mathbb{D}, and $G(z) \neq 0$ for $z \in \mathbb{D}$.

- If $U(z)$ has a finite number of zeros in $\mathbb{D}, B(z)$ takes the following form:

$$
B(z)=z^{N} \prod_{k=1}^{M}\left(\frac{z-\alpha_{k}}{1-\bar{\alpha}_{k} z} \frac{\bar{\alpha}_{k}}{\left|\alpha_{k}\right|}\right) .
$$

- On the boundary, this yields

$$
u(t)=b(t) g(t), \quad t \in \mathbb{T},
$$

where $b(t)=B\left(\mathrm{e}^{\mathrm{i} t}\right)$ is called the phase signal.

The Blaschke Product

- $|b(t)|=\left|B\left(\mathrm{e}^{\mathrm{i} t}\right)\right|=1$, and $g(t) \neq 0$, which motivates our interpretation of $b(t)=$ instantaneous phase and $g(t)=$ instantaneous amplitude.
- In fact, if we write $B\left(\mathrm{e}^{i t}\right)=B(1) \mathrm{e}^{\mathrm{i}\left(\phi_{b}(t)-\phi_{b}(0)\right)}$, it can be shown that

$$
\phi_{b}^{\prime}(t)=N+\sum_{k=1}^{M} \frac{1-\left|\alpha_{k}\right|^{2}}{\left|\mathrm{e}^{\mathrm{i} t}-\alpha_{k}\right|^{2}}>0
$$

so the phase $\phi_{b}(t)$ is non-decreasing and the instantaneous frequency is non-negative, which resolves the 1D phase unwrapping problem.

- Further, on the boundary we have
$|u(t)|=\left|U\left(\mathrm{e}^{\mathrm{i} t}\right)\right|=\left|G\left(\mathrm{e}^{\mathrm{i} t}\right)\right|=|g(t)|$, so we take g to be a (complex-valued) instantaneous amplitude.

The Blaschke Product: An Example

Consider

$$
U(z)=(z+0.8)^{5}\left(z-0.98 \mathrm{e}^{\mathrm{i} \pi / 3}\right)^{2}\left(z-0.5 \mathrm{e}^{\mathrm{i} \pi / 3}\right)
$$

The "standard" IAP representation of $f(t)=\left.\operatorname{Re}(U(z))\right|_{\partial \mathbb{D}}$:

(a) blue: $f(t)$, red: $\mathscr{H} f(t)$, green: $a(t)$

(b) Discontinuous IAP phase $\phi(t)$

The Blaschke Product: An Example

$$
U(z)=(z+0.8)^{5}\left(z-0.98 \mathrm{e}^{\mathrm{i} \pi / 3}\right)^{2}\left(z-0.5 \mathrm{e}^{\mathrm{i} \pi / 3}\right)
$$

blue: $f(t)$, red: $g(t)$ (Blaschke amplitude), green: $\operatorname{Re}(b(t))$

The Blaschke Product: An Example

$$
U(z)=(z+0.8)^{5}\left(z-0.98 \mathrm{e}^{\mathrm{i} \pi / 3}\right)^{2}\left(z-0.5 \mathrm{e}^{\mathrm{i} \pi / 3}\right)
$$

Using the factorization using the Blaschke product, we can get:

(a) Instantaneous phase $\phi_{b}(t)$

(b) Instantaneous frequency $\omega(t)=\phi_{b}^{\prime}(t)$

Analytic Scale Space

- Another insight in viewing our original analytic signal $u(t)$ as the boundary value of an analytic function in \mathbb{D}, i.e., $u(t)=U\left(\mathrm{e}^{\mathrm{i} t}\right)$, is the development of the analytic (or Poisson) scale space.
- The Cauchy kernel $C_{r}:=P_{r}+\mathrm{i} Q_{r}$ for each fixed $0<r<1$ acts as an interesting low-pass filter on f :

$$
C_{r} * f(t)=\hat{f}_{0}+2 \sum_{n \geq 0} \hat{f}_{n} r^{n} \mathrm{e}^{\mathrm{i} n t}
$$

- It suppresses high frequency information exponentially as $r \downarrow 0$, and the resulting signal is always analytic.
- Felsberg and Sommer (2002) formalized this notion of scale space (in 2D) as it relates to the more standard Gaussian scale space.

Analytic Scale Space: An example

Let $f(t)$ be the real part of $U\left(\mathrm{e}^{\mathrm{i} t}\right) ; t \in[-\pi, \pi)$, and consider then the noisy signal $f(t)+\eta(t)$ where $\eta \sim N(0,1)$.

(a) $P_{r} * f(t)$ for $r=0.99^{k}$ for $k=1, \ldots, 5$

Outline

About This Minisymposium
 Acknowledgment
 Motivation
 1D Analytic Signal

2D Analytic Signal

Summary

2D Analytic Signal

- Generalizing the analytic scale space from $1 D$ to $2 D$ can be framed as how to generalize the Poisson kernel to $2 D$ space.
- For $2 D$ signals, there are two choices:
- On the upper-half space $\left(\mathbb{R}_{+}^{3} ; \partial \mathbb{R}_{+}^{3}=\mathbb{R}^{2}\right)$:

$$
\begin{aligned}
P_{s}\left(x_{1}, x_{2}\right) & :=\frac{1}{2 \pi} \frac{s}{\left(x_{1}^{2}+x_{2}^{2}+s^{2}\right)^{\frac{3}{2}}} ; \quad s>0 \\
& \rightarrow \text { Monogenic Scale Space }
\end{aligned}
$$

- On the bidisc $\left(\mathbb{D}^{2} \subset \mathbb{C}^{2} ; \partial_{d} \mathbb{D}^{2}=\mathbb{T}^{2}\right)$:

$$
\begin{aligned}
P_{r_{1}, r_{2}}\left(x_{1}, x_{2}\right) & :=P_{r_{1}}\left(x_{1}\right) P_{r_{2}}\left(x_{2}\right) \\
& =\prod_{k=1}^{2} \frac{1}{2 \pi} \frac{1-r_{k}^{2}}{1-2 r_{k} \cos \left(x_{k}\right)+r_{k}^{2}} ; 0<r_{1}, r_{2}<1 \\
& \rightarrow 2 D \text { Analytic Scale Space }
\end{aligned}
$$

2D Analytic Signal

- For this talk, we will focus on the 2D analytic scale space of the image $f: \mathbb{T}^{2} \rightarrow \mathbb{R}$.
- Bülow (1999) proposed to use the imaginary units in and \dot{j} of the quaternions \Vdash, in order to distinguish the different conjugate harmonics, so we take our two complex variables to be $z_{1}=r_{1} \mathrm{e}^{\mathrm{i} x_{1}}$ and $z_{2}=r_{2} \mathrm{e}^{\mathrm{j} x_{2}}$, and define our Cauchy kernel on \mathbb{D}^{2} to take the form

$$
C_{r_{1}, r_{2}}\left(x_{1}, x_{2}\right):=\left(P_{r_{1}}\left(x_{1}\right)+\dot{\mathbb{i}} Q_{r_{1}}\left(x_{1}\right)\right)\left(P_{r_{2}}\left(x_{2}\right)+\dot{j} Q_{r_{2}}\left(x_{2}\right)\right) .
$$

When $r_{1}=r_{2}=r$ we use the shorthand $C_{r}\left(x_{1}, x_{2}\right)$.

- The real component then represents the 2D Poisson kernel, and the \dot{i}, \mathfrak{j}, and $\left.\mathbb{k}_{(=i} \cdot \mathfrak{j}\right)$ components are its conjugate harmonics.
- For $2 D$ signals, $U=C_{r} * f$ solves the Riemann-Hilbert problem on \mathbb{D}^{2} :

$$
\begin{cases}\partial_{\bar{z}_{1}} U=0 & \text { on } \mathbb{D}^{2} \\ U \partial_{\bar{z}_{2}}=0 & \text { on } \mathbb{D}^{2} ; \\ \operatorname{Re}(U)=f & \text { on } \mathbb{T}^{2}\end{cases}
$$

2D Analytic Signal

- Analogously, we define the 2D analytic signal on the \mathbb{T}^{2} to be the limit of $C_{r_{1}, r_{2}}(\cdot, \cdot) * f$ as $r_{1}, r_{2} \rightarrow 1$:

$$
u\left(x_{1}, x_{2}\right)=f\left(x_{1}, x_{2}\right)+\dot{\mathfrak{i}} \mathscr{H}_{1} f\left(\cdot, x_{2}\right)\left(x_{1}\right)+\dot{\mathfrak{j}} \mathscr{H}_{2} f\left(x_{1}, \cdot\right)\left(x_{2}\right)+\mathbb{k}_{k} \mathscr{H}_{T} f\left(x_{1}, x_{2}\right)
$$

- Here $\mathscr{H}_{1}, \mathscr{H}_{2}$ and $\mathscr{H}_{T}:=\mathscr{H}_{1} \mathscr{H}_{2}$ denote the partial and total Hilbert transforms.

(a) f

(b) $\mathscr{H}_{1} f$

(c) $\mathscr{E}_{2} f$

(d) $\mathscr{H}_{T} f$

Polar Forms in \mathbb{H}

Given $q=q_{0}+\dot{i} q_{1}+\dot{j} q_{2}+\mathbb{k} q_{3} \in \mathbb{H}$,

- $\bar{q}=q_{0}-\dot{i} q_{1}-\dot{j} q_{2}-\mathbb{k} q_{3},|q|=\sqrt{q \bar{q}}=\sqrt{q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}$
- Polar form:

$$
q=|q| \mathrm{e}^{\mu_{q} \phi_{q}}
$$

where

$$
\mu_{q}=\frac{\dot{i} q_{1}+\dot{j} q_{2}+\mathbb{k} q_{3}}{\sqrt{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}}, \phi_{q}=\arctan \left(\frac{\sqrt{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}}{q_{0}}\right) .
$$

- Euler angle form as in Bülow (1999):

$$
q=|q| \mathrm{e}^{\mathrm{i} \phi} \mathrm{e}^{\mathrm{k} \psi} \mathrm{e}^{\mathrm{j} \theta}
$$

for $\phi \in[-\pi, \pi), \theta \in[-\pi / 2, \pi / 2), \psi \in[-\pi / 4, \pi / 4]$.

2D Analytic Signal: An Example

- $f(x, y)=\cos (x-y)+\cos (x+y)=2 \cos (x) \cos (y)$, the "egg-tray" signal

The egg-tray signal

2D Analytic Signal: An Example

As this signal is separable, we use what we know about the 1D Hilbert transform to compute:

$$
\begin{aligned}
u(x, y) & =2 \cos (x) \cos (y)+2 \dot{\mathrm{i}} \sin (x) \cos (y)+2 \dot{\mathfrak{j}} \cos (x) \sin (y)+2 \mathbb{k} \sin (x) \sin (y) \\
& =2 \mathrm{e}^{\dot{\mathrm{x}} x} \mathrm{e}^{\mathrm{j} y}
\end{aligned}
$$

hence we have $|u(x, y)|=2, \phi(x, y)=x, \theta(x, y)=y$,
$\phi_{q}=\arctan \left(\frac{\sqrt{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}}{q_{0}}\right)$ where $q=u(x, y)$. We really recover $\phi(x, y)=x$ $\bmod \pi, \theta(x, y)=y \bmod \pi / 2$, due to phase wrapping:

(b) $\theta(x, y)$
(c) phase ϕ_{q}
(a) $\phi(x, y)$

2D Analytic Signal: An Example

We can then unwrap these two $1 D$ phases easily using the standard 1D phase unwrapping algorithm, to achieve a nice monotonic $2 D$ phase function:

(a) $\phi(x, y)=x$ unwrapped
(b) $\theta(x, y)=y$ unwrapped

2D Analytic Signal: Comments

- If we instead consider a rotated egg-tray signal by $\pi / 4$, we do not recover the true amplitude and phase of the signal as we do in the previous case. This is because the Hilbert transforms are directional, or anisotropic:

(a) $f(x, y)$

(b) $\phi(x, y)$

(c) $\theta(x, y)$

(d) ϕ_{q}
- This is a consequence of the underlying geometry of \mathbb{D}^{2}, if we are working with separable signals or products of orthogonal $1 D$ signals, this tool can be quite useful.
- The 2D scale space allows us to control the scale of each of these signals independently with good interpretation, which we cannot do in the related monogenic or Gaussian scale space, for instance.

2D Analytic Scale Space of a Real Image: An Example

We may use this 2D scale space to create a bandpass filter by taking the difference of two Cauchy kernels:

$$
D o C_{r_{1}, r_{2}}:=C_{r_{1}}\left(x_{1}, x_{2}\right)-C_{r_{2}}\left(x_{1}, x_{2}\right)
$$

for $0 \leq r_{2}<r_{1} \leq 1$ and compute the IAP representation of real images:

(a) Barbara

(b) $\operatorname{Re}\left(D o C_{1,0.95}\right)$

(c) phase ϕ_{q}

(d) $\left|D o C_{1,0.95}\right|$

2D Analytic Scale Space of a Real Image: An Example

Outline

About This Minisymposium
Acknowledgment
Motivation
1D Analytic Signal
2D Analytic Signal
Summary

Summary

- In $1 D$, the Blaschke factorization yields a satisfactory IAP representation of a signal, and the resulting phase function can be used for various image processing tasks, e.g., phase unwrapping.
- In $2 D$, the situation is not so clear: the $2 D$ analytic signal can be formed in various ways; we showed that at least with a synthetic image, we can produce a quaternion-valued signal that captures instantaneous amplitude and phase accurately.
- The 2D analytic scale space provides a multiscale instantaneous amplitude and phase decomposition which could be utilized to form smooth phase functions for sufficiently band-limited signals.
- There are many more things to do in $2 D!$!

Thank you!

[^0]: Morita:

