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This Minisymposium Focuses on:

• Multiscale image transforms beyond wavelets
• Deeper connections between harmonic analysis and
image analysis

• Various methods to decompose an image into
“predictable” local segments and their residuals that
allow efficient and sparse image approximation

Saito: Exploration of multiscale “monogenic” image
representations

Morita: Image interpolation using PCA based on gradient
information and boundary data

Ashizawa: An improved coding scheme using multi-neighbor
predictors and residual orthogonal transformations

Fujinoki: A new 2D discrete wavelet transform that can handle
12 multiscale directions 4/33
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Motivation

• The analytic signal is a ubiquitous tool in 1D signal
processing and is used to analyze signals with
time-varying frequencies as a natural way to compute the
instantaneous phase and amplitude.

• The core idea is, given a real-valued signal, f : R→R, i.e.
some measured data, there is a ‘natural’ choice for an
imaginary component, f̃ , to pair it with, which ‘completes’
the data in some sense, perhaps in allowing f to take the
form

f (t ) = a(t )cos(ϕ(t )).

• Gabor (1946) proposed that the natural choice is the
Hilbert transform of f .

8/33



Outline

About This Minisymposium

Acknowledgment

Motivation

1D Analytic Signal

2D Analytic Signal

Summary

9/33



1D Analytic Signal

• Vakman (1972) showed that the Hilbert transform is a unique
choice for f̃ under certain assumptions, and called
u(t ) = f (t )+ i f̃ (t ) = f (t )+ iH f (t ) the analytic signal. The
assumptions are as follows:

Ï f̃ must be derived from f
Ï continuity of amplitude: a small change in f gives a small
change in a(t )

Ï phase independence of scale: scaling f does not alter the phase
function of the resulting complex signal

Ï harmonic correspondence: if f (t ) = a0 cos(ω0t +ϕ0), then a(t ) = a0

and ϕ(t ) =ω0t +ϕ0, i.e., f̃ (t ) = a0 sin(ω0t +ϕ0).

• We will focus on periodic signals f : T→R in which case

H f (t ) := 1

2π

∫π

−π
f (τ)cot

(
t −τ

2

)
dτ.

• The Hilbert kernel h(t ) := 1
2π cot

( t
2

)
has Fourier coefficients

ĥn =−isign(n), whence u(t ) = f̂0 +2
∑

n≥1 f̂neint . 10/33



IAP Representation

• Even with the uniqueness of the analytic signal, its instantaneous
amplitude and phase (IAP) representation u(t ) = a(t )eiϕ(t ) is not
unique [Cohen-Loughlin-Vakman (1999)]. Either we require

Ï a(t ) ≥ 0, in which case ϕ(t ) may be discontinuous; or
Ï ϕ(t ) to be continuous, in which case a(t ) may be negative.

• A good example of this is given in their paper:

f (t ) = 1

2
cos(ωa t )+ 1

2
cos(ωb t ) = cos(ω1t )cos(ω2t ),

where ωa =ω2 +ω1,ωb =ω2 −ω1.
• With ω2 >ω1 ≥ 0, the analytic signal is given by u(t ) = cos(ω1t )eiω2t (a
nice instance of Bedrosian’s theorem), but a usual procedure for
computing amplitude and phase gives the IAP representation

u(t ) = |cos(ω1t )|eiω2t ,

which implies Reu(t ) = |cos(ω1t )|cos(ω2t ) 6= f (t ) = cos(ω1t )cos(ω2t ).
• We will look at a similar example in the case of the 2D analytic signal! 11/33



1D Analytic Signal

• Given f ∈ L2(T), since u has only positive Fourier
coefficients, we have that u ∈ H 2(T), so u can be viewed as
the boundary value of an analytic function,

U (z) = F (z)+ iF̃ (z), z ∈D,

where

U (z) =U (r eit ) =
∫π

−π
(Pr (τ)+ iQr (τ)) f (t −τ)dτ

with Pr (t ) := 1
2π

1−r 2

1−2r cos(t )+r 2 , Qr (t ) := 1
2π

2r sin(t )
1−2r cos(t )+r 2 , are the

Poisson kernel and the conjugate Poisson kernel for D,
respectively.
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The Blaschke Product

• By viewing our real-valued signal f on T as the real part of the
boundary value of an analytic functionU on D, and using the Blaschke
product-based factorization method, we can avoid the ambiguity
issues in the previous IAP representation [ Picinbono (1997); Nahon
(2000); Qian (2009); Qian-Wang (2011); Coifman-Steinerberger (2017) ].

• Supposing that U ∈ H p (D) for ∃p > 0. Then we can factorizeU as
U (z) = B(z)G(z),

where B(z) is a Blaschke product containing all zeros of U in D, and
G(z) 6= 0 for z ∈D.

• IfU (z) has a finite number of zeros in D, B(z) takes the following form:

B(z) = zN
M∏

k=1

(
z −αk

1−αk z

αk

|αk |
)

.

• On the boundary, this yields
u(t ) = b(t )g (t ), t ∈T,

where b(t ) = B(eit ) is called the phase signal. 13/33



The Blaschke Product

• |b(t )| = |B(eit )| = 1, and g (t ) 6= 0, which motivates our
interpretation of b(t ) = instantaneous phase and g (t ) =
instantaneous amplitude.

• In fact, if we write B(ei t ) = B(1)ei(ϕb (t )−ϕb (0)), it can be shown
that

ϕ′
b(t ) = N +

M∑
k=1

1−|αk |2
|eit −αk |2

> 0,

so the phase ϕb(t ) is non-decreasing and the
instantaneous frequency is non-negative, which resolves
the 1D phase unwrapping problem.

• Further, on the boundary we have
|u(t )| = |U (eit )| = |G(eit )| = |g (t )|, so we take g to be a
(complex-valued) instantaneous amplitude.

14/33



The Blaschke Product: An Example

Consider

U (z) = (z +0.8)5(z −0.98eiπ/3)2(z −0.5eiπ/3)

The “standard” IAP representation of f (t ) = Re(U (z))|∂D:

(a) blue: f (t ), red: H f (t ), green: a(t ) (b) Discontinuous IAP phase ϕ(t )

15/33



The Blaschke Product: An Example

U (z) = (z +0.8)5(z −0.98eiπ/3)2(z −0.5eiπ/3)

blue: f (t ), red: g (t ) (Blaschke amplitude), green: Re(b(t ))

16/33



The Blaschke Product: An Example

U (z) = (z +0.8)5(z −0.98eiπ/3)2(z −0.5eiπ/3)

Using the factorization using the Blaschke product, we can get:

(a) Instantaneous phase ϕb (t ) (b) Instantaneous frequency ω(t ) =ϕ′
b (t )

17/33



Analytic Scale Space

• Another insight in viewing our original analytic signal u(t )

as the boundary value of an analytic function in D, i.e.,
u(t ) =U (eit ), is the development of the analytic (or
Poisson) scale space.

• The Cauchy kernel Cr := Pr + iQr for each fixed 0 < r < 1

acts as an interesting low-pass filter on f :

Cr ∗ f (t ) = f̂0 +2
∑

n≥0
f̂nr neint .

• It suppresses high frequency information exponentially as
r ↓ 0, and the resulting signal is always analytic.

• Felsberg and Sommer (2002) formalized this notion of
scale space (in 2D) as it relates to the more standard
Gaussian scale space.

18/33



Analytic Scale Space: An example

Let f (t ) be the real part of U (eit ); t ∈ [−π,π), and consider then
the noisy signal f (t )+η(t ) where η∼ N (0,1).

(a) Pr ∗ f (t ) for r = 0.99k for k = 1, . . . ,5 (b) Corresponding phase ϕb (t )

19/33
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2D Analytic Signal

• Generalizing the analytic scale space from 1D to 2D can
be framed as how to generalize the Poisson kernel to 2D

space.
• For 2D signals, there are two choices:

Ï On the upper-half space (R3+; ∂R3+ =R2):

Ps (x1, x2) := 1

2π

s(
x2

1 +x2
2 + s2

) 3
2

; s > 0

→Monogenic Scale Space

Ï On the bidisc (D2 ⊂C2; ∂dD
2 =T2):

Pr1,r2 (x1, x2) := Pr1 (x1)Pr2 (x2)

=
2∏

k=1

1

2π

1− r 2
k

1−2rk cos(xk )+ r 2
k

; 0 < r1,r2 < 1

→ 2D Analytic Scale Space
21/33



2D Analytic Signal

• For this talk, we will focus on the 2D analytic scale space of the image
f : T2 →R.

• Bülow (1999) proposed to use the imaginary units i and j of the
quaternions H, in order to distinguish the different conjugate
harmonics, so we take our two complex variables to be z1 = r1eix1 and
z2 = r2ejx2 , and define our Cauchy kernel on D2 to take the form

Cr1,r2 (x1, x2) := (
Pr1 (x1)+ iQr1 (x1)

)(
Pr2 (x2)+jQr2 (x2)

)
.

When r1 = r2 = r we use the shorthand Cr (x1, x2).
• The real component then represents the 2D Poisson kernel, and the
i,j, and k(= i ·j) components are its conjugate harmonics.

• For 2D signals,U =Cr ∗ f solves the Riemann-Hilbert problem on D2:
∂z̄1U = 0 on D2;

U∂z̄2 = 0 on D2;

Re(U ) = f on T2.
22/33



2D Analytic Signal

• Analogously, we define the 2D analytic signal on the T2 to
be the limit of Cr1,r2 (·, ·)∗ f as r1,r2 → 1:

u(x1, x2) = f (x1, x2)+iH1 f (·, x2)(x1)+jH2 f (x1, ·)(x2)+kHT f (x1, x2).

• Here H1,H2 and HT := H1H2 denote the partial and
total Hilbert transforms.

(a) f (b) H1 f (c) H2 f (d) HT f
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Polar Forms in H

Given q = q0 + iq1 +jq2 +kq3 ∈H,

• q̄ = q0 − iq1 −jq2 −kq3, |q| =
√

qq̄ =
√

q2
0 +q2

1 +q2
2 +q2

3

• Polar form:
q = |q |eµqϕq

where

µq = iq1 +jq2 +kq3√
q2

1 +q2
2 +q2

3

, ϕq = arctan


√

q2
1 +q2

2 +q2
3

q0

 .

• Euler angle form as in Bülow (1999):

q = |q|eiϕekψejθ

for ϕ ∈ [−π,π),θ ∈ [−π/2,π/2),ψ ∈ [−π/4,π/4]. 24/33



2D Analytic Signal: An Example

• f (x, y) = cos(x − y)+cos(x + y) = 2cos(x)cos(y), the
“egg-tray” signal

The egg-tray signal
25/33



2D Analytic Signal: An Example

As this signal is separable, we use what we know about the 1D
Hilbert transform to compute:

u(x, y) = 2cos(x)cos(y)+2isin(x)cos(y)+2jcos(x)sin(y)+2ksin(x)sin(y)

= 2eix ejy ,

hence we have |u(x, y)| = 2, ϕ(x, y) = x, θ(x, y) = y ,

ϕq = arctan

(√
q2

1+q2
2+q2

3

q0

)
where q = u(x, y). We really recover ϕ(x, y) = x

mod π, θ(x, y) = y mod π/2, due to phase wrapping:

(a) ϕ(x, y) (b) θ(x, y) (c) phase ϕq
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2D Analytic Signal: An Example

We can then unwrap these two 1D phases easily using the standard
1D phase unwrapping algorithm, to achieve a nice monotonic 2D

phase function:

(a) ϕ(x, y) = x unwrapped (b) θ(x, y) = y unwrapped

27/33



2D Analytic Signal: Comments

• If we instead consider a rotated egg-tray signal by π/4, we do not
recover the true amplitude and phase of the signal as we do in the
previous case. This is because the Hilbert transforms are directional,
or anisotropic:

(a) f (x, y) (b) ϕ(x, y) (c) θ(x, y) (d) ϕq

• This is a consequence of the underlying geometry of D2, if we are
working with separable signals or products of orthogonal 1D signals,
this tool can be quite useful.

• The 2D scale space allows us to control the scale of each of these
signals independently with good interpretation, which we cannot do in
the related monogenic or Gaussian scale space, for instance.
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2D Analytic Scale Space of a Real Image: An Example

We may use this 2D scale space to create a bandpass filter by
taking the difference of two Cauchy kernels:

DoCr1,r2 := Cr1 (x1, x2)−Cr2 (x1, x2)

for 0 ≤ r2 < r1 ≤ 1 and compute the IAP representation of real
images:

(a) Barbara (b) Re
(
DoC1,0.95

)
(c) phase ϕq (d) |DoC1,0.95|
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2D Analytic Scale Space of a Real Image: An Example

(a) table corner (b) Re
(
DoC1,0.95

)
(c) phase ϕq

(a) ϕ(x1, x2) (b) θ(x1, x2) (c) |DoC1,0.95|
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Summary

• In 1D , the Blaschke factorization yields a satisfactory IAP
representation of a signal, and the resulting phase
function can be used for various image processing tasks,
e.g., phase unwrapping.

• In 2D , the situation is not so clear: the 2D analytic signal
can be formed in various ways; we showed that at least
with a synthetic image, we can produce a
quaternion-valued signal that captures instantaneous
amplitude and phase accurately.

• The 2D analytic scale space provides a multiscale
instantaneous amplitude and phase decomposition which
could be utilized to form smooth phase functions for
sufficiently band-limited signals.

• There are many more things to do in 2D !!
32/33



Thank you!
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