Minimal Convex Combinations of Three
Sequential Laplace-Dirichlet Eigenvalues

Chiu-Yen Kao =k
Joint work with Braxton Osting at UCLA

Department of Mathematical Sciences,

Claremont McKenna College.
SIAM Annual Meeting, San Diego, July 8, 2013



Outline

Introduction to shape optimization on eigenvalue
problems

Review of Previous Theoretical and Numerical Results
Our Theoretical and Numerical Results
Conclusion and Future Work



Antoine Henrot

Shape Optimization on
Eigenvalue Problems

Extremum

Problems «

Eigenvalues of Elliptic
Operators

* Goal: Minimize a certain design objective

Birkhauser

inf{ f(A(R)):Q is openset in R*,|1Ql=1}
Q

where A(Q) = {A (Q)},_ are the Laplace-Dirichlet
eigenalue satisfying

K—ij(x) =AY, x€Q,
P (x)=0 X €092,

<

f 1s a real-valued function on the eigenvalue sequences,
and |- | denotes the Lebesgue measure. [Henrot 2006]



Three Sequential Eigenvalue Problem

We consider the following (o, f) parameterized optimization
problem:

C g = dnf C? 4(Q) and Q) ,={Q€ A: C? 4(Q) =75},

where i (@B eR: a2 0,82 0,a+8< 1),

A = {Q C R?: Q quasi-open and || < 1},
C? 5(Q) == aXj(Q) + BAj1(Q) + (1 — a — B)Aj12(9),

(a,3) € T and Q2 € A.



Reduced Eigenvalue Problem

CJ 5(9Q) = aXj(Q) + BAj11(Q) + (1 = @ = B)Aj42(Q)

1. Minimization of a single eigenvaue

m{%n Aj = 816191 C1.0(Q)
2. A convex combination of two sequential Laplace-Dirichlet
eigenvalues

min C?

iy a1-a(2) for a€|0,1],



Minimization of the first eigenvalue

Q- A4(Q),

Q-1




Minimization of the first eigenvalue
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Theoretical Results

“If the area of a membrane be given, there must evidently be some form of
boundary for which the pitch (of the principal tone) is the gravest possible, and
this form can be no other than the circle.” —Lord Rayleigh (1877)
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* 1994 Wolf and Keller show that any minimizer for third eigenvalue 1is
connected and a ball is a local minimizer among star-shaped, bounded
domains with smooth boundary. .

* 1994 The minimizer of fourth eigenvalue is disjoint union of two balls with
radii which have the ratio j /e O

e 2000 Bucur and Henrot prove that the minimizer of third eigenvalue exists

* 2012 Bucur, Mazzoleni and Pratelli prove the infimum for minimizatign of
kth eigenvalues exists and every minimizer has finite perimeter



Numerical Result |

OUdet (2004) No Optimal union of discs Computed shapes

1. Level set method ) O — O —

2. The k-th eigenvalue

o 4 O Q 64.293 O Q 64.293

of the minimizer

. . ) 5 O OO 82.462 @ 78.47

1s multiple when k 1s Q

greater than one i OO == Q o
7 O()() 1104 O 107.47
8 Q 127.88 @ 119.9
9 OO0 13837 CS 133.52
10 Q 154.62 Q 143.45
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Numerical Result I1

Antunes & Freitas
(2012)

1.

Eigenvalues
computed via
meshless method

Domains
parameterized
using Fourier
coefficients

k=7 result 1s
improved

k=13 minimizer is
not symmetric

Q 46.125
O O 64.203
00 s
Q Q 92.250
O OO 110.42

Q 127.88
OO0 13

Q 154.62

1 Q multiplicity Al Oudet’s result
5 @ 2 78.20 78.47
6 U 3 88.52 88.96
{;4} O 3 106.14 107.47
8 Q 3 118.90 119.9
9 CJ 3 132.68 133.52
10 O 4 142.72 143.45
11 <> 4 159.39 -
12 O 4 172.85 -
{;A??} @ 4 186.97 -
14 U 4 198.96 -
15 O 5 209.63 -
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Minimization of
Two Sequential Eigenvalues

Ashbaugh and Benguria (1991),
Wolf and Keller (1994),
Antunes and Henrot (2010).
Range of the first two eigenvalues

60f /\2= —',,zll

1. Curve determined by gl

minimizers of convex
combination of the first twq
eigenvalues

Chy () := (1 =) Ak(€) + 7 A1 (€2)

30t

D2 i
7Jo,1.4

2. Topological change T



Minimization of Two Sequential
Eigenvalues among rectangular shapes
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Minimization of Two Sequential
Eigenvalues among elliptical shapes
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Shape Mapping

0 e (1+0)Q

e Theset Q, =/ +6)Q2 is defined by
Q, ={x+0(x)| x&C}

e The vector field &(x) is the displacement of €2 .
2



Shape Derivative

Framework of Murat-Simon:

Let (@ be areference domain. Consider its variations

Definition: the shape derivative of | (Q)at Q 1S the
Frechet differential of @ — F'(({ + 6’)@% at 0 .

F((I+h6)Q)-F(Q)
h

d,F(Q)(0) = lim

21



Numerical Approach for general shapes

Cry () := (1 =) [Q Ak(2) + 7 [Q Ap41(£2)
The Level Set Approach

¢r + Va(x)|Vo| =0

Velocity: (shape derivative)

Q] ((1 =) 100tk)? + 7 10ntbk11) — (1= %)Xk + YAt1)

22
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Minimization of Two Sequential
Eigenvalues among general shapes
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Minimization of Two Sequential
Eigenvalues among elliptical shapes
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C5,Y

Minimization of Two Sequential
Eigenvalues among elliptical shapes
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l.

The number of connected
components of the
minimizer varies with the
convex combination
parameter

For k=2:5, the optimizer
for ¥ =1 1is also the
optimizer on an interval

yE[1-9,1] for some

j’* . .
3. Cl s non-decreasing

Lipschitz continuous, and
concave.
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Minimization of
Three Sequential Eigenvalues

Theorem: Iversen and Pratell1 (2012), 5w 00
(a) Any minimizer is connected for o8
each of the following cases: 06
(i) a+B=1,a>0, o4

(i) 0.35 < a <1 ”
(lll) 0 S ;8 ,S 0725(1 - CY) . 02 04 06 08 107 .

(b) Any disconnected minimizer, €2, satisfies A (€2) = X\(€2) and has
exactly two components.

(c) If any minimizer is connected for « = 0 and each g € [0, 1), then any
minimizer 1s connected unless 5 = 1.

Iversen + Pratelli conjecture that the minimizer is connected unless 5 = 1.

26



Minimization of Three Sequential
Eigenvalues among union of balls
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Minimization of Three Sequential
Eigenvalues among general shapes
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Minimization of Three Sequential
Eigenvalues among general shapes
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Minimization of Three Sequential
Eigenvalues among general shapes

Theorem. For for the (o, 3)-set
{(@,B)eT:a+28< 1},

the ball is a local minimizer of C;, 5 over the admissible class of equal
measure, star-shaped, bounded domains with smooth boundary.

Idea of the proof: (1) perturbation of the domain

R(O,e):=1+¢ » are™ +6 Y be™ +0(°), an=a= and by = b_y.

k=—oc k=—o00

(2) asymptotic analysis

If o) ;é 0,
Caps(Q) =7 [ajgs + (1 —a)ii] + 2emii s (1 — a — 2B) |ag| + O(€?)



Minimization of Three Sequential
Eigenvalues among general shapes

Theorem. For for the (o, 3)-set
{(@,B)eT:a+28< 1},

the ball is a local minimizer of C;, 5 over the admissible class of equal
measure, star-shaped, bounded domains with smooth boundary.
Idea of the proof: (continue)
and if as = 0,
Ccllyﬁ(Qc) = [ajg.l + (1 — a)j‘l‘),l] + Aae® + B(1 — a')e2 +(1—a-— ZB)CGQ - 0(63)
where o o

A = 4mjg 4 (1 + Jo.1 5" Ejzii) |an|?

= 27 ]1‘1 Xt: J11 J[-l(jl,l) £

2 o 1 . Jg,(jl.l)
1 |b2 Z(2+]1’1J£(J’1.1) a1+6a1—¢
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Future Directions

Study Laplace eigenvalue problem with general
boundary conditions

Study BilLaplace eigenvalue problem with general
boundary conditions

Study Laplace-Beltrami eigenvalue problems for
general manifold

Study BilLaplace-Beltrami eigenvale problems for
general manifold
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The End

Thank you for vour attention!!

Ques' ons??





