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•  Goal: Minimize a certain design objective 

 where                                   are the Laplace-Dirichlet 
eigenalue satisfying 

 

      is a real-valued function on the eigenvalue sequences, 
and         denotes the Lebesgue measure. [Henrot 2006] 

Shape Optimization on  
Eigenvalue Problems 
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Three Sequential Eigenvalue Problem 

(α,β)We consider the following              parameterized optimization 
problem: 
 
 
where 
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Reduced Eigenvalue Problem 

1. Minimization of a single eigenvaue 
 
 
2. A convex combination of two sequential Laplace-Dirichlet 
eigenvalues 
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Minimization of the first eigenvalue 

min
Ω
λ1

€ 

?

Ω→ λ1(Ω), Ω =1
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λ1 = 2π 2 ≈19.74
λ2 = 5π 2 ≈ 49.35
λ3 = 5π 2 ≈ 49.35
λ4 = 8π 2 ≈ 78.96

€ 

λ1 ≈ 30.33
λ2 ≈ 44.10
λ3 ≈ 61.69
λ4 ≈ 83.36

€ 

λ1 ≈18.16
λ2 ≈ 46.12
λ3 ≈ 46.12
λ4 ≈ 82.86

Minimization of the first eigenvalue 
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Theoretical Results 
“If the area of a membrane be given, there must evidently be some form of 
boundary for which the pitch (of the principal tone) is the gravest possible, and 
this form can be no other than the circle.” —Lord Rayleigh (1877) 
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connected and a ball is a local minimizer among star-shaped, bounded 
domains with smooth boundary. 

•  1994 The minimizer of fourth eigenvalue is disjoint union of two balls with 
radii which have the ratio  

•  2000  Bucur and Henrot prove that the minimizer of third eigenvalue exists 
•  2012 Bucur, Mazzoleni and Pratelli prove the infimum for minimization of 
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Numerical Result I 
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Oudet (2004) 
1. Level set method 
2. The k-th eigenvalue  
of the minimizer  
is multiple when k is 
greater than one 



Numerical Result II 
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Antunes & Freitas  
(2012) 
1.  Eigenvalues 

computed via 
meshless method 

2.  Domains 
parameterized 
using Fourier 
coefficients 

3.  k=7 result is 
improved 

4.  k=13 minimizer is 
not symmetric 



Minimization of  
Two Sequential Eigenvalues 
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Ashbaugh and Benguria (1991), 
Wolf and Keller (1994),  
Antunes and Henrot (2010). 
Range of the first two eigenvalues 
1.  Curve determined by 

minimizers of convex 
combination of the first two 
eigenvalues 

 
2.  Topological change 



Minimization of Two Sequential 
Eigenvalues among rectangular shapes 
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Minimization of Two Sequential 
Eigenvalues among elliptical shapes 
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Shape Mapping 

•  The set                                is defined by 

•  The vector field           is the displacement of       . θ( )x

Ω+=Ω )( θθ I

}|)({ Ω∈+=Ω xxx θθ

Ω
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Shape Derivative 
•  Framework of Murat-Simon: 
•  Let        be a reference domain. Consider its variations  
•                                  with 

•  Definition: the shape derivative of            at        is the 
Frechet differential of                                  at      .  

θ ∈ ∞W R RN N1, ( ; )

0

Ω
Ω+=Ω )( θθ I
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Numerical Approach for general shapes 
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12 BRAXTON OSTING AND CHIU-YEN KAO

Domain representation and evolution. Recent surveys of the application of level set methods
in optimal design problems are given in [9, 10] and a general reference for the level set method can
be found in [36].

The level set method represents a domain ⇥(t) via a function ⇥(x, t) : Rd ⇤ R+ ⌅ R, by

⇥(t) =
�
x ⇧ Rd : ⇥(x, t) < 0

⇥
.

The outward unit normal n̂ of the boundary ⌃⇥ = ⇥�1(0) can be expressed in terms of the level set
function as follows:

n̂ =
⌥⇥

|⌥⇥| .

A deformation of the domain ⇥(t) can be expressed as the evolution of its level set function ⇥(·, t)
by the Hamilton-Jacobi equation

(4.2) ⇥t + Vn(x)|⌥⇥| = 0

where Vn(x) is the speed of the boundary deformation.
In the solution of shape optimization problem (4.1), we seek to choose a boundary deformation

speed, Vn(x), as to reduce the value of the objective function. For objective functions of the form
J = J(|⇥|,�(⇥)), the variation of J with respect to the perturbation of the boundary by a velocity
field V is given in Proposition 2 and may be expressed as a linear functional

�J(⇥) ·V =
⌅ �J

�Vn
, Vn

⇧

⇥�

where Vn = (V · n̂). Thus, to first order, the boundary deformation speed Vn(x) which most rapidly
decreases the objective function value agrees with - �J

�Vn
on the boundary, i.e.

Vn(x)
⇤⇤⇤
⇥�

= � �J

�Vn
.

To advance the level set function ⇥ (and hence the domain boundary ⌃⇥), we must extend the
boundary deformation speed to a neighborhood of ⌃⇥. Our method of extension di⌫ers inside and
outside of the domain ⇥.

(1) The linear form �J
�Vn

as stated in Prop. 2 is dependent on the magnitude of the eigenfunction
gradients, which can also be evaluated on the interior of ⇥. We extend Vn(x) to the interior
of ⇥ by simply evaluating these quantities there.

(2) On the exterior of ⇥, we extend Vn(x) by assigning to each point x the value Vn(x0) where
x0 ⇧ ⌃⇥ is the point closest to x. Thus, for a convex domain ⇥, the velocity is constant
along rays normal to ⌃⇥.

To compute �J
�Vn

, we follow the optimize-then-discretize approach of evaluating the analytically
computed variation �J

�Vn
using discrete counterparts. For this boundary deformation speed Vn(x),

the Hamilton-Jacobi equation (4.2) is solved using a 3rd-order accurate ENO scheme. If the level set
function becomes either too flat or steep, we reinitialize the level set function to a signed distance
function to the boundary ⌃⇥, again using a 3rd-order accurate ENO scheme.

Once a deformation speed Vn(x) has been chosen, the level set is evolved according to the Hamilton
Jacobi equation (4.2) for a time t which satisfies the Armijo-Wolfe conditions which guarantees a
reduction in the objective function value and slope [35]. The process is continued until convergence
criteria are met.

In the level set representation of the domain ⇥, the boundary ⌃⇥ = ⇥�1(0) is only defined implic-
itly. At each iteration, points on the boundary may be approximated from the local representation
of ⇥(x) on the mesh. We use the second order approximation of the boundary as described in
[13]. Note that only the quadratic polynomial for each cell interface must be constructed; it is not
necessary to construct the bicubic polynomial on each cell.

The Level Set Approach 
 
 
Velocity: (shape derivative) 
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Figure 5.1. The evolution of the domain represented by a level set function for
the optimization of C1,0.9. The shapes for the 0-th, 2-nd, 4-th, and 19-th iterations
are shown. See §5.

5. Convex combinations of sequential Laplace-Dirichlet eigenvalues

In this section, we apply the computational method developed in §4 to study the convex com-
bination of sequential Laplace-Dirichlet eigenvalues. Define, for fixed k ⇤ N and � ⇤ [0, 1], the
�-parameterized shape optimization problem

(5.1) �⌅
k,� = argmin

�
Ck,�(�) := (1� �) |�|⇥k(�) + � |�|⇥k+1(�) and C⌅

k,� = Ck,�(�
⌅
k,�).

Using Prop. 3, we choose the boundary deformation speed for this objective function to be

(5.2) C(x)|⇧� = |�|
�
(1� �) |⌥n⌅k|2 + � |⌥n⌅k+1|2

⇥
� ((1� �)⇥k + �⇥k+1)

where ⌥⌅k⌥L2(�) = ⌥⌅k+1⌥L2(�) = 1. The algorithm starts with an initial guess of the domain
represented by a level set function, ⇤(x), on a 64⇥64 rectangular grid. To create a mesh for the finite
element computation of the eigenvalues, points on the zero level set contour are approximately found
using a second order approximation of the boundary [13]. The mesh is created by the built-in Matlab
function “initmesh” which uses a Delaunay triangulation algorithm with default parameters and
maximum edge size is chosen as 0.5 times the rectangular grid size. The finite element discretization
of (2.1) for a given shape � is solved to obtain eigenpairs {⇥j ,⌅j}k+1

j=1 . The deformation speed
(5.2) is then calculated on the triangulated mesh of �. We interpolate the deformation speed to
the rectangular grid using a linear interpolation and extend it to the exterior of � using the closest
point method. The level set function is then advected by this deformation speed using a linesearch
algorithm, allowing for large step sizes. This process is repeated until the dierence of objective
function values at subsequent iterations is less than 10�2.

We first demonstrate the flexibility of the level set approach to topological changes in the domain.
In Figure 5.1, we optimize Ck,� for k = 1 and � = 0.9 with the initial guess given by two disjoint
balls, represented by the zero level set of function

⇤(x, y) = min
⇤⇧

(x� 0.5)2 + (y � 0.5)2 � 0.2,
⇧
x2 + y2 � 0.4

⌅
.

During the optimization process, the small ball diminishes and finally disappears while the larger
ball grows and deforms into the optimal shape, which looks like two slightly overlapping balls. The
domains for the 0-th, 2-nd, 4-th, and 19-th iterations are given in Figure 5.1. Since the topology
of the optimal shape is unknown in advance, it is advantageous to use the level set method, which
automatically handles changes in the topology.

Furthermore, in Figure 5.2, we optimize Ck,� for k = 1 and � = 1 using for an initial guess the
union of two slightly overlapping balls, represented as the zero level set of the function

⇤(x, y) = min
⇤⇧

(x� 0.2)2 + (y � 0.2)2 � 0.32,
⇧

(x+ 0.2)2 + (y + 0.2)2 � 0.32
⌅
.
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Minimization of Two Sequential 
Eigenvalues among elliptical shapes 
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Minimization of Two Sequential 
Eigenvalues among elliptical shapes 
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1.  The number of connected 
components of the 
minimizer varies with the 
convex combination 
parameter 

2.   For k=2:5, the optimizer 
for     =1 is also the 
optimizer on an interval 

                        for some 
3.           is non-decreasing        
Lipschitz continuous, and  
concave. 

γ

γ ∈ [1−δ,1] δ

C1−γ ,γ
j,∗
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Theorem: Iversen and Pratelli (2012),  



Minimization of Three Sequential 
Eigenvalues among union of balls 
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Minimization of Three Sequential 
Eigenvalues among general shapes 
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For some (�,⇥), the ball is a local minimizer

C1
�,⇥ = �⇤1 + ⇥⇤2 + (1 � �� ⇥)⇤3

Theorem. O. + Kao (2012) For for the (�,⇥)-set

{(�,⇥) ⇤ T : �+ 2⇥ ⇥ 1},

the ball is a local minimizer of C1
�,⇥ over the admissible class of equal

measure, star-shaped, bounded domains with smooth boundary.

Proof. Generalization of the Wolf+Keller (1994) proof that the ball is a local
minimum of ⇤3(�). Based on asymptotic formulas for |�⇤|⇤k(�⇤) where �⇤

is a nearly-circular domain.
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Idea of the proof: (1) perturbation of the domain 
 
 
(2) asymptotic analysis 
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Idea of the proof: (continue) 



Future Directions 

•  Study Laplace eigenvalue problem with general 
boundary conditions 

•  Study BiLaplace eigenvalue problem with general 
boundary conditions 

•  Study Laplace-Beltrami eigenvalue problems for 
general manifold 

•  Study BiLaplace-Beltrami eigenvale problems for 
general manifold 
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The End 




