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Motivation and Problems

Portable 3D scanner
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Laplace-Beltrami Eigen-system
A Laplace-Beltrami (LB) eigen-system of (M, g):

Amor = =M, k=1,2,---,
O,or(x) =0, x€ oM

o A = %8xi(\/agij8wj ¢r) is the LB operator of (M, g)

e 0(M,g) ={0=Xg <A1 <Ay <---} are eigenvalues of A on (M, g).

e The corresponding ¢g, @1, ¢2, - - - are called eigenfunctions.

Example: Fourier basis and spherical harmonics
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Computation of Laplace-Beltrami Eigen-system

> Implicit approach: Level set method M= f=10)c R®
e J. Brandman’08, The first few LB eigenfucntions <= a PDE( the tangen-
tial component ) + an ODE (normal component).

e (Gao-Lai-Shi’10 propose to approximate the LB eigenproblem on the nar-
2

row band M = f~1([=4, d)). If% > Ae(M), then \;(Ms) = \j(M), =
-k

» Closest point method. [C. Macdonald-J. Brandman-S. Ruuth]

» Triangle mesh based method

e Finite difference method to approximate the LB operator. [Taubin’00,Desbrur
Meyer-Schroder-Bar’02, Xuw'04], : A f(vi) = D _ e vy wis (F(v5) — f(vi)

e Finite element method based on the weak formula [M. Reuter’06, A.Qiu’06]

» Point cloud based method, PDEs on high dimensional manifolds.

e Diffusion based method, only for Laplacian [Belkin-Sun-Wang,Coifman-
Lafon]|

e Two systematic methods, can be applied for other PDEs. [Lai-Liang-Zhao]



= Heat trace asymptotic expansion:

Z(t) = /M K(t,z,z)dv(x) = z:cztz/2

REAL DRUM

co = area(M), ¢ = —£length(8/\/l Co / K — 1/6/ J
oM

where K (t,z,y) = >, e i'¢;(x)p;(y), K is the Gauss curvature of M and J
is the mean curvature of OM in M. Moreover, if M is a closed surface with
Euler number y(M), then co = 2x(M)/3.[H. Mckean, 1. Singer’67|

= |sospectral surfaces. LB eigenvalues
can not uniquely determine a surface.

[Milnor,Sunada, Gordon-Webb-Wolpert et al.]

» Asymptotical behavior [Weyl, 1910]

A ~ (cd%éﬂj)w as k — 0o, here Cy = vol(d-ball)

» Shape DNA[Reuter’'06], Heat kernel signature [Sun-Ovsjanikov-Guibas’09]



Relation between LB Eigen-system and surface geometry

» Nodal curves ¢,;1(()) are smooth curves on M [S.Y.Cheng, 1976], the connected
components of M — qbgl(O) is called the k-th nodal number, which is between 2

and k [Courant nodal domain theorem]. The LB nodal counts can be used as
complementary of LB eigenvalues. [Gnutzmann-Karageorge-Smilansky 2005, Lai-Shi-
Toga-Chan’09]
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Skeleton construction using Reeb graphs

Morse-Smale complex. [Quadrangulation, Dong et al.’06]
[Shi-Lai-Krishna-Sicotte-Dinov-Toga,08]



Relation between LB Eigen-system and surface geometry

Unified Analysis of Geometric and Topological Outliers for Cortical Automated Corpus Callosum Extraction. [Shi-Lai-Toga’11]
Surface Reconstruction. [Shi-Lai-Togal



LB Eigen-system and registration for near isometric surfaces

» A Riemannian manifold can be uniquely determined by its LB eigenvalues +
eigenfunctions

e Heat kernel embedding [Berard-Besson-Gallot’94]: Itq) (33) = \/ Vol(M){e‘Ajt/quj (33)}321.

e Scale-invariant GPS embedding [Rustomov’07]: I (x) = {qb’j\—(x)} .
R P

. Embedding
We define dgf (z, M2) = inf e pr ||If/}1 (z) — Iij (¥)]]2- Space
dg? (M1, Mz) = maiﬁ{/ dg? (z, Mz)dvol pq, (z) 7/ dg? (M, y)dvola, (y) }» o o
My M 1 1,/

M,

d(Mi, M2) = maa:{ sup inf / dif (x, M2)dvolpm () U
M

®,eB(M;) P2€B(Ma2)
7\
sup inf / dgf (M, y)dvolam, (y) }
Mo

BoeB(M>) 21 eB(M)

(Lai-Shi-Chan'10)

(non-negativity and symmetry) d(M1, M3) 2 0 and d(Mi1, M3) = d(M2, M1);
H (triangle inequality) d(Mi, M3) < d(M1,N) + d(N, M>);

El (identity of indiscernibles ) d(Mq, M3) = 0 <= M isometric to M. (<=
easy part, — hard part).



ocal pattern recognition/identification Registration between near isometric surfaces
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Sulci regions identification [Lai-Shi-Toga-Chan]

[Lai-Shi-Toga-Chan, Bronstein-Kimmel et.al]



Registration between non-isometric surfaces

Correspondence?

R

Challenges:
€ Non-rigid

€ Non-isometric



Non-isometric shape differences

» Non-isometric differences
* Distance in the embedding space

* Leads to artifact in surface mapping

Large
distortion in
triangles

i
4, 5, 6, 7-theigenfunctions



Cortical Examples

Original EF on M, Original EF on M,

6th EF




Non-isometric shape differences

» Strategy: deform M; to M,

Embedding
o/ N
/ M, / \1 M,

Induced deformation

D,

Deformatio

Challenges:
» How to measure the deformation?
» No correspondence



Conformal deformation

» Surface deformation
* Extrinsic deformation: deform surfaces in the ambient space.
e.g. mean curvature flow
* |Intrinsic deformation: deform surfaces intrinsically. No need to
use ambient space at all. e.g. metric flows such as the Ricci flow.

» The shape space for genus-0 surfaces
e All genus-0 surfaces are conformally equivalent.

{all genus-0 surfaces}
=
{fix a surface M with all different metric}
=
{(M,gow) | w: M — R}
* Given a surface (M, go), we call a new metric § a conformal
deformation of 9o, if thereis w: M — R, s.t. § = wgo



LB eigenproblem on surfaces with conformal deformation

» The Laplace-Beltrami eigenproblem under the conformal deformation is

A(Mwgo)Pk = — APk = DM go) Pk = —WALDE
[Proof:] Note that |wgo| = w?go and (wgg)” = w™1gy.

AMuwe)f = 0;\/ |wg wg ”8f
o) M ;]_:2 | 0'321:2 )

= — i/ 9ol 90)7 0; f.
|gO 7,212 321:2

= ;Aw,go)f

Weighted LB LB eigenproblem

/ on conformal
deformed surfaces

eigenproblem on S
the original surface




Non-isometric shape differences: Surface mapping with conformal
deformation

» Key: All genus zero surfaces are conformally equivalent.
» Objective: Deform (M, g;) to (Ma, g2) via conformal deformation.
= Challenge: Unknown mapping and unknown conformal deformation
* Strategy: Simultaneously find mapping and unknown conformal
deformation by iterative methods via certain energy minimization.

» Consider the following variational problem [Shi-Lai-Toga]:

1 L[
P @+ [ sz+fZ/ 9wl

(w],wy) = arg min —
1=1,2

wi, w2 51 Jpmy
e Denote the conformal deformation of (Mj,¢1) and (Mas,g2) by M =
(M, wigi) (i =1,2).

e Write the optimal embedding bases of (Mi,wig1) and (Mo, wags) as

w1 w1 o0 w2 w2 00 s
ST = { AT, 97 hazy and @57 = {A5%, ¢33 102, respectively.

1 2

e Define: d,“* (z) = inf e, ||I§)Ewl (x) — Ij\)f% (W]l2, V =€ My
1 2

1 2
- . P P
4 (y) = infaent, [[Tnjer (@) = Intea @)lla s ¥ y € Mo,



Numerical computation

» Weak form
SV amodVa)n dM = X [, jwen dM, ¥V ne C®(M)

» Use the barycentric coordinate function e; as the basis and test
function
w=)  wiei, f=230e

> Matrix form QB = \U(w)p

where

Qz‘k:/ (V mei, Vaer)
M

Uzk;(CU) = ZWjUijk = ij/ €;€;€k
j j ad
w

» By solving the matrix eigenvalue problem, we have the embedding (I)./\/l
under the conformal deformation Q = wg



Variations of LB eigensystems via conformal deformation

Let (X, 1) be a simple eigenpair of —Aq,4. The variation of A with respect to
a perturbation of the conformal function w is given by

S\ (w_le ,(5w)
%) = -\ =
(&u “’) » (%, )y

> Derivative of eigenvalues and eigenfunctions of () f,, = )\n(_](w)fn
w.r.t. (W

Ofn B O\, oU ofn
(‘973- B Ow; ~Ufnt &ujf A U@wj
ngfnzl

> Since ngfn = 1 and f;{(Q — )\nU) — () [Nelson’76]

Nn _ - OU Ofn, O\ aU

B, —Anfn 8_%fn and Q- U)z—=—Ufn+ (%Jj

ow; Ow; A



Surface Mapping in the Embedding Space

Discretization
= The energy discretization

E(w w ) _ Z\: 1 < fl.‘n - f?.n(ul)>TU' ( fl.n - f‘Z,n(ul))
o n=1 5‘1 \V Al.‘n \/ >\2,n ' \/ Al.n \/E

T
< f;\; fl.n)\(lu2)> U2<\/f% fi/ﬂ/\l_))) —{—& w1 C21W1+W2 QZWZ)

= Update weights iteratively

8_E —9 i 1 ( 1 8f1,n 8>\1 1 (fl n) > ( fl,n . AfQ,n >
8(&}1 —1 Sl \/ Al,n 8(&]1 ()Wl 2 3/\2/ )\1 N \/ >\1,n \/ >\2,n
. 1 (8flun, BT . 8>\1,n (Bfl 71)T ) < f2 n fl,n )
S 8W1 A/ )\1 n 8W1 2 3/\2/ )\1 N \/ )\2 n \V )\1,71

+ 2£Q1w1

_9 Z < 1 ()fQ,n . ())\2 1 (f2 n) > ( f2 n Bfl,n >

dwz SZ z\/ )\2 n 8(»02 8&)2 2 3/\2/ )\2 M \/ >\2 n \/ >\1,n
. 1 (OfQ.n AT _ 8)\2’71‘ (Aan) )Ul < fl,n . AfQ_.n )

S 8(/.)2 A/ )\an 8(/.)2 2 3/\2/ )\2,71, \/ )\1,71, \/ >\2,n

+ 26Q2w2




Hippocampal Mapping Results

* Two hippocampal surfaces
— Use 30 eigenfunctions in constructing the embedding space |
— Start with constant weights
* The weight of the source mesh are updated iteratively to *
compensate for the non isometric differences
Resulting conf. deform.
1 J
! Before: Large After: high quality

4, 5, 6, 7-theigenfunctions after conf. deform distortion map




Cortical mapping example

Source Surface M,  Optimized weight w Angle Distortion
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Optimized Embedding

Original EF on M, Original EF on M, Optimized EF on M,




Group-wise atlas construction

* Given a set of annotated surfaces M1, Ma,---, M, estimate
a group-wise atlas (M™, w*g) for cortical label fusion

e Variational formula

argnrgnzp: / (dgi(a:,Mi))sz*Jer: /M (dg (M*,x))zdj\/l
i=1 - i=1 p

3




Clinical Applications of Hippocampal Mapping

* Population study: Group-wise Atlas P-Val Map

hippocampal atrophy in E’/ ,

multiple sclerosis (MS)
patients with depression
&«

— 109 female patient split
into two groups with the
CES-D scale: low
depression (CES-D<20)

-
-

0.01
\ 0.05

and high depression Correlation with

(CES-D>20) Thickness Difference CES-D Score

— Statistically significant ~p ”
group differences were /3 | | -
localized on s/ , E/ o
hippocampus (P=0.019) | > | &
\ > -1mm ‘ - -0.3

— Correlates well with
clinical measure of
depression



Folding free global conformal mapping [Lai-Wen-Yin-Gu-Lui]

» The variational formula for harmonic maps of genus-0 surfaces.

3
— ]_ —
e 8(F):—/ SIVafilPdM, st [F@P=1, VeeM.
F:(fl,f2vf3) 2 M i=1

e Slow convergence of gradient projection method.

e Possible foldings for surfaces with long and sharp features.

i Spherical Harmonic Map
by
Algorithm 1

» Our new algorithms.
e Speed up the computation efficiency tremendously using curvilinear search

method [Wen-Glodfarb-Yin| or SOC [Lai-Osher].

e Can obtain folding-free maps using LB eigensystem for conformal de-
formed surfaces.



Folding free global conformal mapping [Lai-Wen-Yin-Gu-Lui]

Algorithm 2: Folding removal by weighted LB Eigen-projection

1. Compute a map Fo : M — S? using Algorithm 1.
Compute the corresponding e?%0 using the approximation formula (14).

Iterate the following steps starting from k = 1.

2. Given the map Fj_; and conformal factor e2%k—1_ solve (20).
. Up Up Up

3. Construct a Star map using {d)lk t d)Qk ! ,¢t3k 1.

4. Start Algorithm 1 for the Star map and obtain Fj and uy.

Input Mesh §

Conformal
Correction

Algorithm 1

Go back to
Algorithm 1

Star Map
Gauss Map

A

New input



Folding free global conformal mapping [Lai-Wen-Yin-Lui-Gul]

o

"
o
23 24
E
1 14
i |
2] I o
5 = g T L = g ¥

Angle diff. Angle diff. Angle diff. Angle diff.

1
l
o
o

The proposed Algorithm 2 Algorithm in [1]
Surface | # of vertices | ¢ (Foldings Removed) (Foldings Remained)
Iter O step | Iter 1step | Iter 2 step | time(s) | # of iterations | time(s)
Dino 5524 le-10 | 4480 1518 3652 91.11 2854 835.53
Dilo 9731 le-10 | 3610 5000 4184 73.94 3106 513.56
Bird 1 950 le-10 1054 4444 1038 2.64 716 19.29
Armadillo 16519 le-10 | 4164 204 496 70.68 3355 1648.30

Table 3 Comparison between the proposed Algorithm 2 and the algorithm in [1].



Computing the conformal and topological spectra of Riemannian Surfaces
(Ongoing project with Chiu-Yen Kao and Braxton Osting)

» The Conformal spectrum.

Let [go] be the conformal class of gy with fixed vol(M, g) = 1. The k-th confor-
mal LB eigenvalue of (M, gg) is:

A (M, [g0]) = s?p] Ak(M, g) = sup{Ax(M, g)vol(M, g) | g conformal to go}
9g€l9o

» The topological spectrum of a 2-dim closed surface with genus 7 .

A () = supgegm,) (Mo, g).

> |n our work:

1. For a given Riemannian manifold (M, gg), we develop a computational
method for finding a metric g € [gg] which attains the conformal spectrum.

2. We also develop a computational method for studying the topological
spectrum for genus v = 0 and v = 1, which depends on a parameterization
of moduli space.

3. We study the flat tori and embedded tori.



A new variational method for computing conformal factor [Kao-Lai-Osting]

» All genus-0 surfaces are conformal equivalent.
» The conformal factor for a genus-0 surface M satisfies the following highly nonlinear

equation (Yamabe problem):
AMU—I-KGQU — K =0

whose solution is not straightforward to obtain. ( K = 1 for the unit sphere)

» The optimizer of A{' (M, [go]) = sup,e(y,) A1(M, g) is the canonical metric §2
[Hersch’70]

Conformal factor of Homer Simpson



Conclusion and future work

We consider the surface conformal deformation and study the Laplace-Beltrami
eigenproblem on surfaces with conformal deformation

» Conformal deformation for registration between non isometric surfaces. We
demonstrate its applications on surfaces from Brain image. It can be used to
more general registration problems in computer graphics.

» Folding free global conformal maps.

» Computing conformal and topological spectrum

» A new variational method for solving Yamabe problem for genus-0 surfaces.
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