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LOWER BOUND FOR FIRST LAPLACE EIGENVALUE

��u = �u on plane domain, Dirichlet boundary condition u = 0

Eigenvalues

0 < �1 < �2  �3  · · · ! 1

How does the shape of the domain affect its eigenvalues?

Rayleigh–Faber–Krahn (1920s)

�1(domain) � �1(disk of same area)

Scale-invariant form �1A is minimal for disk

Methods: symmetric decreasing rearrangement, and more. . .
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UPPER BOUND FOR FIRST LAPLACE EIGENVALUE
Assume domain ⌦ is starlike (e.g. convex)
Pólya–Szegő (1951; higher dim. by Freitas–Krejčiřík 2008)

�1A/G0 is maximal for disk

where G0 � 1 is a scale-invariant geometric factor that
penalizes deviation of ⌦ from a disk

R(✓) G0 =
1

2⇡

Z 2⇡

0
[1 + (log R)0(✓)2] d✓

� 1 with equality for disk

Method: transplant radial eigenfn u(x) of disk to trial fn on ⌦

u(x)
0

L

linear on each ray
0

u(L(x))

No angular

information in L
and so it cannot
handle higher
eigenvalues.
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LOWER BOUND FOR FIRST MAGNETIC EIGENVALUE
Magnetic field (0, 0,�/A) = r⇥ (�x2, x1, 0) �

2A , flux= �,
vector potential is F = �

2A(�x2, x1). Complex-valued wavefun u.

Magnetic Laplacian:

(ir+ F)2u = Eu on plane domain, boundary condition u = 0

Eigenvalues (energies of charged quantum particle)

0 < E1  E2  E3  · · · ! 1

How does the shape affect the eigenvalues?

L. Erdös (1996)

E1(domain) � E1(disk of same area)

Scale-invariant form E1A is minimal for disk

Method: clever rearrangements. . .
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MAGNETIC SPECTRUM OF THE UNIT DISK
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The double eigenvalues of the disk “split” when the magnetic
field is turned on. Also notice the “clumping” of energies for
large magnetic field (showing emergence of Landau levels).
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UPPER BOUND FOR FIRST MAGNETIC EIGENVALUE

(ir+ F)2u = Eu, boundary condition u = 0

Define

G0 =
1

2⇡

Z 2⇡

0
[1 + (log R)0(✓)2] d✓ � 1, G1 =

2⇡I
A2 � 1,

where I =
R
⌦ |x|2 dA = moment of inertia about origin. Then

G0 measures oscillation of boundary,
G1 measures elongation of boundary. Let

G = max{G0,G1} � 1

with G = 1 for disk.

Theorem (Laugesen & Siudeja, in preparation)
Among starlike plane domains, the normalized magnetic ground state
energy E1A/G is maximized when the domain is a centered disk.
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Proof that E1A/G is maximal for disk: Assume A(⌦) = ⇡.
⇢

eigenfn. u1
�

0

T

linear on each ray,
area preserving0

trial function v
= u(r/R(✓),�(✓)� ⇢)

R(✓)

✓

Area-preserving means R(✓)2 d✓ = d� , or �0(✓) = R(✓)2.

Use

E1(⌦)  R[v] ⌘
R
⌦ |(ir+ F)v|2 dxR

⌦ |v|2 dx
.

Need to evaluate this Rayleigh quotient by changing variable
back to the disk.
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Trial function v(r, ✓) = u(r/R(✓),�(✓)� ⇢) has Rayleigh quotient

R[v] =
Z

⌦
|(ir+ F)v|2 dA = Q1 + Q2 + Q3

where

Q

1

=

Z 2⇡

0

Z 1

0

��us(s,�(✓)� ⇢)
��2 sds

⇥
1 + (log R)0(✓)2⇤ d✓

Q

2

= 2Re
Z 2⇡

0

Z 1

0
us(s,�(✓)� ⇢) ⇥

⇣
� 1

s
u�(s,�(✓)� ⇢) +

i�
2⇡

su(s,�(✓)� ⇢)
⌘

sds R(✓)R0(✓) d✓

Q

3

=

Z 2⇡

0

Z 1

0

��i1
s

u�(s,�(✓)� ⇢) +
�

2⇡
su(s,�(✓)� ⇢)

��2 sds R(✓)4 d✓

(Use polar coordinates, chain rule, radial change of variable,

and �0 = R2.) Now average w.r.t. all rotations ⇢ 2 [0, 2⇡] of
the eigenfn.
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Integrate over rotations ⇢ 2 [0, 2⇡]:

1
2⇡

Z 2⇡

0
Q1 d⇢ = G0(⌦)

Z

D
|us|2 dx

1
2⇡

Z 2⇡

0
Q2 d⇢ = 0

1
2⇡

Z 2⇡

0
Q3 d⇢ = G1(⌦)

Z

D

��i1
s

u� +
�

2⇡
su
��2 dx

where x = (x1, x2) has polar coordinates s,�.

(Integrate, Fubinate, change ⇢ 7! �(✓)� �, and separate the ⇢
and ✓ integrals.
For Q2, notice that

R 2⇡
0 R(✓)R0(✓) d✓ = 0 by periodicity.)

Since G0  G and G1  G by definition, we obtain

(⇢-average of Q1 + Q2 + Q3)  G(⌦)R[u] = G(⌦)E1(D)
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EIGENVALUE FUNCTIONALS

Theorem (Laugesen & Siudeja, in preparation)
Among starlike plane domains, the following functionals are
maximized (for each n � 1) when the domain is a centered disk.

I fundamental tone: E1A/G
I sum of eigenvalues: (E1 + · · ·+ En)A/G
I sum of roots: (Es

1 + · · ·+ Es
n)

1/sA/G for each 0 < s  1
I product of eigenvalues: n

p
E1 · · ·EnA/G

I
Pn

j=1 �(EjA/G), for any concave increasing �

The following are minimized when the domain is a centered disk
I partial sum of zeta function:

Pn
j=1(EjA/G)s for each s < 0

I partial sum of heat trace:
Pn

j=1 exp(�EjAt/G) for each t > 0

[Note. Laplacian case � = 0 holds in all dimensions; see paper
to appear in Journal of Spectral Theory, 2013.]
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FROM SUMS TO HEAT TRACE BY MAJORIZATION
(HARDY, LITTLEWOOD, PÓLYA)

If a1  a2  a3  · · · and b1  b2  b3  · · · and

a1 + · · ·+ an  b1 + · · ·+ bn 8n � 1

then

�(a1) + · · ·+ �(an)  �(b1) + · · ·+ �(bn) 8n � 1

for all concave increasing functions �.
(Fun exercise. Prove it for n = 1, 2.)

Example:
using �(c) = � exp(�ct) shows heat trace is minimal for disk,
in our theorem
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EXTENSIONS
I Neumann boundary conditions? Yes, identical proof.
I Robin boundary conditions? Yes.
I Steklov eigenvalues?

[Work in progress with A. Girouard]
I Quantum particle with spin:

our theorems extend to the Pauli operator (under Dirichlet
boundary condition), which is

�
� · (ir+ F)

�2
 = E 

where � = (�1,�2,�3) is the 3-tuple of Pauli matrices:

�1 =

✓
0 1
1 0

◆
, �2 =

✓
0 �i
i 0

◆
, �3 =

✓
1 0
0 �1

◆
.

The Pauli operator acts on spinors, that is, on 2-component

complex vector fields of the form  =

✓
 +

 �

◆
.
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OPEN PROBLEMS
I Simply connected domains, not necessarily starlike???
I Domains on sphere, or hyperbolic space???
I Higher dimensions: A is 1-form and B = dA is 2-form. But

the magnetic field breaks the symmetry, and so maximizer
is presumably not the ball?

I Is Neumann Laplacian heat trace
P1

j=1 e�µjAt minimal for
the disk, for each t > 0? True as t ! 0,1.
(Luttinger proved disk is “maximal” for Dirichlet
Laplacian.)

CONCLUSIONS
The method of area-preserving transformation and rotational
averaging:

I is geometrically sharp — extremal domain is disk
I handles eigenvalue sums of arbitrary length (any n), and

hence spectral zeta functional and trace of heat kernel

I
applies universally — to Dirichlet, Robin and Neumann
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CAN BOTH GEOMETRIC FACTORS PLAY A ROLE IN
G = max{G0,G1}? YES!

For an ellipse of large eccentricity, shifting the origin away
from the center can result in either G0 or G1 dominating.
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(G0 < G1 when the origin lies in the shaded region)

The square is different, with G0 dominating for all origins near
the center.

(G0 < G1 when the origin lies in the shaded region)
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WHERE IS THE BEST CHOICE OF ORIGIN?
The geometric factors depend on the choice of origin.

• To minimize G1 ('moment of inertia), we should choose the
origin at the center of mass.

• To minimize G0 = 1
2⇡

R 2⇡
0 [1 + (log R)0(✓)2] d✓, the best origin

might not be the center of mass.

e.g. to minimize G0 on a triangular domain we should choose
the origin at the center of the inscribed circle, which can lie far
from the center of mass.

Conclusion: No choice of origin will simultaneously minimize
both of the geometric factors, in general.

Thus one should aim to choose the origin “somewhere near the
center” in a way that minimizes the maximum of the two
factors, G = max{G0,G1}.
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