

Adjoint-Based Photonic Design: Optimization for Applications from Super-Scattering to Enhanced Light Extraction

Owen Miller Post-doc, MIT Applied Math PI: Steven Johnson

<u>Collaborators</u>: Homer Reid (Math), Chia Wei Hsu (Harvard Physics), Wenjun Qiu (Physics), Brendan DeLacy (US Army ECBC), Marin Soljacic (Physics), John Joannopoulos (Physics)

Adjoint-Based Photonic Design: Optimization for Applications from Super-Scattering to Enhanced Light Extraction

Owen Miller Post-doc, MIT Applied Math PI: Steven Johnson

<u>Collaborators</u>: Homer Reid (Math), Chia Wei Hsu (Harvard Physics), Wenjun Qiu (Physics), Brendan DeLacy (US Army ECBC), Marin Soljacic (Physics), John Joannopoulos (Physics)

Super-Scattering Particle Design

• *Fundamental Question*: How can we design nano-particles to maximally extinguish light, per unit of material volume/weight?

Extinction = Absorption + Scattering

• *Application*: Obscurance (i.e. smokescreens)

Troops concealed by smokescreens

- Nano-particle absorbers/scatterers have potential applications in
 - Imaging
 - Biomedicine
 - Optical antennas
 - Metamaterials

Zhang et al Nat. Comm. 3, 1180 (2012)

Van Hulst et al Nat. Photon. 2, 234 (2008)

Previous work

• Primarily spherically-symmetric structures

• Some exploration of non-spherical particles: not systematic, or at different frequencies / different metrics

Aizpurua et. al. PRL 90, 057401 (2003)

Nano-rods B) 200_nm

Payne et. al. JCB 110, 2150 (2006)

Jun et. al. Science 294, 1901 (2001) Kelly et. al. JPCB 107, 668 (2003)

Goal: maximize **extinction / volume,** $\frac{\sigma}{v}$

• Need to explore large design space of non-spherical, three-dimensional structures

• For every structure, many frequencies (broadband performance)

• For every frequency, many incidence angles (random orientation)

Goal: maximize **extinction / volume**, $\frac{\sigma}{v}$

Our Approach

• Need to explore large design space of non-spherical, three-dimensional structures

Adjoint-based shape derivatives, within sophisticated optimizer

ab-initio.mit.edu/NLopt

• For every structure, many frequencies (broadband performance)

• For every frequency, many incidence angles (random orientation)

Goal: maximize **extinction / volume,** $\frac{\sigma}{v}$

Our Approach

 Need to explore large design space of non-spherical, three-dimensional structures Adjoint-based shape derivatives, within sophisticated optimizer

ab-initio.mit.edu/NLopt

Reω

- For every structure, many frequencies (broadband performance)
 Complex-frequency transformation
- For every frequency, many incidence angles (random orientation)

Goal: maximize **extinction / volume,** $\frac{\sigma}{v}$

Our Approach

 Need to explore large design space of non-spherical, three-dimensional structures Adjoint-based shape derivatives, within sophisticated optimizer

ab-initio.mit.edu/NLopt

For every structure, many frequencies (broadband performance)
 Complex-frequency transformation

- For every frequency, many incidence angles (random orientation)
 Boundary-element method
 - Discretize surface only, not volume
 - all angles essentially free

homerreid.ath.cx/scuff-EM/

Complex Frequency Transformation

• By optical theorem, extinction equals:

 $\sigma = Im[f] \qquad f = \text{ forward scattering amplitude} \\ \rightarrow \text{ analytic in upper-half place (causality)}$

• Suppose we want to measure broadband performance:

$$\sigma_{avg} = Im \int f(\omega) \frac{\Delta \omega / \pi}{(\omega - \omega_0)^2 + \Delta \omega^2} d\omega$$

$$analytic \quad one \text{ pole at} \\ (no \text{ poles}) \quad \omega_0 + i\Delta \omega$$
Contour integration: $Im \omega$

$$\sigma_{avg} = Im f(\omega_0 + i\Delta \omega)$$

$$\sigma_{avg} = Im f(\omega_0 + i\Delta \omega)$$

Many real ω to One complex ω !

Verification: many-to-one frequency transform

Can be solved with existing FEM/BEM codes!

Beyond Spheres: Ellipsoids

Optimizing $\frac{\sigma}{\nu}$ over $\lambda = [600, 800]nm$, random orientation

• Among all multi-coated SiO₂/Ag spheres, global optimum always

Very small (quasi-static) Silica sphere with *single* Silver coating

$$\frac{\sigma_{avg}}{V} = \int \frac{\sigma(\omega)}{V} \frac{\Delta\omega/\pi}{(\omega - \omega_0)^2 + \Delta\omega^2} d\omega$$
$$= 0.09nm^{-1}$$

• Extending optimization to ellipsoids, how well can we do?

Assume surface of revolution (i.e. spheroids, 2 degrees of freedom)

Optimal Un-Coated, Ag Ellipsoids

Optimal Ellipsoid

- $r_1 = 3nm, r_2 = r_3 = 45nm$ (r_1 at lower bound)
- $\frac{\sigma_{avg}}{V} = 0.53 nm^{-1}$, ~6x better than optimal sphere
- Oblate (disk) > Prolate (needle)

Actual sampling

Beyond Ellipsoids: Star-Shaped Structures

• Use spherical harmonics as basis functions for shapes

$$r(\theta,\phi) = \sum_{l,m} c_{lm} Y_{lm}(\theta,\phi)$$

• Adjoint shape derivatives: reciprocity in action

 \otimes

Direct Simulation

$$\frac{\delta F}{\delta x_n} = (\epsilon_2 - \epsilon_1) \vec{E}_{\parallel} \cdot \vec{E}_{\parallel}^A + \left(\frac{1}{\epsilon_1} - \frac{1}{\epsilon_2}\right) \vec{D}_{\perp} \cdot \vec{D}_{\perp}^A$$

Adjoint Simulation

With only two simulations \rightarrow Derivative at every surface point!

How to think about structure?

- Inscribe tetrahedron in sphere
- "Push in" at centroids

Comparison of Optimal Structures

Optimal Structures Comparison: Total Response

General shape optimum roughly 3% better than ellipsoidal optimum...

More Optimizations

Quasi-Static Resonances

Solving Gauss' Law: $\nabla \cdot \epsilon E = \rho$

- Resonant with respect to what? There is no frequency.
- Resonance with respect to **permittivity**. For a given structure, there are specific (negative & real-valued) permittivities for which a surface charge can exist, *without an incident field*
- Mathematical formulation:

 ϵ_0

$$\nabla \cdot \epsilon(x) \nabla \phi(x) = -\rho_{ext}(x)$$

$$2\pi \frac{\epsilon_1 + \epsilon_0}{\epsilon_1 - \epsilon_0} \sigma(x) = n \cdot \nabla \phi^{\infty}(x) + \int_S F(x, y) \sigma(y) dy$$

$$F(x, y) = -\frac{n(x) \cdot (x - y)}{|x - y|^3}$$

$$\boxed{\frac{\epsilon_n + 1}{\epsilon_n - 1} \sigma_n(x) = \frac{1}{2\pi} \int_S F(x, y) \sigma_n(y) dy}$$

Quasi-Static Resonances

Solving Gauss' Law: $\nabla \cdot \epsilon E = \rho$

- Resonant with respect to what? There is no frequency.
- Resonance with respect to **permittivity**. For a given structure, there are specific (negative & real-valued) permittivities for which a surface charge can exist, *without an incident field*

Images are surface charge densities of respective modes

Quasi-static particle design

- Suppose we want to **design** particle for maximum extinction at $\epsilon(\omega_0)$. How?
 - (1) Want at least one resonance $\epsilon_n \approx Re[\epsilon(\omega_0)]$
 - (2) Want polarizability concentrated at ϵ_n (i.e. should not be "wasted" at other permittivities)
- How does an oblate spheroid look, from this perspective?

So we have two strong, degenerate resonances. But we're losing a significant part of polarizability at -0.3, right? Not quite.

Sum rules

- Fuchs (1975-1976), for collections of homogeneous particles:
 - #1: sum rule on polarizabilities

$$\sum_{modes \ n} p_{n,\alpha} = 1 \qquad \alpha = x, y, z$$

#2: weighted sum of resonant permittivities

$$\sum_{modes \ n} \frac{1}{1 - \epsilon_n} \overline{p}_n = \frac{1}{3} \qquad \qquad \overline{p}_n = \text{avg. } p_{n,\alpha} \text{ for all x,y,z}$$

This is the crucial sum rule (barely noticed in literature). Very roughly speaking, weighted average of ϵ_k has to = -2

• The primary upper bound discussed in the literature has been the *integrated extinction per volume*:

$$\int \frac{\sigma_{ext}(\lambda)}{V} = \pi^2 Tr[\gamma] \qquad \begin{array}{l} \gamma = static \\ polarizability \end{array} \qquad But this is shape-dependent, \\ does not provide a general limit \end{array}$$

Quasi-static upper bound

• Constrained optimization:

Maximize
$$\frac{\sigma(\omega_0)}{V} = \frac{1}{3} \frac{\omega_0}{c} \sum_n \left(\frac{1}{1 - \epsilon_n} - \frac{1}{1 - \epsilon(\omega_0)} \right)^{-1} p_n$$
Subject to
$$(1-3) \sum_{modes n} p_{n,\alpha} = 1 \qquad \forall \alpha \in [x, y, z] \qquad \text{Sum Rule #1}$$

$$(4) \sum_{modes n} \frac{1}{1 - \epsilon_n} \overline{p}_n = \frac{1}{3} \qquad \text{Sum Rule #2}$$

$$(5) \ \epsilon_n < 0 \qquad \text{Uniqueness Theorem}$$

Quasi-static upper bound

• Constrained optimization:

$$\begin{array}{ll} \text{Maximize} & \frac{\sigma(\omega_0)}{V} = \frac{1}{3} \frac{\omega_0}{c} \sum_n \left(\frac{1}{1 - \epsilon_n} - \frac{1}{1 - \epsilon(\omega_0)} \right)^{-1} p_n \\ \text{Subject to} & (1-3) \sum_{modes n} p_{n,\alpha} = 1 & \forall \alpha \in [x, y, z] & \text{Sum Rule #1} \\ & (4) \sum_{modes n} \frac{1}{1 - \epsilon_n} \overline{p}_n = \frac{1}{3} & \text{Sum Rule #2} \\ & (5) \quad \epsilon_n < 0 & \text{Uniqueness Theorem} \end{array}$$

• For
$$\epsilon(\omega_0) < -2$$
:
For a material permittivity
 $\epsilon = \epsilon_r + i\epsilon_i$ and
susceptibility $\chi = \epsilon - 1$:
 $\frac{\sigma_{ext}(\omega_0)}{V} \le \frac{2}{3} \frac{\omega_0}{c} \frac{|\chi|^4}{(|\chi|^2 + \chi_r)\chi_i}$
 $\approx \frac{2}{3} \frac{\omega_0}{c} \frac{\epsilon_r^2}{\epsilon_i}$ $(|\epsilon_r| \gg |\epsilon_i|, 1)$

Given material and frequency, this bounds extinction for *any possible shape*!

What do the optimal structures have in common?

They all have roughly degenerate eigenmodes at the desired permittivity; all other modes have *zero dipole moment*, except as required by sum rules

All mode calculations courtesy of excellent MNPBEM Toolbox: http://physik.uni-graz.at/~uxh/mnpbem/mnpbem.html

The left-hand side can roughly be interpreted as: # of "full-strength" resonances (ideal max. 3, for 3 polarizations)

About the general upper bound:

- Ellipsoids are nearly optimal; they even hit the upper bound in three limits ($\epsilon \rightarrow -\infty, \epsilon = -2, \epsilon \rightarrow 0$)
- There are structures that do better than ellipsoids; can possibly take manufacturability into account
- From the optimizations, perhaps the "true" upper bound is even closer to the ellipsoid than the one derived here

What do the optimal structures have in common?

They all have roughly degenerate eigenmodes at the desired permittivity; all other modes have *zero dipole moment*, except as required by sum rules

All mode calculations courtesy of excellent MNPBEM Toolbox: http://physik.uni-graz.at/~uxh/mnpbem/mnpbem.html

Ideal Materials

Upper bound allows *shape-independent* calculation of ideal materials

The lines that are not labeled: *Cr, Co, Ir, Li, Mo, Ni, Os, Pd, Pt, Rh, Ta, Ti, W, V*

material data: refractiveindex.info (Palik, Rakic, Sopra-SA)

Key Points

- Moving from spheres to ellipsoids: ~6x improvement
- Moving from ellipsoids to arbitrary shapes: <1.34x improvement even theoretically possible
- There are shapes superior to ellipsoids; can be found through computational shape optimization

 $\frac{New, \text{ Quasi-Static Extinction Limit}}{V} \leq \frac{2}{3} \frac{\omega_0}{c} \frac{|\chi|^4}{(|\chi|^2 + \chi_r)\chi_i}$

