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Super-Scattering Particle Design

* Fundamental Question: How can we design nano-particles to
maximally extinguish light, per unit of material volume/weight?

Extinction = Absorption + Scattering

* Application: Obscurance (i.e. smokescreens)

* Nano-particle absorbers/scatterers have potential applications in
— Imaging
— Biomedicine
— Optical antennas

— Metamaterials

Zhang et al Van Hulst et al
Nat. Comm. 3, 1180 (2012) Nat. Photon. 2, 234 (2008)



Previous work

* Primarily spherically-symmetric structures
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* Some exploration of non-spherical particles: not systematic, or at
different frequencies / different metrics

Nano-rings Nano-rods
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The Computational Challenge

. . o . g
Goal: maximize extinction / volume, =

 Need to explore large design space of
non-spherical, three-dimensional structures

* For every structure, many frequencies (broadband performance)

* For every frequency, many incidence angles (random orientation)
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* For every frequency, many incidence angles (random orientation)
Boundary-element method

— Discretize surface only, not volume
— all angles essentially free

Re w

homerreid.ath.cx/scuff-EM/



http://homerreid.ath.cx/scuff-EM/
http://homerreid.ath.cx/scuff-EM/
http://homerreid.ath.cx/scuff-EM/
http://homerreid.ath.cx/scuff-EM/
http://ab-initio.mit.edu/wiki/index.php/NLopt
http://ab-initio.mit.edu/wiki/index.php/NLopt
http://ab-initio.mit.edu/wiki/index.php/NLopt
http://ab-initio.mit.edu/wiki/index.php/NLopt

Complex Frequency Transformation

* By optical theorem, extinction equals:

o= Im [f] f = forward scattering amplitude
— analytic in upper-half place (causality)

* Suppose we want to measure broadband performance:

_ Aw/m p Lorentzian
Oavg =Im | f(w) (@ — wg)? + daw? % “window” function
! J L Y )

analytic one pole at
(no poles) wo + Aw

* Contour integration: [,

o Oqvg = Im f(wo + iAw)

>

Re w

Many real ® to One complex »!



Verification: many-to-one frequency transform

Complex frequency = Complex materials

Aw
(1)0—)(1)0+iA(U <:> S,H—)S,‘U(a)o‘l‘iAa))' 1+la)—
0

averaging O, over frenquencies (Lorentzian profile)
sphere (r=1.62¢/®,) described by Drude model
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Can be solved with existing FEM/BEM codes!



Beyond Spheres: Ellipsoids

Optimizing % over A = [600,800]nm, random orientation

* Among all multi-coated SiO,/Ag spheres, global optimum always

Very small (quasi-static)
Silica sphere with
single Silver coating

Oavg Ja(a)) Aw/m
V )] V (w—wy)? + Aw?
= 0.09nm™1

dw

* Extending optimization to ellipsoids, how well can we do?

Assume surface of revolution
(i.e. spheroids, 2 degrees of freedom)
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Optimal Un-Coated, Ag Ellipsoids
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Beyond Ellipsoids: Star-Shaped Structures

Use spherical harmonics as basis functions for shapes

r6,¢) = CimYim (60, ¢)
Im
* Adjoint shape derivatives: reciprocity in action Example
Structure
Direct Simulation Adjoint Simulation Gradient
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With only two simulations = Derivative at every surface point!




Optimization #1: Ag near A=400nm

Optimal Structure (<150 iterations)

V4

“Top “Side” Dimensions
View View ~5nm

How to think about structure? Performance

Inscribe tetrahedron in sphere
“Push in” at centroids
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1‘ ~ equal for all 3 polarizations



Extinction / Volume (nm™1)

Comparison of Optimal Structures

Optimal General Shape

Optimal Ellipsoid

r;=r,=2nm, ry;=10nm
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y-, Z-pol: very strong response
x-pol: very weak

Roughly equal for all three
polarizations



Optimal Structures Comparison: Total Response

0.5
H-; Generalf E|lipsoid
c 0.4y Shape
£
> 0.3
O
>
= 0.2 f
i)
2
= 0.1r
x
L

200 300 400 500 600 700
Wavelength (nm)

Almost exactly the same?!

General shape optimum roughly 3% better than ellipsoidal optimum...



c /V, non-dimensionalized

1.5¢

More Optimizations

X General

Ellipsoids -
(Discs)

Re(e)




Quasi-Static Resonances
Solving Gauss’ Law: V - €E = p
Resonant with respect to what? There is no frequency.

Resonance with respect to permittivity. For a given structure,
there are specific (negative & real-valued) permittivities for which a
surface charge can exist, without an incident field

Mathematical formulation:

V-e()VP(x) = —pexe(x)

S,
2m 21 i Vo) = n- VPP () + jF(x, y)o(y)dy
1~ €o S
- (- y)
Fey) == P
for ¢ = 0:

e, +1 1 J
S o0 = 5 | FOoy)am0dy




Quasi-Static Resonances
Solving Gauss’ Law: V - €E = p
 Resonant with respect to what? There is no frequency.

 Resonance with respect to permittivity. For a given structure,
there are specific (negative & real-valued) permittivities for which a
surface charge can exist, without an incident field

Spheres Each mode contributes to o /V
Three modes at through dipole strength p,, and
€= —2 i . ( 1 . 1 )—1
coupling ¢,, = e 1<
Ellipsoids
Two modes at One mode at
T Tmax 8 Tmin
€~ —— € R ——
4 T'min T Ymax

Images are surface charge densities of respective modes



Quasi-static particle design

* Suppose we want to design particle for maximum extinction at e(w,).
How?
(1) Want at least one resonance €,, ® Re[e(wy)]

(2) Want polarizability concentrated at €,
(i.e. should not be “wasted” at other permittivities)

* How does an oblate spheroid look, from this perspective?

[}] 1)( x
g
c 0.8 Two dipole modes at
k=]
506 €, = €, = —6.9
(=}
£ 0.4}
s .
g0, One dipole mode at
% €3 = —0.3
o O 3% 3O0mMIMEE TN
-6 4 2 0

Permittivity eigenvalue

So we have two strong, degenerate resonances.
But we’re losing a significant part of polarizability at -0.3, right? Not quite.



Sum rules

* Fuchs (1975-1976), for collections of homogeneous particles:
— #1: sum rule on polarizabilities
Z Pna =1 a=xY72z
modesn

— #2: weighted sum of resonant permittivities

1 _ 1 B
Z 1—e, Pn=3 D, = avg. Pnq forall x,y,z
modesn

This is the crucial sum rule (barely noticed in literature).
Very roughly speaking, weighted average of €, has to = —2

 The primary upper bound discussed in the literature has been the
integrated extinction per volume:

y = static But this is shape-dependent,
polarizability does not provide a general limit

j Oext(A)

= 12T
v neTr[y]



Quasi-static upper bound

 Constrained optimization:

Maximize

a(wy) _ 1wy

1 1\
Z <1 —€e, 1-— e(w0)> Pr

V 3 cC -
Subjectto (1-3) z Pna =1 Va € [x,,7] Sum Rule #1
modesn
_ 1
(4)m;5n 1—¢ Pn™3 Sum Rule #2
(5) €, <0 Uniqueness Theorem



Quasi-static upper bound

Constrained optimization:

-1
Maximize 7(@o) _ lﬂz 1 1 .
v 3 ¢ ~ 1—¢, 1-¢e(wy) "
Subjectto  (1-3) z Pna =1 Va € [x,y, 2] Sum Rule #1
modesn
1 _ 1
(4)m;5n 1—¢ Pn™3 Sum Rule #2
(5) €, <0 Uniqueness Theorem
For €(w) < —2: Oexc(@o) _ 205 Ixl*
V. 73 ¢ (Ixl*+ xrxi

For a material permittivity
€ = €, + i€; and
susceptibility y = € — 1:

2 g €2

3 c €

(lexl > le;l, 1)

Given material and frequency, this bounds extinction for any possible shape!



What do the optimal structures have in common?
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They all have roughly degenerate eigenmodes at the desired permittivity;
all other modes have zero dipole moment, except as required by sum rules

All mode calculations courtesy of excellent MNPBEM Toolbox: http://physik.uni-graz.at/~uxh/mnpbem/mnpbem.html
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whereas

e.g. a tetrahedron has resonances:

1

9

g 0.8}

5

‘w 0.6}

G

£ 0.4}

0

3

502 X% X ]

i .
0 " I . *®
12 -10 6 2 0

-8 -
Permittivity eigenvalue



— Upper bound - general

—r
T

— Upper bound - ellipsoids
x Comp. optimized - general
Comp. optimized - ellipsoids

a !V, non-dimensionalized
—
o

e
w
T

0 1 1 1 1
6 5 -4 -3 -2 -1
Re(e)

About the general upper bound:

* Ellipsoids are nearly optimal; they even

The left-hand side can roughly
be interpreted as:
# of “full-strength” resonances
(ideal max. 3, for 3 polarizations)

hit the upper bound in three limits (¢ - —o0, e = =2, € — 0)
* There are structures that do better than ellipsoids; can possibly

take manufacturability into account

* From the optimizations, perhaps the “true” upper bound is even
closer to the ellipsoid than the one derived here
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|deal Materials

Upper bound allows shape-independent calculation of ideal materials

2.9

400 450 500 550 600 650 700
Wavelength (nm)

The lines that are not labeled:
Cr, Co, Ir, Li, Mo, Ni, Os, Pd, Pt, Rh, Ta, Ti, W, V

material data: refractiveindex.info (Palik, Rakic, Sopra-SA)



Key Points

 Moving from spheres to ellipsoids: ~6x improvement
 Moving from ellipsoids to arbitrary shapes: <1.34x improvement even
theoretically possible

* There are shapes superior to ellipsoids; can be found through
computational shape optimization

New, Quasi-Static Extinction Limit

Ideal Materials for the Visible
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