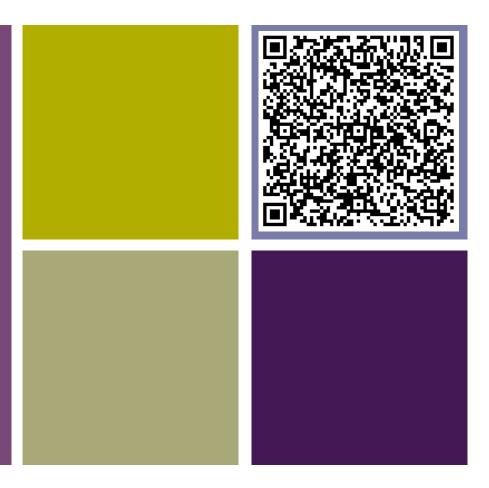
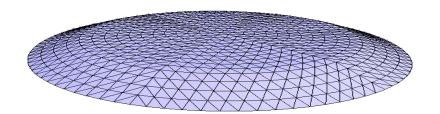
+

Spectral Shape Analysis with Applications in Medical Imaging



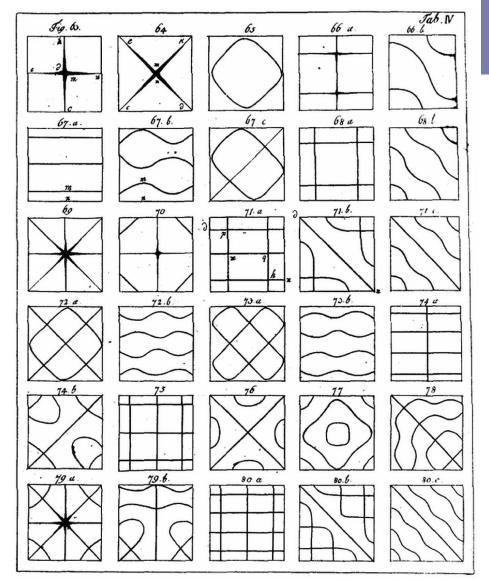


SIAM Annual Meeting 2013 San Diego

Martin Reuter – reuter@mit.edu Mass. General Hospital, Harvard Medical, MIT

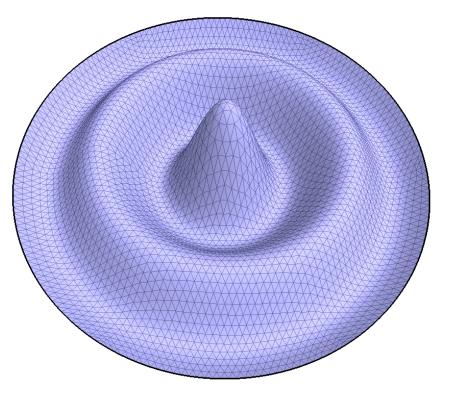
+ Chladni's strange patterns

- vibration of plates
- used a violin bow
- discovered sound patterns by spreading sand on the plates
- 1809 invited by Napoleon
- who held out price for mathematical explanation
- "Entdeckungen über die Theorie des Klanges" (Discoveries concerning the theory of music), Chladni, 1787



+ Can one "hear" Shape?

- First asked by Bers, then paper by Kac 1966, idea dates back to Weyl 1911 (at least).
- The sound (eigen-frequencies) of a drum depend on its shape.
- This spectrum can be numerically computed if the shape is known.
- E.g., no other shape has the same spectrum as a disk.
- Can the shape be computed from the spectrum?



+ Laplace Spectrum

Definition

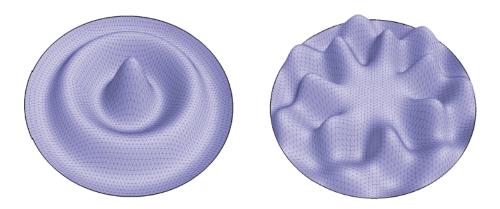
Helmholtz Equation (Laplacian Eigenvalue Problem):

 $\Delta f = -\lambda f, \qquad f: M \to \mathbb{R}$

Solution: Eigenfunctions *f_i* with corresponding family of eigenvalues (**Spectrum**):

 $0\leq\lambda_1\leq\lambda_2\leq\cdots\uparrow+\infty$

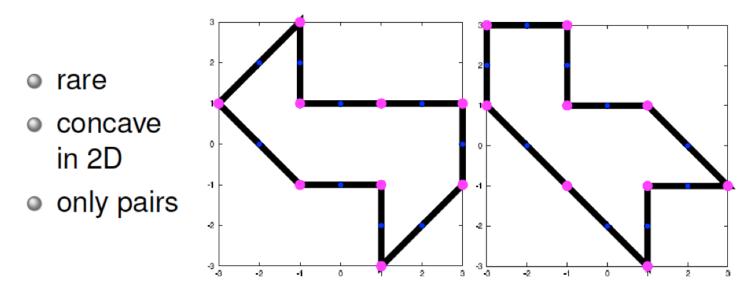
Here Laplace-Beltrami Operator: $\Delta f := div(grad f)$



+ Can one hear Shape?

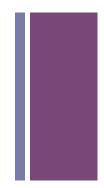
Answer

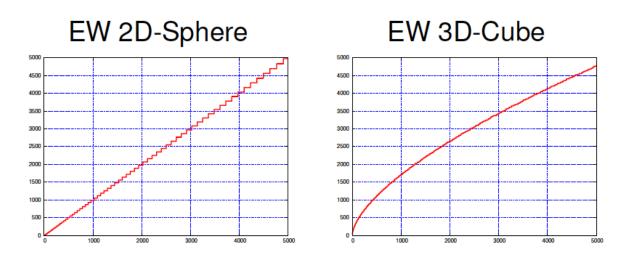
No! Isospectral drums exist (Gordon, Webb, Wolpert - 1992)



Geometry

Nevertheless, they share area, boundary length, genus...





Theorem (Weyl - 1911,1912)

$$\lambda_n \sim \frac{4\pi}{\operatorname{area}(D)} n$$
 for $d = 2$ and $n \to \infty$
 $\lambda_n \sim \left(\frac{6\pi^2}{\operatorname{vol}(D)}\right)^{\frac{2}{3}} n^{\frac{2}{3}}$ for $d = 3$ and $n \to \infty$.

+ Heat Trace Expension

- More Geometric and Toplogical Information:
- Riemannian Volume
- Riemannian Volume of the Boundary
- Euler Characteristic for closed 2D Manifolds
- Number of holes for planar domains
- Possible to extract data numerically from beginning sequence [reuter:06] (500 Eigenvalues)

Shape Analysis: Reuter, Wolter, Peinecke [SPM05], [JCAD06](most cited paper award 09) and Patent Appl.

- Introduced Laplace-Beltrami Op. for Non-Rigid Shape Analysis.
- Cubic FEM to obtain accurate solutions for surfaces and solids.
- Before a mesh Laplace (simplified linear FEM) has been used for parametrization, smoothing, mesh compression

Image Recognition: Peinecke et al [JCAD07] (Mass Density LBO)

Neuroscience Applicantions:

- Statistical morphometric studies of brain structures (eigenvalues), Niethammer, Reuter, Shenton, ... [MICCAI07], Reuter.. [CW08]
- Topological studies of eigenfunctions, Reuter.. [CAD09]

Segmentation: Reuter..(IMATI, Genova) [SMI09] [IJCV09]

Correspondence: Reuter [IJCV09]

+ Finite Element Method

- Instead of graph/wireframe (vertices, edges), we look at elements that assemble our geometry without gaps:

- triangles
- tetrahedra
- voxels....
- We define basis functions over this discretized geometry (linear, quadratic, cubic ...)
- We get a powerful framework to solve differential equations (not just Laplace).
- We also developed cubic FEM for parametrized surfaces (working in parameter space, similar to isoparametric FEM) [Reuter CAD06]

Theorem (Convergence)

For decreasing mesh size h and order p form functions: Eigenvalues converge with order

O(2*p*)

and Eigenfunctions with order

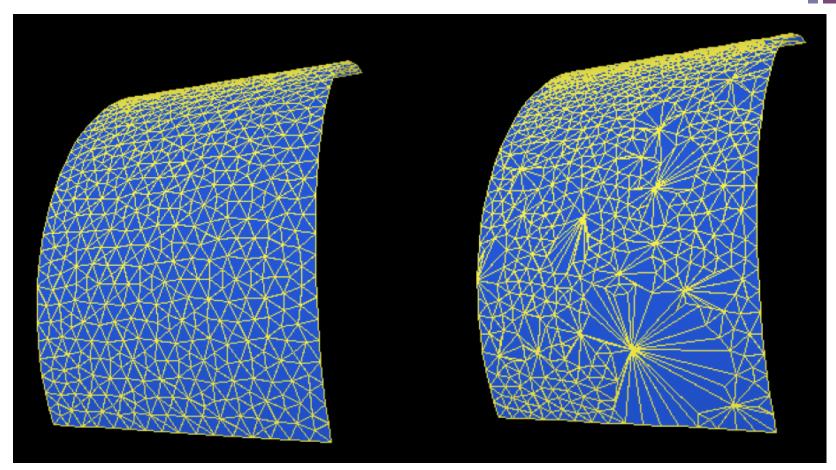
O(*p* + 1)

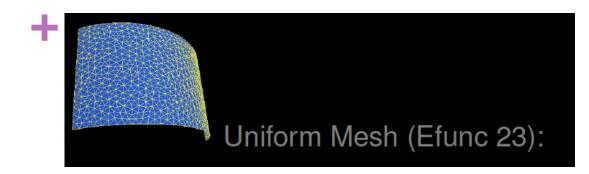
in the L_2 norm .

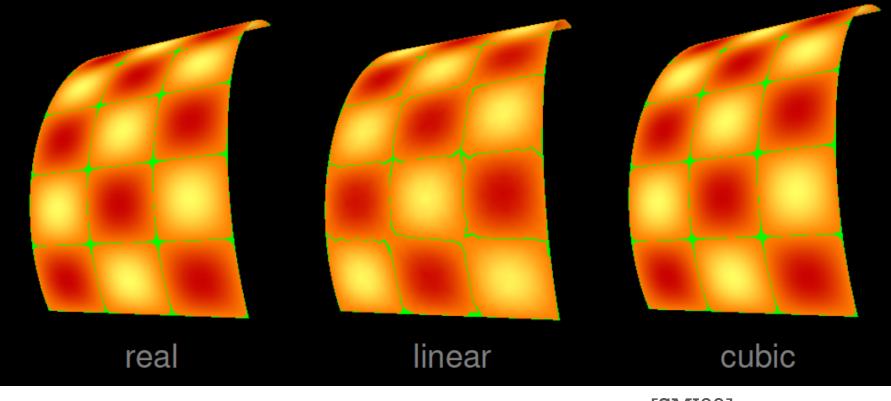
 \Rightarrow Always prefer higher order FEM approximations over mesh refinement.

+ Uniform and Non-Uniform Mesh

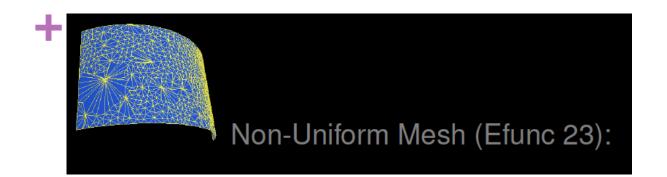
[SMI09]

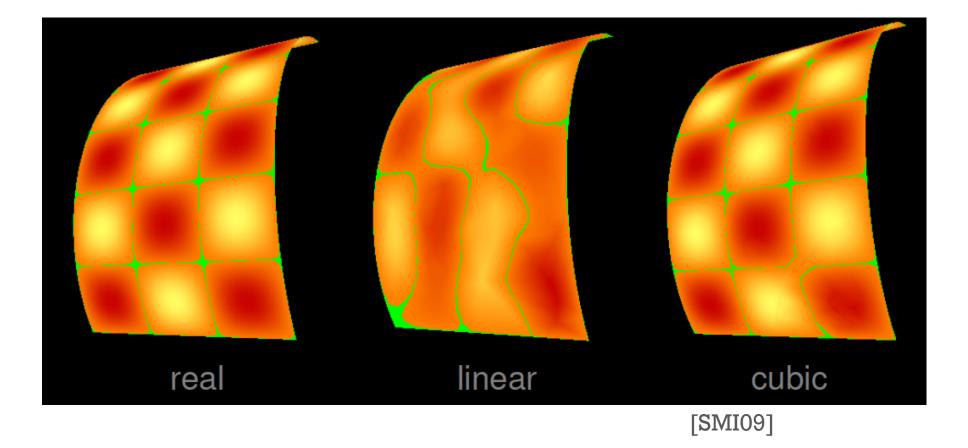


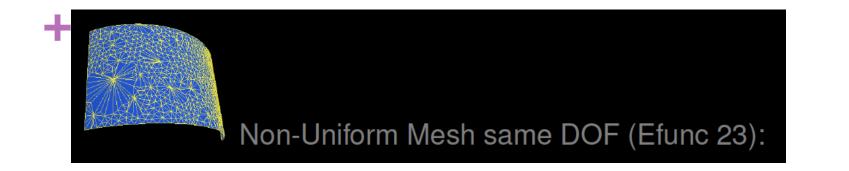


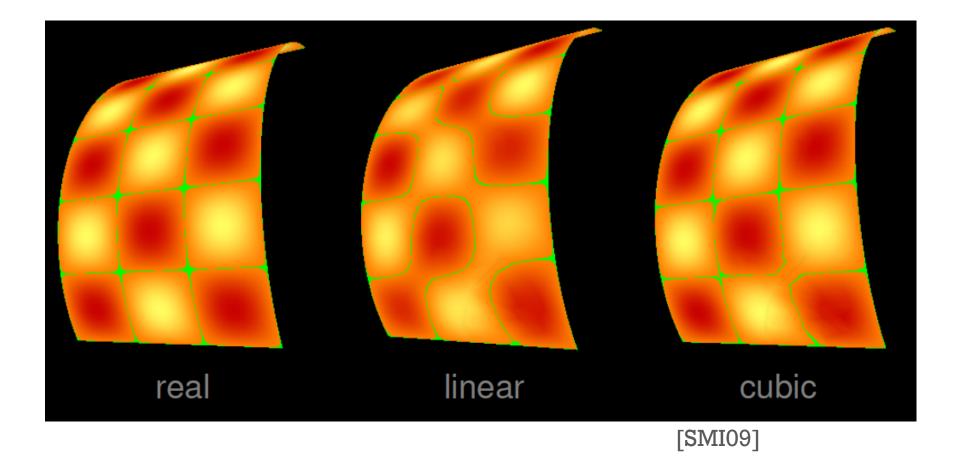


[SMI09]



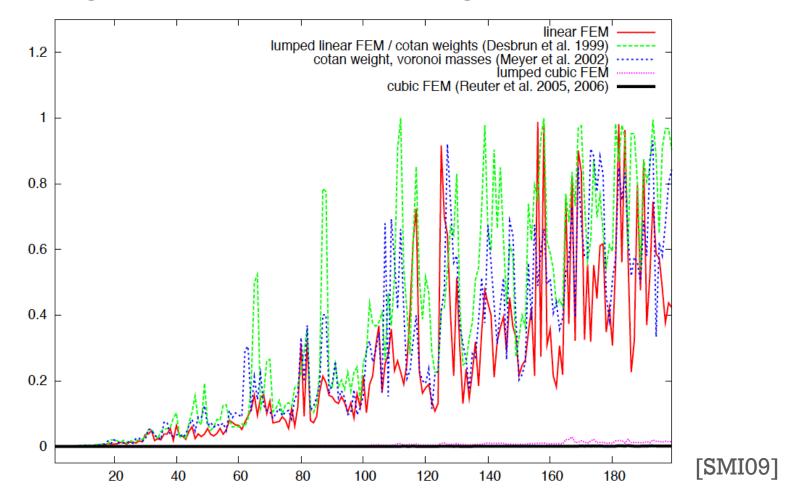






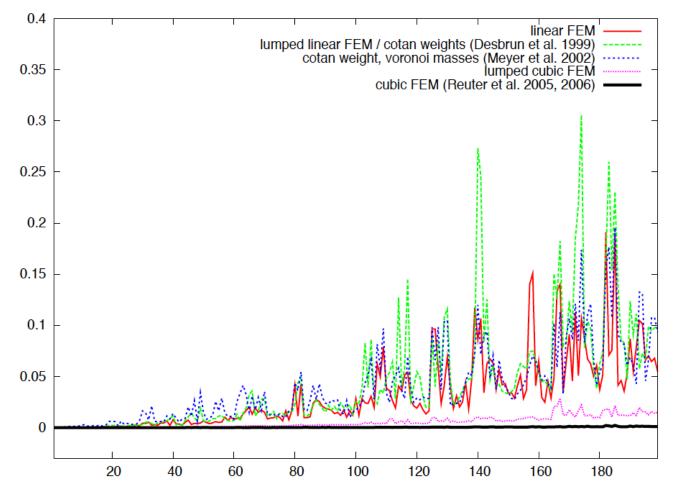
+ Comparison Eigenfunctions

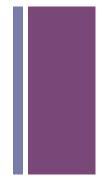
Rectangle - Uniform Mesh - first 200 Eigenfunctions:



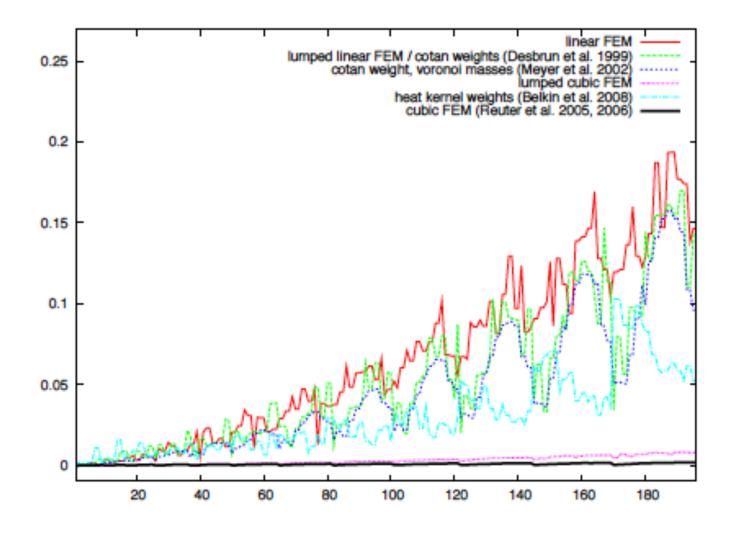
+ Comparison Eigenfunctions

Rectangle - Uniform Mesh (same DOF as cubic) - 200 EF:

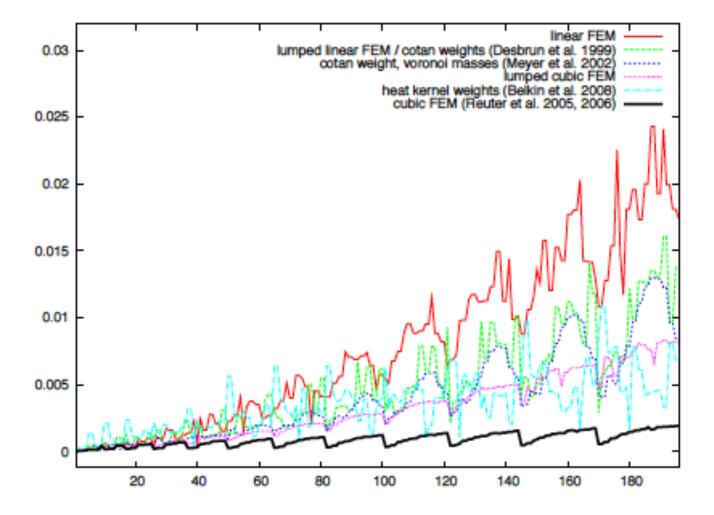




+ Comparison on the sphere

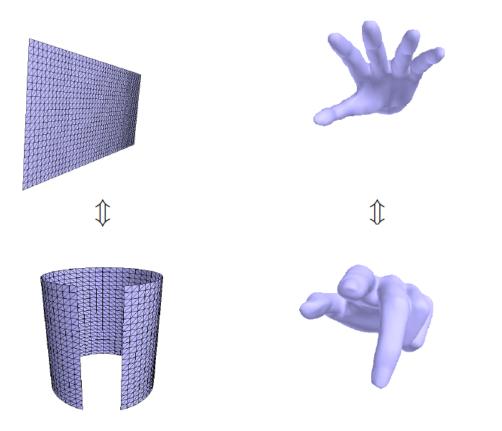


+ Sphere – same DOF



+ What is Shape and what is similar?

- Shape should be invariant with respect to:
 - Location (rotation, translation)
 - Size
 - Isometries?

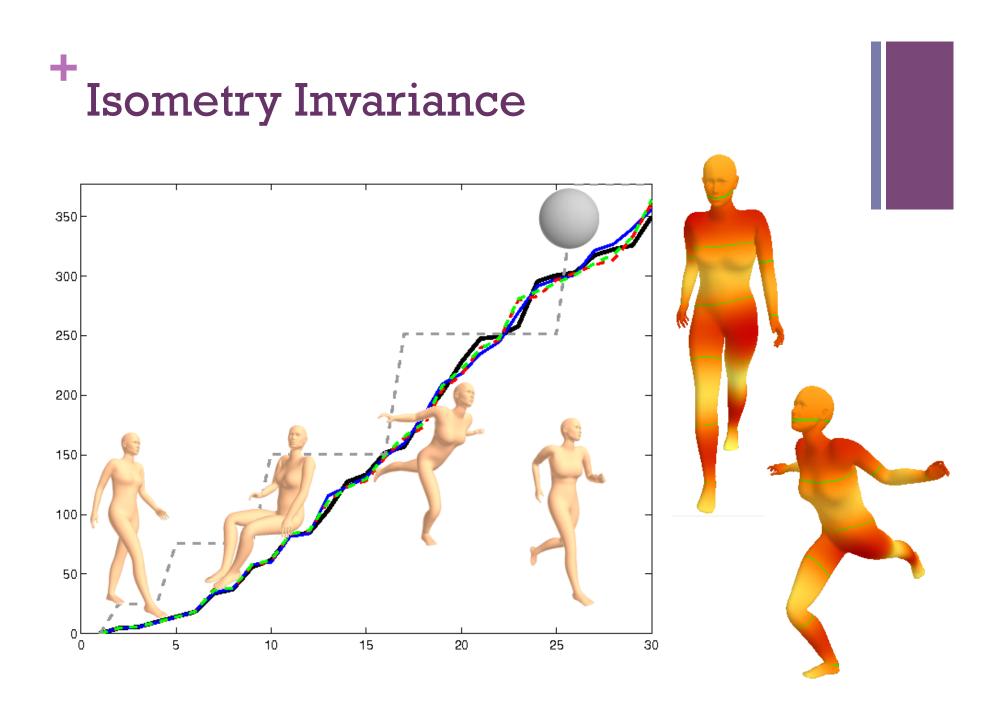


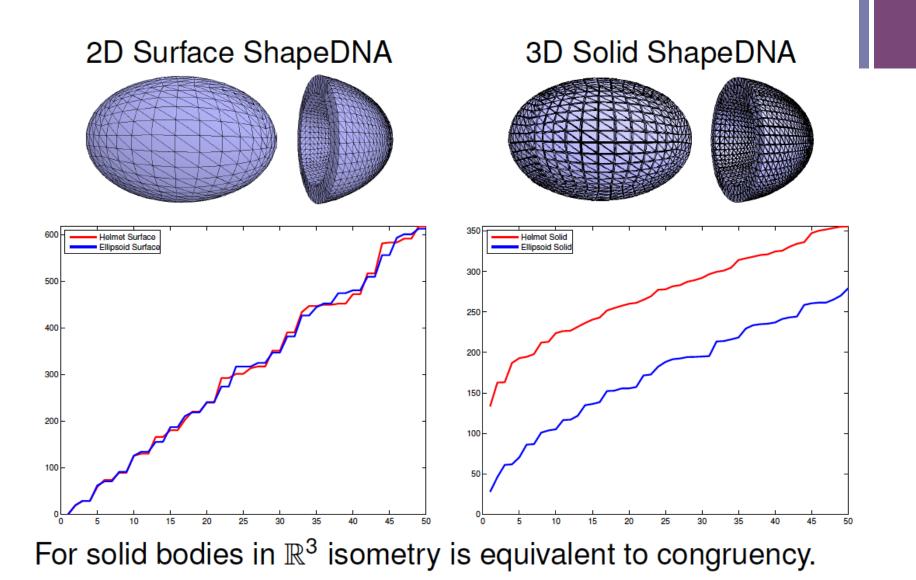
- Prior alignment, scaling of the objects:
 - normalization, registration
- Computation of a simplified representation
 - Signature, Shape-Descriptor
- Comparison of the signatures
 - distance computation to measure similarity
- Disadvantages of current methods:
 - Over-simplification, missing invariance, complex preprocessing, difficult to compare signatures, support only special representations

+ New Signature: ShapeDNA [spm05]

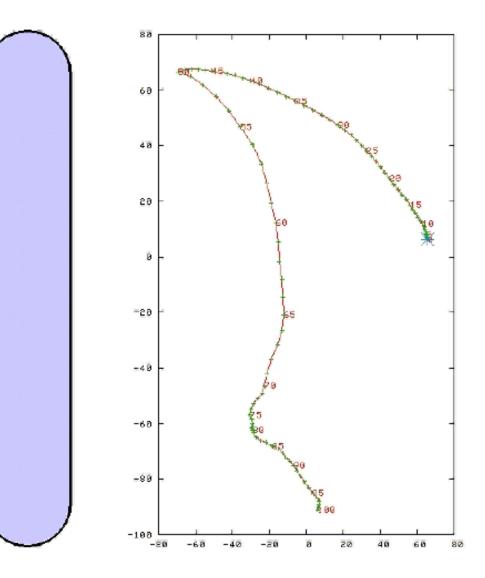
We use the (normed) *n*-dim vector of the **smallest** *n* **eigenvalues** $(\lambda_1, \ldots, \lambda_n)$ of the Laplace operator Δ as the signature:

- Isometry invariant \Rightarrow location invariant
- and (where required) scaling invariant
- No registration necessary
- Surfaces & solids (even with cavities)
- Independent of representation
- Simple distance computation of the signature vectors
- Efficient and highly accurate computation with cubic FEM





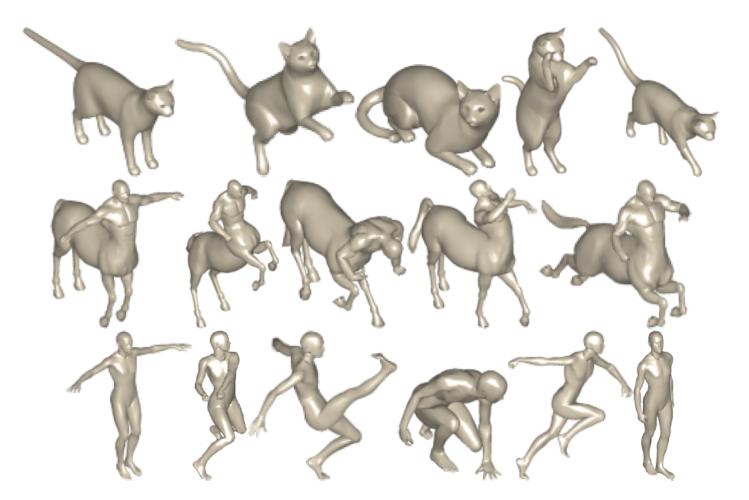
+ Continuous Shape Dependence

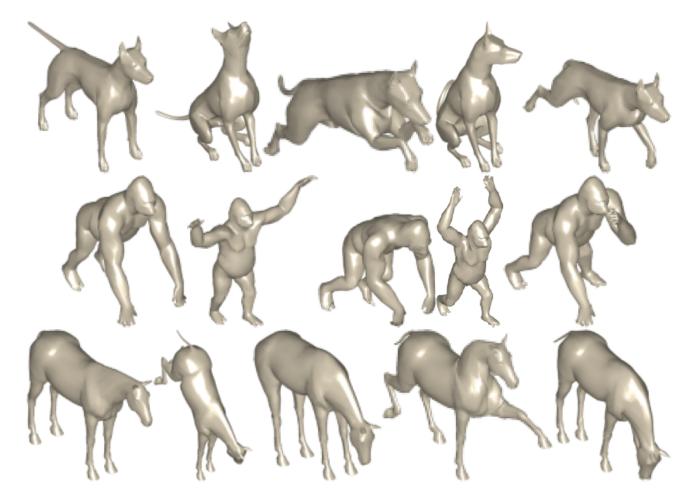


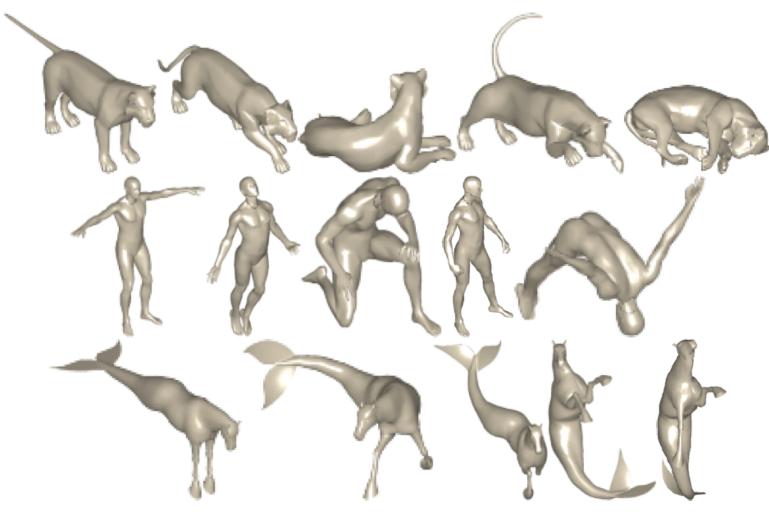
M.Reuter

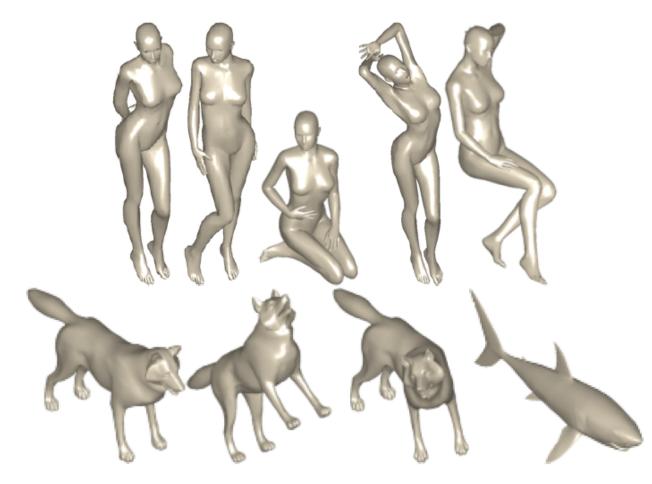
+ Database Retrieval

- I. Computation of the first n Eigenvalues (Shape-DNA)
- 2. Normalization
 - a) Surface area normalized
 - b) Volume normalized
- 3. Distance computation of the Shape-DNA (n-dim vector)
 - a) Euclidean distance (←default)
 - b) Another p-norm
 - c) Hausdorff distance
 - d) Correlation . . .

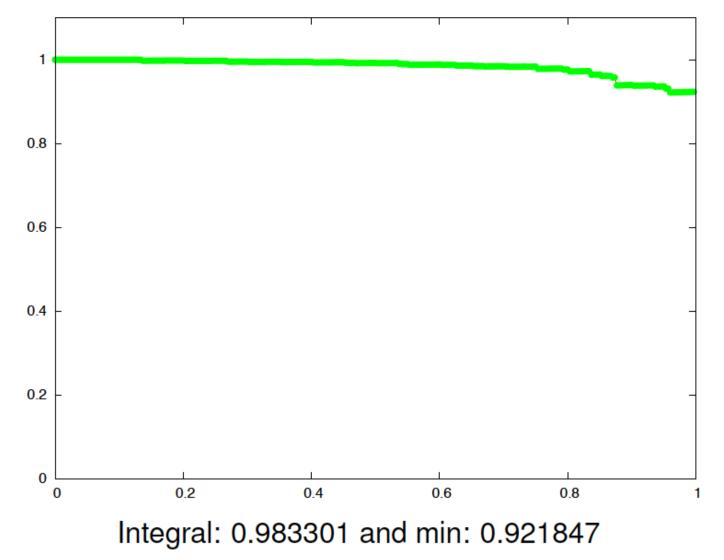


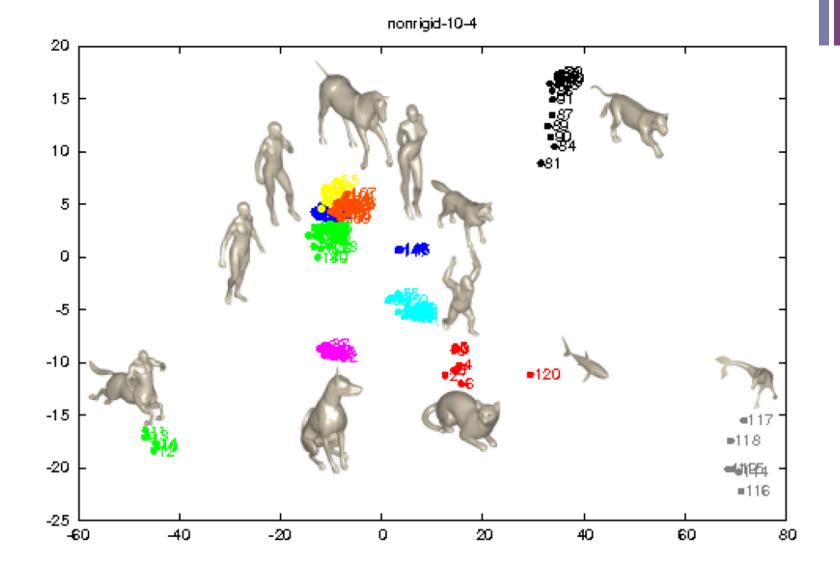


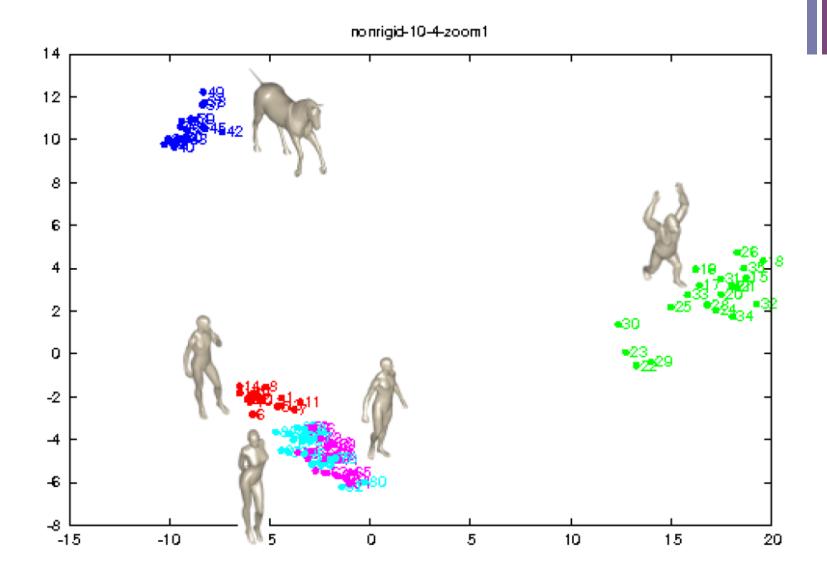


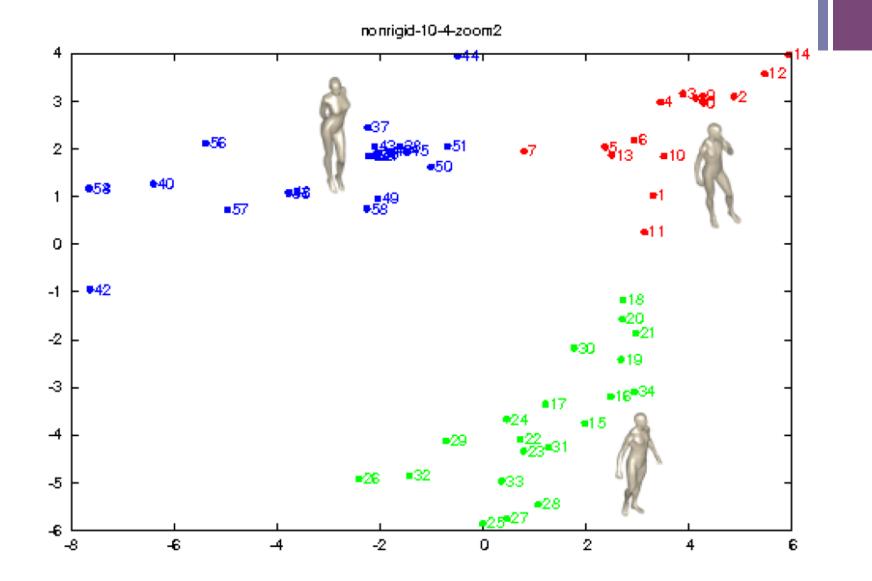


P(R) := Precision(Recall) averaged:

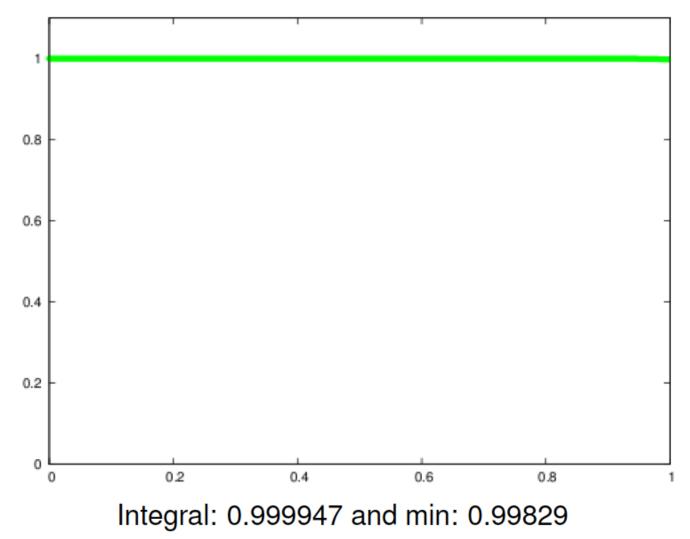




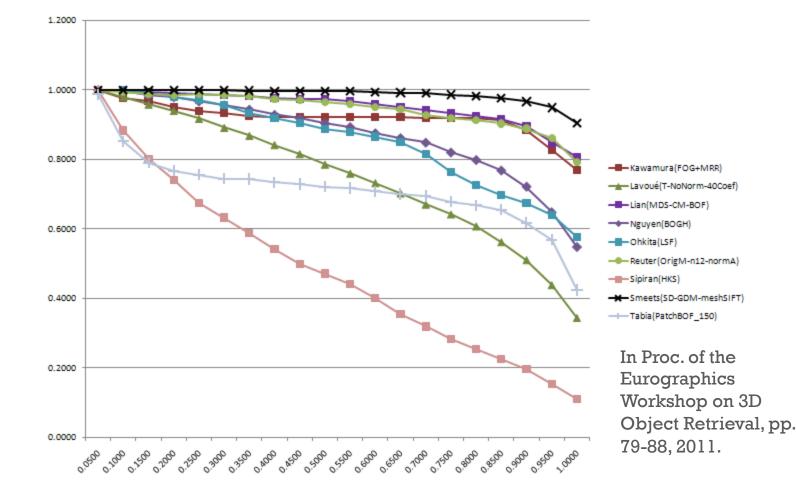




P(R) := Precision(Recall) averaged:



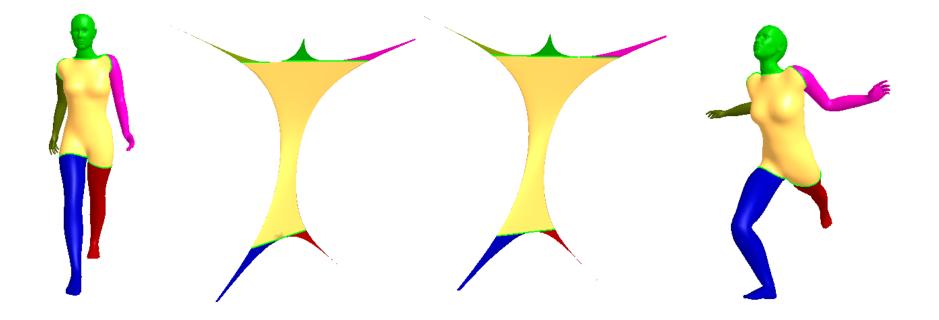
Shape Retrieval Contest 11 Non Rigid Track



+ Spectral Embedding

Maps each vertex to the value of all (or a few) Eigenfunctions at that location:

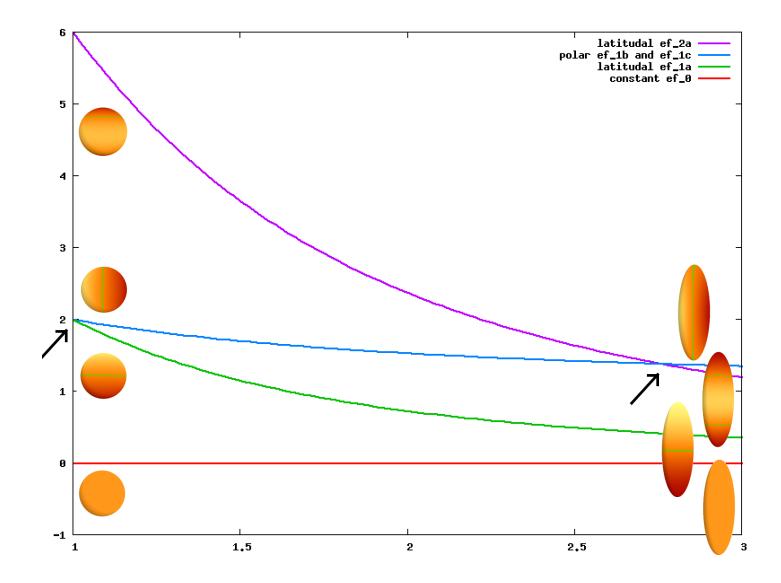
 $\Phi(\vec{x}) = (f_1(\vec{x}), f_2(\vec{x}), f_3(\vec{x}), \dots)$

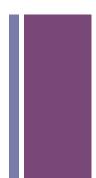


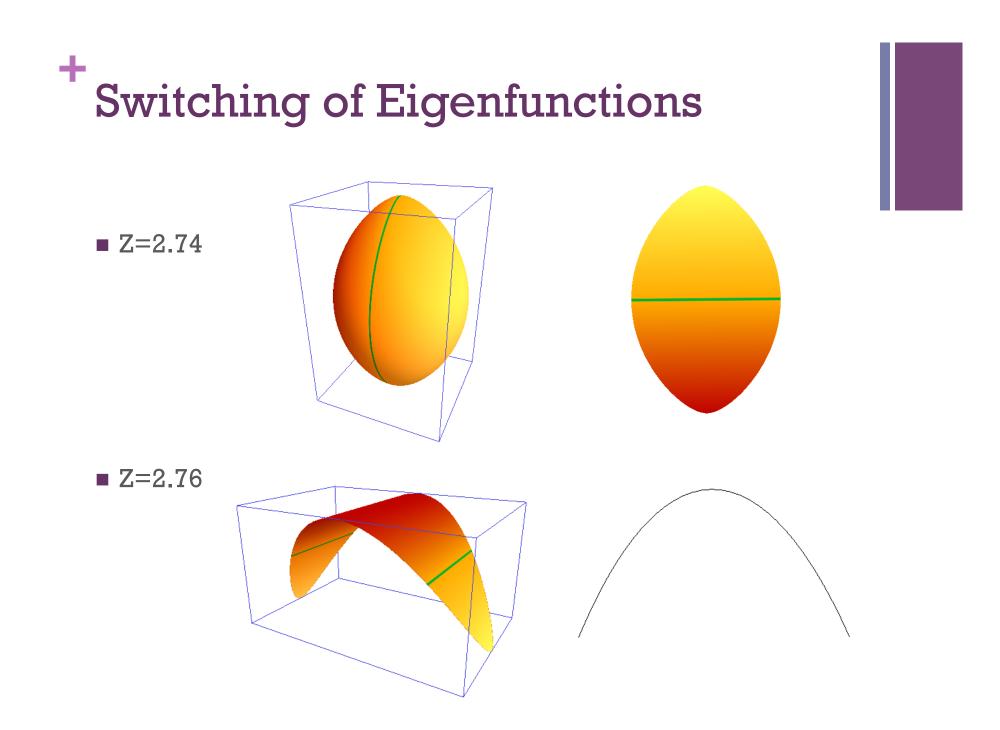
+ Difficulties

- Numerical inaccuracies
- Sign Flips
 - Scalar multiples are contained in same space
- Higher dimensional Eigenspaces
 - Arbitrary basis (luckily they are rare, but being close to one is already problematic)
 - Due to numerical errors Eigenvalues will be slightly different and we cannot really detect these situations
- Switching of Eigenfunctions
 - Occurs, because of numerical instabilities (two close Eigenvalues switch)
 - Or due to geometric (non-isometric) deformations

+ Switching of Eigenfunctions







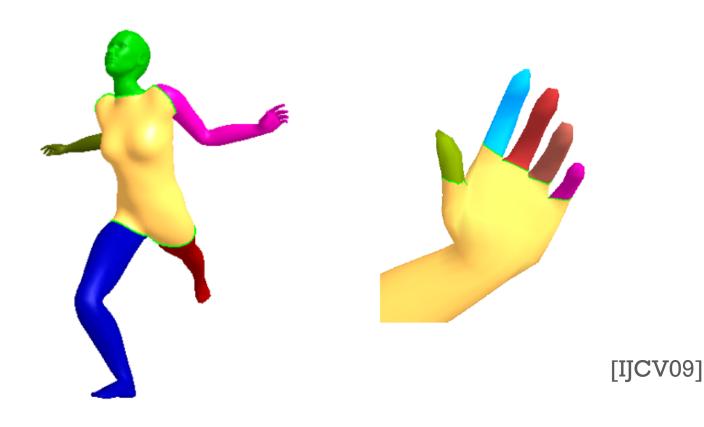
+ Shape Segmentation

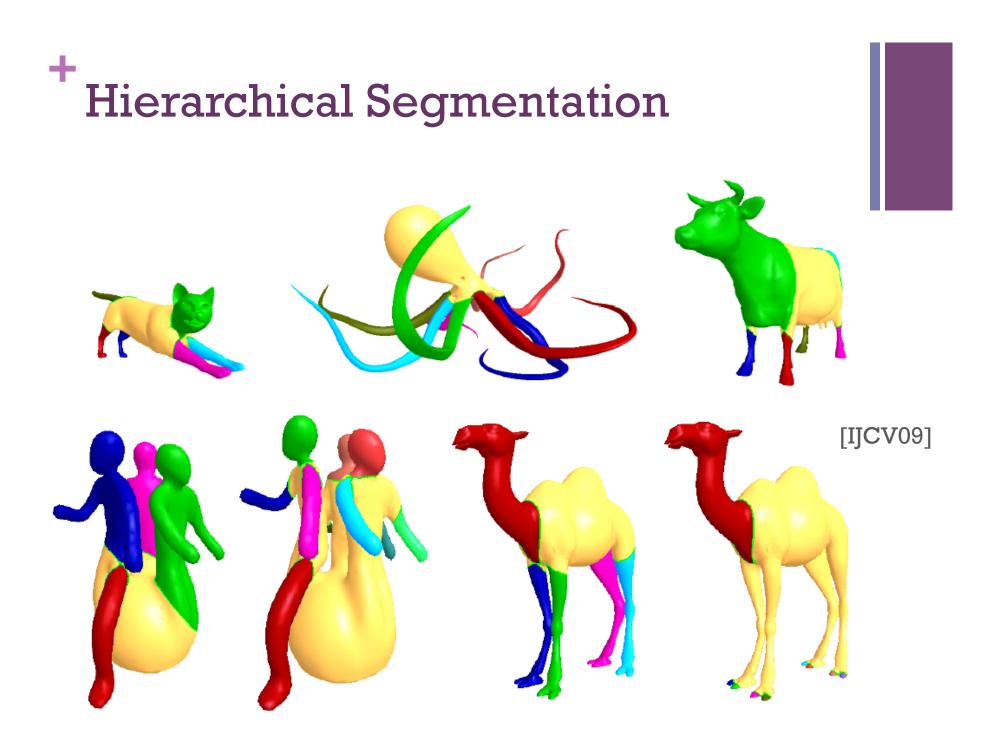
- Morse-Smale Complex of the 1st Eigenfunction
 - Left: full complex Right: simplified (3min,2max,3saddles)



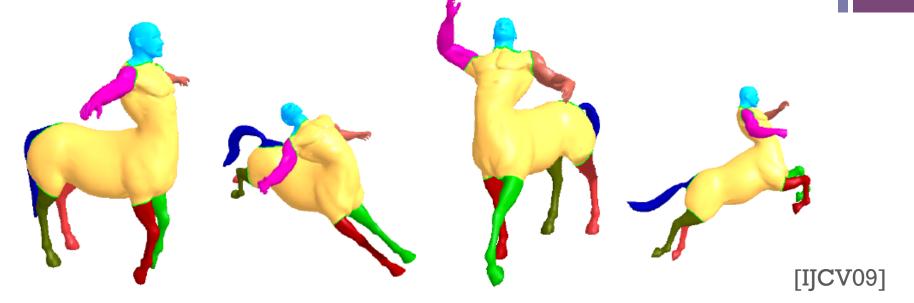
+ Shape Segmentation

- Segmentation on different 'persistence' levels
 - Left: using only the most significant critical points
 - Right: close-up of hand using all (except noise)



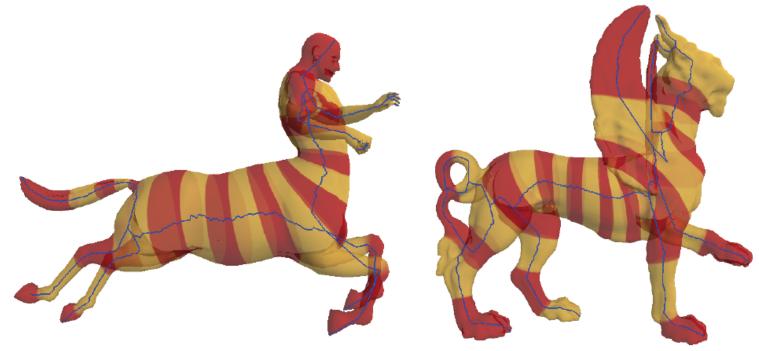


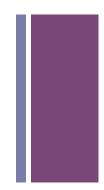
+ Consistent Segmentation and Registration

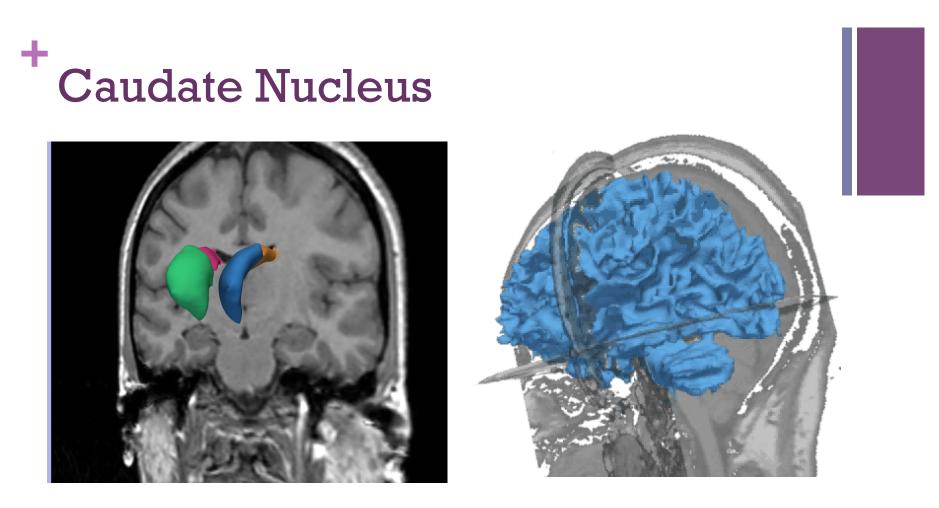


+ Other Applications

- Dense correspondence: Texture or Marker transfer, Surgical Planning
- Segmentation plus Skeleton: Pose Interpolation, Animation





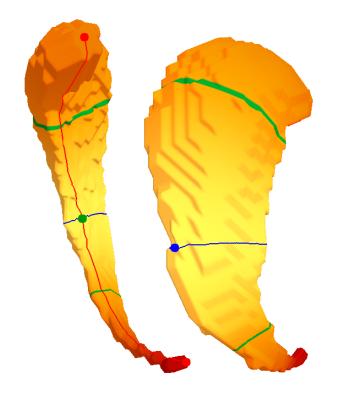


Involved in memory function, emotion processing, and learning

- Psychiatry Neuroimaging Lab (BWH Martha Shenton)
- Population: 32 Schizotypal Personality Disorder, 29 NC

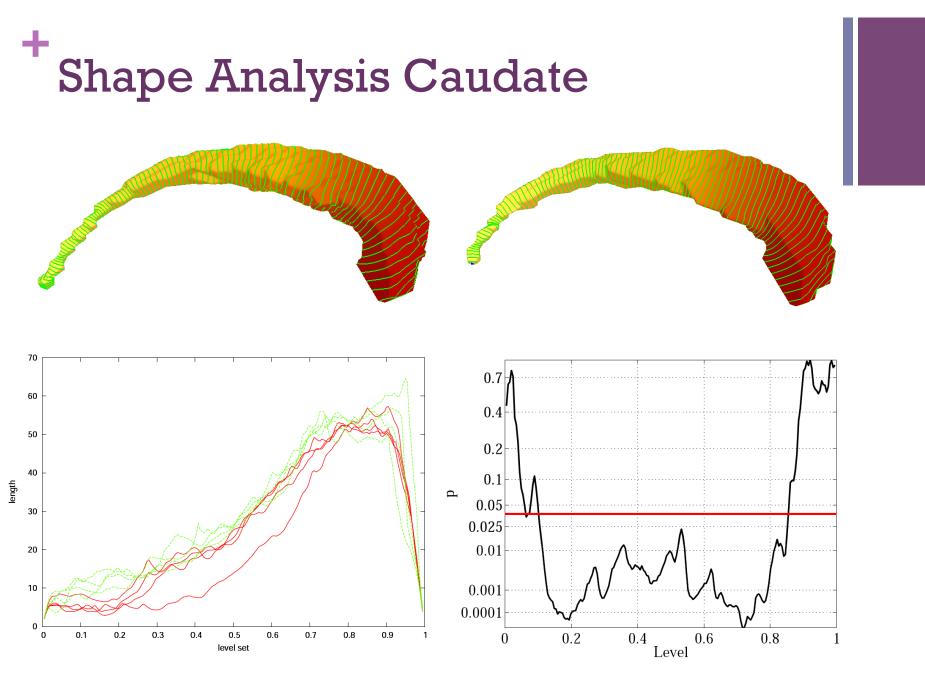
[MICCAI07], [CW08], [CAD09]

+ Shape Analysis Caudate



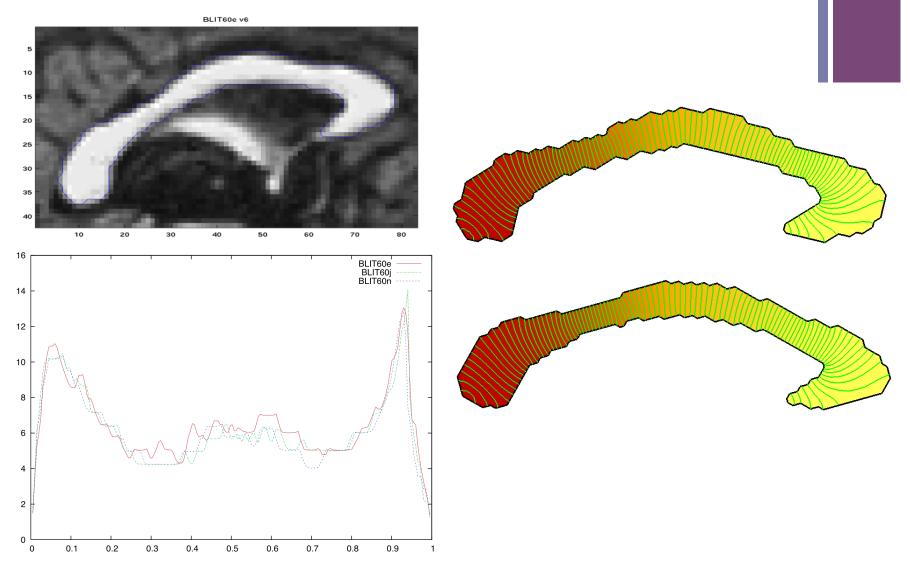
- Eigenfunction (EF): 2
- maxima at tips (red)
- minimum at outer rim (blue, middle)
- saddle at inner rim (green, left),
- integral lines (red and blue curve) run from the saddle to the extrema
- closed green curves denote the zero level sets
- (h) the head circumference (long green curve)
- (w) the waist circumference (blue curve)
- (t) the tail circumference (short green curve)
- (l) the length (red curve).

[MICCAI07], [CW08], [CAD09]



[MICCAI07], [CW08], [CAD09]

+ Shape Analysis Corpus Callosum



+ Thanks

Publications and Software: http://reuter.mit.edu

