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7 Application to Signal Extrapolation

8 Conclusions

9 References

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions July 8, 2013 2 / 46



Outline

1 Acknowledgment

2 Motivations

3 Laplacian Eigenfunctions

4 Integral Operators Commuting with Laplacian

5 Simple Examples

6 Connection with the von Neumann-Krĕın Laplacian
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Motivations

Consider a bounded domain of general (may be quite complicated)
shape Ω⊂Rd .
Want to analyze the spatial frequency information inside of the object
defined in Ω =⇒ need to avoid the Gibbs phenomenon due to ∂Ω.
Want to represent the object information efficiently for analysis,
interpretation, discrimination, etc. =⇒ fast decaying expansion
coefficients relative to a meaningful basis.
Want to extract geometric information about the domain Ω =⇒ shape
clustering/classification.
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Motivations . . . Object-Oriented Image Analysis

(a) Original (b) Background

(c) Object (d) Anomalies
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Motivations . . . Data Analysis on a Complicated Domain
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Eigenfunctions of Laplacian

Why not analyze (and synthesize) the object (or region) of interest
using genuine basis functions tailored to the domain?
After all, sines (and cosines) are the eigenfunctions of the Laplacian
on the rectangular domain with Dirichlet (and Neumann) boundary
condition.
Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave
Functions, are part of the eigenfunctions of the Laplacian (via
separation of variables) for the spherical, cylindrical, and spheroidal
domains, respectively.
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Eigenfunctions of Laplacian . . .

Consider an operator L =−∆ in L2(Ω) with appropriate boundary
condition.
Dealing with L is difficult due to unboundedness, etc.
Much better to deal with its inverse, i.e., the Green’s operator because
it is compact and self-adjoint.
Thus L −1 has discrete spectra (i.e., a countable number of
eigenvalues with finite multiplicity) except 0 spectrum.
L has a complete orthonormal basis of L2(Ω), and this allows us to do
eigenfunction expansion in L2(Ω).
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Eigenfunctions of Laplacian . . . Difficulties

The key difficulty is to compute such eigenfunctions; directly solving
the Helmholtz equation (or eigenvalue problem) on a general domain
is tough.
Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann) is
also very difficult.
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Integral Operators Commuting with Laplacian

The key idea is to find an integral operator commuting with the
Laplacian without imposing the strict boundary condition a priori.
Then, we know that the eigenfunctions of the Laplacian is the same as
those of the integral operator, which is easier to deal with, due to the
following

Theorem (G. Frobenius 1896?; B. Friedman 1956)
Suppose K and L commute and one of them has an eigenvalue with finite
multiplicity. Then, K and L share the same eigenfunction corresponding
to that eigenvalue. That is, Lϕ=λϕ and K ϕ=µϕ.
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Integral Operators Commuting with Laplacian . . .

Let’s replace the Green’s function G(x , y) by the fundamental solution
of the Laplacian:

K (x , y) =


−1

2 |x − y | if d = 1,
− 1

2π log |x − y | if d = 2,
|x−y |2−d

(d−2)ωd
if d > 2,

where ωd := 2πd/2

Γ(d/2) is the surface area of the unit ball in Rd , and | · | is
the standard Euclidean norm.
The price we pay is to have rather implicit, non-local boundary
condition although we do not have to deal with this condition directly.
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Integral Operators Commuting with Laplacian . . .

Let K be the integral operator with its kernel K (x , y):

K f (x) :=
∫
Ω

K (x , y) f (y)dy , f ∈ L2(Ω).

Theorem (NS 2005)
The integral operator K commutes with the Laplacian L =−∆ with the
following non-local boundary condition:∫

∂Ω
K (x , y)

∂ϕ

∂νy
(y)ds(y) =−1

2
ϕ(x) + pv

∫
∂Ω

∂K (x , y)

∂νy
ϕ(y)ds(y),

for all x ∈ ∂Ω, where ϕ is an eigenfunction common for both operators.
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Integral Operators Commuting with Laplacian . . .

Corollary (NS 2009)
The eigenfunction ϕ(x) of the integral operator K in the previous theorem
can be extended outside the domain Ω and satisfies the following equation:

−∆ϕ=
{
λϕ if x ∈Ω;

0 if x ∈Rd \Ω,

with the boundary condition that ϕ and
∂ϕ

∂ν
are continuous across the

boundary ∂Ω. Moreover, as |x |→∞, ϕ(x) must be of the following form:

ϕ(x) =
{

const · |x |2−d +O
(|x |1−d

)
if d 6= 2;

const · ln |x |+O
(|x |−1

)
if d = 2.
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1D Example

Consider the unit interval Ω= (0,1).
Then, our integral operator K with the kernel K (x, y) =−|x − y |/2
gives rise to the following eigenvalue problem:

−ϕ′′ =λϕ, x ∈ (0,1);

−ϕ′(0) =ϕ′(1) =ϕ(0)+ϕ(1).

The kernel K (x, y) is of Toeplitz form =⇒ Eigenvectors must have
even and odd symmetry (Cantoni-Butler ’76).
In this case, we have the following explicit solution.
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1D Example . . .

λ0 ≈−5.756915, which is a solution of tanh
p

−λ0

2 = 2p
−λ0

,

ϕ0(x) = A0 cosh
√
−λ0

(
x − 1

2

)
;

λ2m−1 = (2m −1)2π2, m = 1,2, . . .,

ϕ2m−1(x) =p
2cos(2m −1)πx;

λ2m , m = 1,2, . . ., which are solutions of tan
p
λ2m

2 =− 2p
λ2m

,

ϕ2m(x) = A2m cos
√
λ2m

(
x − 1

2

)
,

where Ak , k = 0,1, . . . are normalization constants.
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First 5 Basis Functions
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2D Example

Consider the unit disk Ω. Then, our integral operator K with the
kernel K (x , y) =− 1

2π log |x − y | gives rise to:

−∆ϕ=λϕ, in Ω;

∂ϕ

∂ν

∣∣∣
∂Ω

= ∂ϕ

∂r

∣∣∣
∂Ω

=−∂Hϕ

∂θ

∣∣∣
∂Ω

where H is the Hilbert transform for the circle, i.e.,

H f (θ) := 1

2π
pv

∫ π

−π
f (η)cot

(
θ−η

2

)
dη θ ∈ [−π,π].

Let βk,` is the `th zero of the Bessel function of order k, Jk (βk,`) = 0.
Then,

ϕm,n(r,θ) =
{

Jm(βm−1,n r )
(cos

sin

)
(mθ) if m = 1,2, . . . , n = 1,2, . . .,

J0(β0,n r ) if m = 0, n = 1,2, . . .,

λm,n =
{
β2

m−1,n , if m = 1, . . . , n = 1,2, . . .,

β2
0,n if m = 0, n = 1,2, . . ..
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First 25 Basis Functions

(a) Our Basis (b) Dirichlet-Laplacian Basis
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3D Example

Consider the unit ball Ω in R3. Then, our integral operator K with
the kernel K (x , y) = 1

4π|x−y | .
Top 9 eigenfunctions cut at the equator viewed from the south:
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Connection with von Neumann–Krĕın Extension Theory

John von Neumann (1929) and Mark Krĕın (1947) considered a
self-adjoint extension of symmetric operators.
Let T :=− d2

d x2 , D(T ) :=H 2
0 (0,1) ⊂ H 2(0,1), where

H 2
0 (0,1) :={

f ∈ H 2(0,1) | f (0) = f (1) = f ′(0) = f ′(1) = 0
}
and

H 2(0,1) :={
f ∈C 1[0,1] | f ′ ∈ AC [0,1], f ′′ ∈ L2(0,1)

}
. T is a positive

symmetric operator on D(T ), but not self-adjoint because
D(T ∗) = H 2(0,1)%D(T ).
von Neumann-Krĕın extension of T is the smallest (or soft)
self-adjoint extension T0 =− d2

d x2 ,
D(T0) = {

f ∈ H 2(0,1) | f ′(0) = f ′(1) = f (1)− f (0)
}=D(T ∗

0 ).
Compare it with our boundary condition: − f ′(0) = f ′(1) = f (0)+ f (1).
Also, compare it with the Friedrichs extension of T , which is the
largest (or hard) self-adjoint extension: T∞ =− d2

d x2 ,
D(T∞) = {

f ∈ H 2(0,1) | f (0) = f (1) = 0
}=D(T ∗∞) ⇐⇒ Dirichlet BC!
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Connection with von Neumann–Krĕın Extension Theory . . .

Our Basis Krĕın-Laplacian Basis

λ0 -5.756915. . . ; tanh
√
−λ0/2 = 2/

√
−λ0 0

ϕ0 cosh
√
−λ0(x −1/2) 1

λ2m−1 ((2m −1)π)2 tan
√
λ2m−1/2 =

√
λ2m−1/2

ϕ2m−1 sin(2m −1)π(x −1/2) sin
√
λ2m−1(x −1/2)

λ2m tan
√
λ2m/2 =−2/

√
λ2m (2mπ)2

ϕ2m cos
√
λ2m(x −1/2) cos2mπ(x −1/2)

Note that the above eigenfunctions are not normalized to have ‖ ·‖2 = 1.
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Connection with von Neumann–Krĕın Extension Theory . . .

(a) Our Basis (b) Krĕın-Laplacian Basis
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Connection with von Neumann–Krĕın Extension Theory . . .

In higher dimensions, the von Neumann-Krĕın extension of the
Laplacian T =−∆, D(T ) = H 2

0 (Ω), on Ω⊂Rd turns out to be: T0 =−∆,
D(T0) =

{
f ∈ H 2(Ω)

∣∣∣ ∂ f

∂ν
(x) = ∂H( f )

∂ν
(x), x ∈ ∂Ω

}
where H( f ) is a

harmonic function in Ω with the boundary condition: H( f ) = f on ∂Ω;
See e.g., A. Alonso & B. Simon: “The Birman-Krĕın-Vishik theory of
self-adjoint extensions of semibounded operators,” J. Operator Theory,
vol. 4, pp. 251–270, 1980.
This is closely related to our Polyharmonic Local Sine Transform
(PHLST): N. Saito & J.-F. Remy: “The polyharmonic local sine
transform: A new tool for local image analysis and synthesis without
edge effect,” Applied & Computational Harmonic Analysis, vol. 20, no.
1, pp. 41-73, 2006.
After all, the von Neumann-Krĕın extensions do not deal with the
exterior of the domain Ω while our approach based on the commuting
integral operators allow us to extend our eigenfunctions very naturally
to the exterior of Ω.
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7 Application to Signal Extrapolation

8 Conclusions

9 References

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions July 8, 2013 30 / 46



Signal Extrapolation

Recall the definition of the eigenvalue problem:

ϕ(x) = 1

µ

∫
Ω

K (x , y)ϕ(y)dy where x can be any point in Rd .

For large µ (i.e., coarse scale/low frequency), extrapolation naturally
extends to large area.
For small µ (i.e., fine scale/high frequency), extrapolation quickly
attenuates away from Ω.
Now suppose we measure the expansion coefficients

〈
f ,ϕk

〉
of a target

function f (x) on Ω and represent it by the eigenfunction expansion:

f (x) =∑
k

〈
f ,ϕk

〉
ϕk (x) x ∈Ω.

Using the above extension property of ϕk , we have a naturally
extrapolation of f by

f (x) =∑
k

〈
f ,ϕk

〉
ϕk (x) x ∈Rd \Ω.
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Signal Extrapolation: Example 1

(a) What data?

(b) χJ · Barbara
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First 25 Basis Functions
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Next 25 Basis Functions
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Extrapolated Basis Functions

(a) Low Freq. Extrap. from Honshu

(b) High Freq. Extrap. from Honshu
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Extrapolated Basis Functions

(a) Low Freq. Extrap. from Honshu (b) High Freq. Extrap. from Honshu

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions July 8, 2013 35 / 46



Extrapolated Data

Figure : Extrapolation of χHonshu · Barbara to the three islands
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Signal Extrapolation Example 2: Disconnected Intervals

(a) United Basis (Top 6)

(b) Separated Bases (Top 2 in each
subinterval)
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Signal Extrapolation Example 2: Disconnected Intervals . . .

(a) United Basis (Next 6)

(b) Separated Bases (Next 2 in each
subinterval)
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Signal Extrapolation Example 2: Disconnected Intervals . . .

(a) United Basis (Next 6) (b) Separated Bases (Next 2 in each
subinterval)
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Signal Extrapolation Example 2: Extrapolated Basis Vectors

(a) United Basis (Top 6)

(b) United Bases (Next 6)
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Signal Extrapolation Example 2: Extrapolated Basis Vectors

(a) United Basis (Top 6) (b) United Bases (Next 6)
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Signal Extrapolation Example 2: Approximation Experiments

(a) Original Signal

(b) Brutally Cut
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Signal Extrapolation Example 2: Approximation Experiments

(a) Original Signal (b) Brutally Cut
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Signal Extrapolation Example 2: Approximation Results

(a) Top 10 United Basis

(b) Top 10 Separated Basis
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Signal Extrapolation Example 2: Approximation Results
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Signal Extrapolation Example 2: Approximation Results
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Conclusions

Our approach using the commuting integral operators
Allows object-oriented signal/image analysis & synthesis
Can get fast-decaying expansion coefficients (less Gibbs effect)
Can naturally extend the basis functions outside of the initial domain
Can extract geometric information of a domain through eigenvalues
Can decouple geometry/domain information and statistics of data
Is closely related to the von Neumann-Krĕın Laplacian, yet is distinct
Can use Fast Multipole Methods to speed up the computation, which
is the key for higher dimensions/large domains
Many things to be done:

Examine further our boundary conditions for specific geometry in
higher dimensions; e.g., analysis of S2 leads to Clifford Analysis
Examine the relationship with the Volterra operators in Rd , d ≥ 2
(Lidskĭı; Gohberg-Krĕın)
Integral operators commuting with polyharmonic operators (−∆)p ,
p ≥ 2?
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Diego; IPAM 2009; and the other related recent minisymposia.
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Thank you very much for your attention!
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