A Natural Extension of Laplacian Eigenfunctions from Interior to Exterior and its Application

Naoki Saito

Department of Mathematics University of California, Davis

Minisymposium on Laplacian Spectra for Shape Optimization, Classification, Recognition, and Beyond SIAM Annual Meeting, San Diego, CA July 8, 2013

- Acknowledgment
- 2 Motivations
- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacian
- **5** Simple Examples
- 6 Connection with the von Neumann-Kreĭn Laplacian
- Application to Signal Extrapolation
- 8 Conclusions
- 9 References

Acknowledgment

- 2 Motivations
- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacian
- 5 Simple Examples
- 6 Connection with the von Neumann-Krein Laplacian
- 7 Application to Signal Extrapolation
- 8 Conclusions
- 9 References

- Mark Ashbaugh (Univ. Missouri)
- John Hunter (UC Davis)
- ONR

< A

Acknowledgment

Motivations

- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacian
- 5 Simple Examples
- 6 Connection with the von Neumann-Krein Laplacian
- 7 Application to Signal Extrapolation
- 8 Conclusions
- 9 References

- Consider a bounded domain of general (may be quite complicated) shape $\Omega \subset \mathbb{R}^d$.
- Want to analyze the spatial frequency information inside of the object defined in $\Omega \implies$ need to avoid the Gibbs phenomenon due to $\partial\Omega$.
- Want to represent the object information efficiently for analysis, interpretation, discrimination, etc. ⇒ fast decaying expansion coefficients relative to a meaningful basis.
- Want to extract geometric information about the domain $\Omega \implies$ shape clustering/classification.

Motivations ... Object-Oriented Image Analysis

saito@math.ucdavis.edu (UC Davis)

July 8, 2013 7 / 46

Motivations ... Data Analysis on a Complicated Domain

saito@math.ucdavis.edu (UC Davis)

July 8, 2013 8 / 46

Acknowledgment

2 Motivations

3 Laplacian Eigenfunctions

- Integral Operators Commuting with Laplacian
- 5 Simple Examples
- 6 Connection with the von Neumann-Krein Laplacian
- Application to Signal Extrapolation
- 8 Conclusions
- 9 References

- Why not analyze (and synthesize) the object (or region) of interest using genuine basis functions tailored to the domain?
- After all, *sines* (and *cosines*) are the eigenfunctions of the Laplacian on the *rectangular* domain with Dirichlet (and Neumann) boundary condition.
- Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave Functions, are part of the eigenfunctions of the Laplacian (via separation of variables) for the spherical, cylindrical, and spheroidal domains, respectively.

- Consider an operator $\mathscr{L} = -\Delta$ in $L^2(\Omega)$ with appropriate boundary condition.
- Dealing with ${\mathscr L}$ is difficult due to unboundedness, etc.
- Much better to deal with its inverse, i.e., the Green's operator because it is compact and self-adjoint.
- Thus \mathscr{L}^{-1} has discrete spectra (i.e., a countable number of eigenvalues with finite multiplicity) except 0 spectrum.
- \mathscr{L} has a complete orthonormal basis of $L^2(\Omega)$, and this allows us to do eigenfunction expansion in $L^2(\Omega)$.

- The key difficulty is to compute such eigenfunctions; directly solving the Helmholtz equation (or eigenvalue problem) on a general domain is tough.
- Unfortunately, computing the Green's function for a general Ω satisfying the usual boundary condition (i.e., Dirichlet, Neumann) is also very difficult.

Acknowledgment

2 Motivations

3 Laplacian Eigenfunctions

Integral Operators Commuting with Laplacian

5 Simple Examples

6 Connection with the von Neumann-Krein Laplacian

Application to Signal Extrapolation

8 Conclusions

9 References

Integral Operators Commuting with Laplacian

- The key idea is to find an integral operator commuting with the Laplacian without imposing the strict boundary condition a priori.
- Then, we know that the eigenfunctions of the Laplacian is the same as those of the integral operator, which is easier to deal with, due to the following

Theorem (G. Frobenius 1896?; B. Friedman 1956)

Suppose \mathcal{K} and \mathcal{L} commute and one of them has an eigenvalue with finite multiplicity. Then, \mathcal{K} and \mathcal{L} share the same eigenfunction corresponding to that eigenvalue. That is, $\mathcal{L}\varphi = \lambda\varphi$ and $\mathcal{K}\varphi = \mu\varphi$.

Integral Operators Commuting with Laplacian

• Let's replace the Green's function $G(\mathbf{x}, \mathbf{y})$ by the fundamental solution of the Laplacian:

$$K(\mathbf{x}, \mathbf{y}) = \begin{cases} -\frac{1}{2} |x - y| & \text{if } d = 1, \\ -\frac{1}{2\pi} \log |\mathbf{x} - \mathbf{y}| & \text{if } d = 2, \\ \frac{|\mathbf{x} - \mathbf{y}|^{2-d}}{(d-2)\omega_d} & \text{if } d > 2, \end{cases}$$

where $\omega_d := \frac{2\pi^{d/2}}{\Gamma(d/2)}$ is the surface area of the unit ball in \mathbb{R}^d , and $|\cdot|$ is the standard Euclidean norm.

• The price we pay is to have rather implicit, non-local boundary condition although we do not have to deal with this condition directly.

Integral Operators Commuting with Laplacian

• Let \mathcal{K} be the integral operator with its kernel $K(\mathbf{x}, \mathbf{y})$:

$$\mathcal{K}f(\boldsymbol{x}) := \int_{\Omega} K(\boldsymbol{x}, \boldsymbol{y}) f(\boldsymbol{y}) \, \mathrm{d}\boldsymbol{y}, \quad f \in L^2(\Omega).$$

Theorem (NS 2005)

The integral operator \mathcal{K} commutes with the Laplacian $\mathcal{L} = -\Delta$ with the following non-local boundary condition:

$$\int_{\partial\Omega} K(\boldsymbol{x},\boldsymbol{y}) \frac{\partial \varphi}{\partial v_{\boldsymbol{y}}}(\boldsymbol{y}) \, \mathrm{d}s(\boldsymbol{y}) = -\frac{1}{2} \varphi(\boldsymbol{x}) + \operatorname{pv} \int_{\partial\Omega} \frac{\partial K(\boldsymbol{x},\boldsymbol{y})}{\partial v_{\boldsymbol{y}}} \varphi(\boldsymbol{y}) \, \mathrm{d}s(\boldsymbol{y}),$$

for all $x \in \partial \Omega$, where φ is an eigenfunction common for both operators.

Corollary (NS 2009)

The eigenfunction $\varphi(\mathbf{x})$ of the integral operator \mathcal{K} in the previous theorem can be extended outside the domain Ω and satisfies the following equation:

$$-\Delta \varphi = \begin{cases} \lambda \varphi & \text{if } \mathbf{x} \in \Omega; \\ 0 & \text{if } \mathbf{x} \in \mathbb{R}^d \setminus \overline{\Omega}, \end{cases}$$

with the boundary condition that φ and $\frac{\partial \varphi}{\partial v}$ are continuous across the boundary $\partial \Omega$. Moreover, as $|\mathbf{x}| \to \infty$, $\varphi(\mathbf{x})$ must be of the following form:

$$\varphi(\mathbf{x}) = \begin{cases} \operatorname{const} \cdot |\mathbf{x}|^{2-d} + O(|\mathbf{x}|^{1-d}) & \text{if } d \neq 2; \\ \operatorname{const} \cdot \ln |\mathbf{x}| + O(|\mathbf{x}|^{-1}) & \text{if } d = 2. \end{cases}$$

- Acknowledgment
- 2 Motivations
- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacian
- 5 Simple Examples
 - Connection with the von Neumann-Krein Laplacian
- Application to Signal Extrapolation
- 8 Conclusions
- 9 References

- Consider the unit interval $\Omega = (0, 1)$.
- Then, our integral operator \mathcal{K} with the kernel K(x, y) = -|x y|/2 gives rise to the following eigenvalue problem:

$$-\varphi'' = \lambda \varphi, \quad x \in (0,1);$$

$$-\varphi'(0) = \varphi'(1) = \varphi(0) + \varphi(1).$$

- The kernel K(x, y) is of Toeplitz form \implies Eigenvectors must have even and odd symmetry (Cantoni-Butler '76).
- In this case, we have the following explicit solution.

1D Example ...

• $\lambda_0 \approx -5.756915$, which is a solution of $\tanh \frac{\sqrt{-\lambda_0}}{2} = \frac{2}{\sqrt{-\lambda_0}}$,

$$\varphi_0(x) = A_0 \cosh \sqrt{-\lambda_0} \left(x - \frac{1}{2} \right);$$

• $\lambda_{2m-1} = (2m-1)^2 \pi^2$, m = 1, 2, ...,

$$\varphi_{2m-1}(x) = \sqrt{2}\cos(2m-1)\pi x;$$

• λ_{2m} , m = 1, 2, ..., which are solutions of $\tan \frac{\sqrt{\lambda_{2m}}}{2} = -\frac{2}{\sqrt{\lambda_{2m}}}$,

$$\varphi_{2m}(x) = A_{2m} \cos \sqrt{\lambda_{2m}} \left(x - \frac{1}{2} \right),$$

where A_k , k = 0, 1, ... are normalization constants.

First 5 Basis Functions

saito@math.ucdavis.edu (UC Davis)

Laplacian Eigenfunctions

July 8, 2013 21 / 46

2D Example

• Consider the unit disk Ω . Then, our integral operator \mathcal{K} with the kernel $K(\mathbf{x}, \mathbf{y}) = -\frac{1}{2\pi} \log |\mathbf{x} - \mathbf{y}|$ gives rise to:

$$-\Delta \varphi = \lambda \varphi, \quad \text{in } \Omega;$$
$$\frac{\partial \varphi}{\partial \nu}\Big|_{\partial \Omega} = \frac{\partial \varphi}{\partial r}\Big|_{\partial \Omega} = -\frac{\partial \mathscr{H} \varphi}{\partial \theta}\Big|_{\partial \Omega}$$

where \mathcal{H} is the Hilbert transform for the circle, i.e.,

$$\mathscr{H}f(\theta) := \frac{1}{2\pi} \operatorname{pv} \int_{-\pi}^{\pi} f(\eta) \cot\left(\frac{\theta - \eta}{2}\right) \mathrm{d}\eta \quad \theta \in [-\pi, \pi].$$

• Let $\beta_{k,\ell}$ is the ℓ th zero of the Bessel function of order k, $J_k(\beta_{k,\ell}) = 0$. Then,

$$\varphi_{m,n}(r,\theta) = \begin{cases} J_m(\beta_{m-1,n} r) \binom{\cos}{\sin}(m\theta) & \text{if } m = 1, 2, \dots, n = 1, 2, \dots, \\ J_0(\beta_{0,n} r) & \text{if } m = 0, n = 1, 2, \dots, \end{cases}$$

$$\lambda_{m,n} = \begin{cases} \beta_{m-1,n}^2, & \text{if } m = 1, \dots, n = 1, 2, \dots, \\ \beta_{0,n}^2 & \text{if } m = 0, n = 1, 2, \dots, \\ & \text{if } m = 0, n = 1, 2, \dots, \end{cases}$$

First 25 Basis Functions

(a) Our Basis

(b) Dirichlet-Laplacian Basis

< A

3D Example

- Consider the unit ball Ω in \mathbb{R}^3 . Then, our integral operator \mathcal{K} with the kernel $K(\mathbf{x}, \mathbf{y}) = \frac{1}{4\pi |\mathbf{x} \mathbf{y}|}$.
- Top 9 eigenfunctions cut at the equator viewed from the south:

- Acknowledgment
- 2 Motivations
- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacian
- 5 Simple Examples
- 6 Connection with the von Neumann-Kreĭn Laplacian
- 7 Application to Signal Extrapolation
- 8 Conclusions
- 9 References

Connection with von Neumann-Krein Extension Theory

- John von Neumann (1929) and Mark Kreĭn (1947) considered a self-adjoint extension of symmetric operators.
- Let $T := -\frac{d^2}{dx^2}$, $\mathscr{D}(T) := H_0^2(0, 1) \subset H^2(0, 1)$, where $H_0^2(0, 1) := \{f \in H^2(0, 1) | f(0) = f(1) = f'(0) = f'(1) = 0\}$ and $H^2(0, 1) := \{f \in C^1[0, 1] | f' \in AC[0, 1], f'' \in L^2(0, 1)\}$. *T* is a positive symmetric operator on $\mathscr{D}(T)$, but not self-adjoint because $\mathscr{D}(T^*) = H^2(0, 1) \xrightarrow{\sim}{\neq} \mathscr{D}(T)$.
- von Neumann-Kreĭn extension of *T* is the smallest (or soft) self-adjoint extension $T_0 = -\frac{d^2}{dx^2}$, $\mathscr{D}(T_0) = \{f \in H^2(0,1) | f'(0) = f'(1) = f(1) - f(0)\} = \mathscr{D}(T_0^*).$
- Compare it with our boundary condition: -f'(0) = f'(1) = f(0) + f(1).
- Also, compare it with the *Friedrichs extension* of *T*, which is the largest (or hard) self-adjoint extension: T_∞ = -d²/dx²,
 D(T_∞) = {f ∈ H²(0, 1) | f(0) = f(1) = 0} = D(T_∞[∞]) ⇔ Dirichlet BC!

	Our Basis	Kreĭn-Laplacian Basis
λ_0	-5.756915; $\tanh \sqrt{-\lambda_0}/2 = 2/\sqrt{-\lambda_0}$	0
$arphi_0$	$\cosh\sqrt{-\lambda_0}(x-1/2)$	1
λ_{2m-1}	$((2m-1)\pi)^2$	$\tan\sqrt{\lambda_{2m-1}}/2 = \sqrt{\lambda_{2m-1}}/2$
φ_{2m-1}	$\sin(2m-1)\pi(x-1/2)$	$\sin\sqrt{\lambda_{2m-1}}(x-1/2)$
λ_{2m}	$\tan\sqrt{\lambda_{2m}}/2 = -2/\sqrt{\lambda_{2m}}$	$(2m\pi)^2$
φ_{2m}	$\cos\sqrt{\lambda_{2m}}(x-1/2)$	$\cos 2m\pi(x-1/2)$

Note that the above eigenfunctions are not normalized to have $\|\cdot\|_2 = 1$.

Connection with von Neumann-Kreĭn Extension Theory

Connection with von Neumann-Kreĭn Extension Theory

- In higher dimensions, the von Neumann-Kreĭn extension of the Laplacian $T = -\Delta$, $\mathscr{D}(T) = H_0^2(\Omega)$, on $\Omega \subset \mathbb{R}^d$ turns out to be: $T_0 = -\Delta$, $\mathscr{D}(T_0) = \left\{ f \in H^2(\Omega) \left| \frac{\partial f}{\partial v}(\mathbf{x}) = \frac{\partial H(f)}{\partial v}(\mathbf{x}), \mathbf{x} \in \partial \Omega \right\} \right\}$ where H(f) is a harmonic function in Ω with the boundary condition: H(f) = f on $\partial \Omega$; See e.g., A. Alonso & B. Simon: "The Birman-Kreĭn-Vishik theory of self-adjoint extensions of semibounded operators," *J. Operator Theory*, vol. 4, pp. 251–270, 1980.
- This is closely related to our Polyharmonic Local Sine Transform (PHLST): N. Saito & J.-F. Remy: "The polyharmonic local sine transform: A new tool for local image analysis and synthesis without edge effect," *Applied & Computational Harmonic Analysis*, vol. 20, no. 1, pp. 41-73, 2006.
- After all, the von Neumann-Kreĭn extensions do not deal with the exterior of the domain Ω while our approach based on the commuting integral operators allow us to extend our eigenfunctions very naturally to the exterior of Ω.

saito@math.ucdavis.edu (UC Davis)

- Acknowledgment
- 2 Motivations
- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacian
- 5 Simple Examples
- 6 Connection with the von Neumann-Kreĭn Laplacian
- Application to Signal Extrapolation
 - 8 Conclusions
 - 9 References

Signal Extrapolation

• Recall the definition of the eigenvalue problem:

 $\varphi(\mathbf{x}) = \frac{1}{\mu} \int_{\Omega} K(\mathbf{x}, \mathbf{y}) \varphi(\mathbf{y}) \, \mathrm{d}\mathbf{y}$ where \mathbf{x} can be any point in \mathbb{R}^d .

- For large μ (i.e., coarse scale/low frequency), extrapolation naturally extends to large area.
- For small μ (i.e., fine scale/high frequency), extrapolation quickly attenuates away from Ω .
- Now suppose we measure the expansion coefficients (f, φ_k) of a target function f(x) on Ω and represent it by the eigenfunction expansion:

$$f(\mathbf{x}) = \sum_{k} \left\langle f, \varphi_{k} \right\rangle \varphi_{k}(\mathbf{x}) \quad \mathbf{x} \in \Omega.$$

• Using the above extension property of $\varphi_k,$ we have a naturally extrapolation of f by

$$f(\mathbf{x}) = \sum_{k} \langle f, \varphi_k \rangle \varphi_k(\mathbf{x}) \quad \mathbf{x} \in \mathbb{R}^d \setminus \overline{\Omega}.$$

Signal Extrapolation: Example 1

Signal Extrapolation: Example 1

First 25 Basis Functions

saito@math.ucdavis.edu (UC Davis)

Laplacian Eigenfunctions

July 8, 2013 33 / 46

э

Next 25 Basis Functions

saito@math.ucdavis.edu (UC Davis)

Laplacian Eigenfunctions

July 8, 2013 34 / 46

Extrapolated Basis Functions

Extrapolated Basis Functions

Extrapolated Data

saito@math.ucdavis.edu (UC Davis)

Laplacian Eigenfunctions

July 8, 2013 36 / 46

Signal Extrapolation Example 2: Disconnected Intervals

Signal Extrapolation Example 2: Disconnected Intervals

saito@math.ucdavis.edu (UC Davis)

Signal Extrapolation Example 2: Disconnected Intervals

Signal Extrapolation Example 2: Disconnected Intervals

Signal Extrapolation Example 2: Extrapolated Basis Vectors

Signal Extrapolation Example 2: Extrapolated Basis Vectors

Signal Extrapolation Example 2: Approximation Experiments

Signal Extrapolation Example 2: Approximation Experiments

Signal Extrapolation Example 2: Approximation Results

Signal Extrapolation Example 2: Approximation Results

Signal Extrapolation Example 2: Approximation Results

July 8, 2013 42 / 46

- Acknowledgment
- 2 Motivations
- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacian
- 5 Simple Examples
- 6 Connection with the von Neumann-Krein Laplacian
- 7 Application to Signal Extrapolation
- 8 Conclusions
- 9 References

Conclusions

Our approach using the commuting integral operators

- Allows object-oriented signal/image analysis & synthesis
- Can get fast-decaying expansion coefficients (less Gibbs effect)
- Can naturally extend the basis functions outside of the initial domain
- Can extract geometric information of a domain through eigenvalues
- Can decouple geometry/domain information and statistics of data
- Is closely related to the von Neumann-Kreĭn Laplacian, yet is distinct
- Can use *Fast Multipole Methods* to speed up the computation, which is the key for higher dimensions/large domains
- Many things to be done:
 - Examine further our boundary conditions for specific geometry in higher dimensions; e.g., analysis of S^2 leads to Clifford Analysis
 - Examine the relationship with the *Volterra operators* in \mathbb{R}^d , $d \ge 2$ (Lidskiĩ; Gohberg-Kreĭn)
 - Integral operators commuting with polyharmonic operators $(-\Delta)^p$, $p \ge 2$?

- Acknowledgment
- 2 Motivations
- 3 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacian
- 5 Simple Examples
- 6 Connection with the von Neumann-Krein Laplacian
- Application to Signal Extrapolation
- 8 Conclusions
- 9 References

References

- Laplacian Eigenfunction Resource Page http://www.math.ucdavis.edu/~saito/lapeig/ contains
 - My Course Note (elementary) on "Laplacian Eigenfunctions: Theory, Applications, and Computations"
 - All the talk slides of the minisymposia on Laplacian Eigenfunctions at: ICIAM 2007, Zürich; SIAM Imaging Science Conference 2008, San Diego; IPAM 2009; and the other related recent minisymposia.
- The following articles are available at http://www.math.ucdavis.edu/~saito/publications/
 - N. Saito & J.-F. Remy: "The polyharmonic local sine transform: A new tool for local image analysis and synthesis without edge effect," *Applied & Computational Harmonic Analysis*, vol. 20, no. 1, pp. 41-73, 2006.
 - N. Saito: "Data analysis and representation using eigenfunctions of Laplacian on a general domain," *Applied & Computational Harmonic Analysis*, vol. 25, no. 1, pp. 68–97, 2008.

Thank you very much for your attention!