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(1) Inferring Shape from Vibration Modes of a
Drum:
This is the old famous question of M. Kac (1966):
“Can one hear the shape of a drum?”

Consider planar domain Q
(or a general ) domain in d-dimensions)

Can one determine the shape of the domain?

Fixed Membrane Problem:
—Mu=Au in 2
u=0 on o052

Eigenmodes: 0 <Ay <Ay <Az < .-
Eigenfunctions: wq,uos,us3,---.




Weyl (1910)
Ar2L2/d L2/d
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N(z) ~ Lgdzdf2|§2| as z — 0o

Al as k — 0o,

~d/2

r(d/2+1)
Also, Lg ;= Cy/(2m).

= volume of the d—Ball.

Here C; =

For good reviews of the history of these asymp-
totics (and extensive literature and extensions
to various operators), see Birman and Solomyak
(period 67-75), Clark (pre-1967): Titchmarch,
Hormander, Levitan, Agmon, Browder, Garding,
VAL IlI'in, Carleman, Pleijel, Naimark, Kac,

Ray, etc.




The Counting function=staircase function

N(z) = Z 1 = sup k.
A<z ARSZ

By convention, this is sometimes written as
N(z) = Z (z — }‘k)?{—
e

to parallel the definition of the Riesz mean of
order p > 0

Rp(2) =) (2 =M.
%

In fact the two are related by the Riesz itera-
tion (also called Aizenman-Lieb procedure)

Rp(2) = pfj(z — )57 N(t)dt.




The Riesz mean is a “smoothed staircase” func-

tion.
In fact:

_F(cr+<5—|—1) o 51
Ro4s(2) = mro 2y rey J O Ro(tddt

This is the Riemann-Liouville fractional trans-
form.

Also interest in
.x.
Z(t) = partition function = Y e M,
k=1

o0

1

Cspec(p) = spectral zeta function = E
=1 h
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Why interest in all of these spectral functions:
Information about one leads to information about
others, giving further insight into the nature of

the spectrum

N(z) ~ Lgdzdfz |2 as z —

Applying (heuristically) the Laplace transform

L{fH(E) = fc; T F(2)e e,

one obtains

Z(t) — E E—.}tkt " | |

d/2°
k=1 (amt)/
Forward transforms are “easy’”:
integral transforms

Inverse transforms ( “hard analysis” ):
Tauberian theorems




N(z) ~ L& ;2%2|Q| as z — oo There are well-known isoperimetric
’ results (for A1, Ao/Aq, etc.)

If one applies Riesz iteration, one is led to
Rayleigh-Faber-Krahn,

Ashbaugh-Benguria-PPW,

Payne-Weinberger, etc.
Rp(z) ~ LE{d T2|Ql as 2 — y J

r(1+p)
(4m)2r(1+p+d/2)

cl
where Lp,d =

z — oo corresponds to t — 04

Queen Dido (Carthaginian coin,
circa 200 BC, modern Tunisia)




Universal Inequalities

e PPW (1956) e Hile-Protter refinement (1980)

4
A1 — Ak < E)‘k

e H. C. Yang (1991)

k

S (Agg1 — A% <
i=1

k
Z (A1 — A

Fhl#

e Harrell-Stubbe (1997): For p > 2 (see Ashbaugh-
H., 1999)

ke
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Universal Inequalities of Weyl-Type

e PPW, 1956 e Ashbaugh-Benguria (91, 92, 93)
Al 4 2 m
;—}-1 < (1 + E) Aom - 'jd-/'ll
- A1 j§/2—1 1 |

While optimal for low-lying eigenvalues, this
Is not of Weyl-type since the right side

- : - 5.77078/d
e (H. '04 TAMS '08) of the inequality behaves like k as

k — oco.
A 2/d
AL <1t (1 + ) a2/
1

2/d e Cheng and Yang (2007
N _ B it u?/ ey g g ( )
Mo T142 Ak+1{(1+i)ﬁc%

)\1 o d
d
e Harrell-H. (JFA '08): For k > jot2, e Harrell-H. (JFA '08): For k> j > 1,

Ak+1/A; < (1 + %) (E)%

J




(2) Positive and Negative Results (for hearing
the shape of a drum)

» Milnor pair of 16-dimensional tori that have the same eigenvalues but
different shapes.

» Bilby and Hawk: Gordon, Webb, and Wolpert (1992). These are a pair of
regions in the plane that have different shapes but identical eigenvalues (for
the membrane problem)

» Buser, Conway, Doyle (1994) constructed numerous examples of isospectral

domains.

A
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i ; L
P. Berard Sleeman-Hua
Transplantation et isospectralite I, I ponisometric isospectral connected fractal
(1992, 1993) domains (1998, 2000)

H. Urakawa
Bounded domains which are isospectral
but not congruent (early 80s)

Driscoll- Gottlieb
Isospectral shapes with Neumann
and alternating boundary conditions (2003)



S. Zelditch (GAFA '00, announcement in Math.
Research Letters, '99): Under generic condi-
tions, for family of bounded, simply connected
real analytic plane domains with four-fold sym-
metry (symmetry of an ellipse), the spectrum
uniquely determines the underlying domain (up
to rigid motion).

(3) Eigenvalue-based feature functions

Key properties:

e Invariance under rigid motion (translation,
rotation)

¢ Domain monotonicity: If €21 C €25 then
A(S21) = Ap(S22)

A (£2)

e For a >0, \p.(a2) = 5
a

Ap(af2) _ Ap(82)

e Scale invariance; Am(a2) — Am(S2)




Shape Recognition

» Shape Recognition is a key component of
object recognition, matching and analysis.

» Invariance under scaling and rigid motion &
tolerance to noise and reasonable
deformations are the key requirements in a
good shape recognition method

» Use shape functions based on ratios of
e-values

» Use a finite difference scheme to compute the
e-values




For a given binary image assuming the shape
of €2, consider extracting 4 sets of features:

P )= (2 A A
e | VRSV UL W

Fr (Q) = M A2 A3 Anod
2 M Az aa T

A1 di A dy A1 dy A1 dy
s ={ (2 6 n_d

Ao d2’Az d3’Aa dd) X, dn
where n = the number of features
dy < do <dsz <...< dn are the first n e-values
of a disk.

Fa($2) = A2 As Akt Ant1
TA\A 20T T kAL T ng

F4 suggested by the recent work with E. M. Harrell




General schemes takes the form

Lij uw= ARy u.

In the first scheme, £;; v and R;; w are given

by

1
Liju = 33 (i1 + g1 + w1y + g1 — 4 uyg)
Riju = — 1—'3(6Hfj t iyt Ui j1 H Uiy

F i, j—1 T U i)

In the second scheme, £;; w and R;; u take

the forms,
1
Lij u= —th ('Hi—l—lg + g + w1y w1 — 8“@3‘} )

Riju= — _%6(161151' + duit+1,j +dui j+1 +dui-yj
+dui j—1 + Uit j+1 + Uig,j—1
+di—1,j+1 +Ui-1,j-1)-




Method & Results

» We use elementary neural networks.

» We train with 50% of the database.

» Simple hand-drawn shapes, synthetic shapes,
and real leaves




Hand-drawn shapes

Classification results of the hand-drawn shapes

F) features F> features  Fy features

Mumber of features used |2 |2 5
Correct classification rate (%) 945 03.5 04.0




Synthetic Images: Petals

Classification results of the m-petal images (n =3..... T
MNumber of F) features F> features F3 features
features 5 ) £ 5 )
4 T0.5 65 74.5
B 79.5 a3 BE.5
12 03 00 02
| 6 U5 ay 92
20 07.5 a8 94.5

r =a+ ecost)l 4+ cosntl.




Leaves database
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Classification results of leaf images

F) features F- features Fy features

Number of features used 2 4 2

Correct classification rate (%) 88.9 84.7 %E.0




Other Eigenvalue Problems

e Free (or Neumann) Membrane Problem: e Steklov Problem:
—Au=pu in 2 Au=0 in Q
Ou _ : Ou =Au on 9%
Eigenmodes: 0= pug < p1 < pio < - - Eigenmodes: 0 =Ag < A1 <A =< ---

e Clamped Plate Problem:
o
Ay =T uin Q, 1¢=‘_—u=00n3§2

on

e [ he eigenvalues

Oﬂirlirgg...grkﬁm

satisfy two key properties. For « > 0 and

for a2 denoting he scaling of the domain
€2 by «a:

) 1o — M(€2) M(a2) _ M:(£2)
rk( Q) &4 ] r?n.(aﬂ) = rm(Q)




e Buckling Plate Problem:

d _
A2y = A Au in €2, u=__—u=0 on a2
an
AL(Q) Ne(aS2)  Ap(S2)
A (af2) = — . =
* L_(C}, ) (_12 Af.rn(&'Q) ﬁ.m(Q)

There are well-established finite difference schemes.

There are well-known semiclassical asymptotics as well as

universal eigenvalues for the eigenvalues and for various
spectral functions

One can use the same feature functions.




Dirichlet Neumann Stekloff
7 Fy F; Fy F5 Fy F,
4 1 60.0% | 91.0% | 87.5% | 91.0% | 40.5% | 34.0%
8 | 94.0% | 94.0% | 94.0% | 94.0% | 45.0% | 41.5%
12| 94.5% | 93.5% | 94.5% | 94.0% | 50.0% | 42.0%
16| 92.5% | 78.5% | 92.5% | 91.0% | 61.0% | 57.5%
20| 95.5% | 94.5% | 95.5% | 94.5% | 55.5% | 56.0%

Correct classification rates of hand-drawn shapes
using Dirichlet, Neumann, and Stekloff F1 and F2
features.
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Average and std dev of first 10 F2 features of 100
triangles using Dirichlet, Clamped plate and Buckling
eigenvalues
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Average and std dev of first 20 F1 features for basic

shapes using clamped plate eigenvalues
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Average and std dev of first 10 F1 features of 100
rectangles and diamonds computed using Dirichlet
and clamped plate eigenvalues
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Average and std dev of first 20 F1 features for basic
shapes using buckling plate eigenvalues
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Average and std dev of first 20 F4 features using
buckling plate eigenvalues
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Average and std dev of first 20 F4 features using
clamped plate eigenvalues




18

16

14

12

Diamond
Square
Dizk
Recangle
E llipze
Triangle

Average and std dev of first 20 F4 features using

Dirichlet eigenvalues




