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Question

Let D ≥ d ≥ 1 be integers, M ⊂ RD be a d
dimensional manifold, d << D, f : M → R. Given
data of the form (xi, f(xi)), approximate f . We
will write ρM for the geodesic distance on M .
Remark: Many algorithms and theoretical results
are known for approximation on cube, sphere,
ball, etc.
Novelty: M is not known.
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A toy problem

Let a,b ∈ R100, M ⊂ R100 be defined by

x = exp(ua + vb) + noise, u, v ∈ [−1, 1].

Question Given data of the form (xi, ui + noise),
but not knowing the function generating xi, find u
as a function of x.
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The heat kernel

Coifman, Jones, Lafon, Maggioni, · · ·
The (the heat kernel) Kt for the manifold is
defined by

Kt(x, y) =
∞

∑

`=0

exp(−λ`t)φ`(x)φ`(y),

where λ` are eigenvalues of the Laplacian ∆.
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Graph Laplacian

Given the data set {xi}
N
i=1, let

Wi,j = exp(−‖xi − xj‖
2/ε),

Li,j = Wi,j/
∑

k

Wi,k − δi,j. (Graph Laplacian)

Lafon, Singer, Belkin, Niyogi: For C∞ f ,

ε−1
∑

j

Li,jf(xj) = (∆f)(xi) + O(N−1/2ε−1/2−d/4).

∆ is the manifold Laplacian.
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Semi-supervised
learning

Given {(xi, ui)}
N
i=1, compute the

eigenfunctions {φj}
N
j=1 of the graph Laplacian

for a suitable ε.

Choose a small subset of the data as training
data, and find the least square fit for the first n
eigenfunctions based on this data.

Compute the error on the rest of the set.
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Remarks

A proper choice for ε and n can be made by
further splitting the training data with one part
used for obtaining the training error, and
minimizing this error.

The calculation of eigenvectors may be
expensive.

The calculation of eigenvectors depends also
on the test data.

New data points require a new computation,
not clear how to generate new points
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Heat triangulation
theorem

Jones, Maggioni, Schul
Let z ∈ M , (U, v) be a chart around z, Rz ≤ 1 be
the maximum radius of a ball centered at v(z)
contained in v(U), p1, · · · , pd be linearly
independent directions, yi be such that yi − z is in
the direction of pi, and c1Rz ≤ ρM(yi, z) ≤ c2Rz,

t = c3R
2
z. Let Φ(x) = (Kt(x, y1), · · · , Kt(x, yd)).

Then for all x1, x2 with ρM(x1, z), ρM(x2, z) ≤ c4Rz,

c5ρM(x1, x2) ≤ Rd+1

z ‖Φ(x1)−Φ(x2)‖ ≤ c6ρM(x1, x2).
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Set up

Let Br := {q ∈ Rd : ‖q‖d ≤ r}, u : B1 → RD,
J(q) = Jacobian of u, ‖J(q) − J(0)‖ ≤ κ‖q‖d,

λmin‖y‖d ≤ ‖J(q)y‖D ≤ λmax‖y‖d, y ∈ Rd, q ∈ Br∗,

Let p1, · · · ,pd ∈ Rd satisfy

∥

∥

∥

∥

∥

d
∑

`=1

y`p`

∥

∥

∥

∥

∥

d

≥ γ‖y‖d, y ∈ Rd.
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Local coordinates

Let θ ∈ (0, 1), t` ∈ [θc1, c1], and q` = t`p`,

` = 1, · · · , d. Let Φ(w) = (‖w − u(q`)‖D)d
`=1

, such
that for w1,w2 ∈ u(Bc2

),

c3ρM(w1,w2) ≤ ‖Φ(w1)−Φ(w2)‖D ≤ c4ρM(w1,w2).

For every y with ‖y − Φ(u(0))‖d ≤ c5, there
exists unique w ∈ u(Bc2

) such that y = Φ(w).
Remark The constants can be stated explicitly in
terms of γ, λmin, λmax, κ, θ.
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Some consequences

With z0 = u(0), we may use standard
approximation theory techniques (with
scattered data) on the ball ‖ ◦ −Φ(z0)‖d ≤ c5

to approximate functions on the image of this
ball.

If the manifold is compact, one can cover it by
finitely many such patches.

Guaranteed approximation rates from
classical theory. In particular, the Laplacian
can be computed arbitrarily well.
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Some consequences

With z0 = u(0), we may use standard
approximation theory techniques (with
scattered data) on the ball ‖ ◦ −Φ(z0)‖d ≤ c5

to approximate functions on the image of this
ball.

The approximations no longer depend upon
the test data.

New test data can be generated at will.
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Quasi–interpolation

Chui–Diamond 1990 Let φ : Rd → R be a
compactly supported function, and λ be a local
linear functional such that the operator
Q(f)(x) :=

∑

k∈Zs λ(f(◦ + k))φ(x − k) satisfies

Q(P ) = P for all polynomials of total degree ≤ m.

If
∑

k∈Zs |k|m|φ̂(k)| < ∞ then for 0 ≤ r ≤ m,

max
x∈Rs

∣

∣

∣

∣

∂rf(x) − ∂rQ

(

f(h·);x/h

)
∣

∣

∣

∣

= O(hm+1−r),

as h → 0+.
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Approximation of
Laplacian

Get data on the ball of radius c5.

Constructions for λ based on scattered data
given by M., Narcowich, Ward, 2000.

Quasi-interpolation gives

(i) Other points on the manifold,

(ii) Ability to approximate Laplacian
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Toy problem set up

x = exp(ua + vb) + noise,

u, v ∈ [−0.7, 0.7], a,b, noise chosen uniformly in

[−0.5, 0.5]100.
Size of the data set =1024, noise in the u values
is added before training, uniform in the range
[−0.5, 0.5].
training data size= 102, 30 test runs.
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Eigenprojections

ε →, n ↓ 0.0010 0.1000 1.0000 10.0000

2 0.4151 0.3596 0.3476 0.3991

10 0.4420 0.1153 0.1036 0.1063

20 0.4962 0.1979 0.1516 0.1616

30 0.5786 0.6547 0.2441 0.4113

60 1.1283 17.1105 2.1603 6.7598
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Coordinate region for
the toy example

Taking 102 training examples, we used the first 2
singular vectors for this data as the independent
directions u(q`), ` = 1, 2.
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Coordinate region for
the toy example

A close up view
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Results for the toy
example

We just computed the linear least square
regression. The mean square error was 0.2405.
The time requirement was about 0.6942 seconds
vs an average of 4.6783 for the same experiment
using any one of the different ε’s and
eigenfunctions.
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