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Announcement: IPAM Workshop Feb. 9-13, 2009

INSTITUTE FOR PURE AND APPLIED MATHEMATICS
Los Angeles, California
N

Laplacian Eigenvalues and
Eigenfunctions: Theory,
Computation, Application

* 0“_"

——— e February 9 — 13, 2009

'ORGANIZING COMMITTEE: Denis Grebenkov (Ecole Polytechnique), Peter Jones
(Yale), Naoki Saito (UC Davis)

Scientific Overview

The investigation of eigenvalues and eigenfunctions of the Laplace operator in a bounded domain or
a manifold is a subject with a long history, yet it is stll a central area in mathematics, physics,
engineering, and computer science. Activity has increased dramatically in the past twenty years for
several reasons
« a discovery of many fascinating properties of the Laplacian eigenfunctions such as the localization
in small regions of a complicated domain and scarring in quantum chaotic billards;
« the use of Laplacian eigenfunctions as a natural tool for a broad range of data analysis tasks, e.g.,
dimensionality reduction of high dimensional data via diffusion maps, or analysis of TMRI data for
understanding functionality of brain regions

e underlying Laplacian eigenvalues as natural "fingerprints” to identity geometrical
shapes, e.g.. copyright protection, database retrieval, quality assessment of digital data representing
surfaces and solids, and the related inverse spectral problems;
« the spectral analysis of the Laplace operator for a better interpretation of nuclear magnetic
resonance measurements of difiusive transport, e.q., experimental determination of the surface to
volume ratio in porous media through the asymptotic properties of the heat kernel;
« numerical computation of the Laplacian eigenfunctions and eigenvalues in iregular. often
multiscale domains (or sets, or graphs) that still remains a challenging problem demanding for new
numerical techniques.
This shortterm workshop will be an exciting opportunity to discuss these new or long-standing
problems with experts in mathematics, physics, biclogy, and computer sciences.

Invited Speakers
Carlos J. S. Alves Instituto Superior Tecnico. Nalini Anantharaman Ecole Polytechnique
Alex Barnett Dartmouth, Krzysztof Burdzy University of Washington, Ronald Coifman Yale,
Denks Grabinkov Eeole Fobtechiue, iya Grzharg Univertyof Chicsgo, Wicha! Lapidus
UC Riverside, Mauro Maggioni Duke, Francois Meyer University of Colorado, Martin Reuter
MIT, Naoki Saito.UC Dav, Pabitra San Sehlumbérger Dol Rescarch, Toronce Tao UCLA

Participation
Additional information about this workshop. including links to register and to apply for funding, can be
found on the webpage listed below. Encouraging the careers of women and minortty mathematicians
and scientists is an important component of IPAM's mission, and we welcome their applications.

www.ipam.ucla.edu/programs/le2009
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Clustering Mouse Retinal Ganglion Cells ...3D Data
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Clustering Mouse's Retinal Ganglion Cells

@ Objective: To understand how the structural /geometric properties of
mouse retinal ganglion cells (RGCs) relate to the cell types and their
functionality

@ Why mouse? = great possibilities for genetic manipulation

e Data: 3D images of dendrites of RGCs

o State of the Art = a manually intensive procedure using specialized
software:

e Segment dendrite patterns from each 3D cube;

e Extract geometric/morphological parameters (totally 14 such
parameters);

o Apply the conventional bottom-up “hierarchical clustering” algorithm

@ The extracted morphological parameters include: somal size; dendric
field size; total dendrite length; branch order; mean internal branch
length; branch angle; mean terminal branch length, etc.

o |t takes half a day per cell with a lot of human interactions!
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Clustering Results by the
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© Why Laplacian Eigenfunctions/Eigenvalues?
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Why Laplacian Eigenfunctions/Eigenvalues?

@ The Laplacian eigenfunctions defined on the domain Q provides the
orthonormal basis of L2(£).

@ The Laplacian eigenvalues encode geometric information of the
domain © = "Can we hear the shape of a drum?” (Mark Kac,
1966).

o Consider the Laplacian eigenvalue problem in Q € RY with the
Dirichlet boundary condition:

—Au=A\u in Q
u=20 on 0Q.

o let0< A1 < A< A3< - < A <+ — 00 be the sequence of
eigenvalues of the above Dirichlet-Laplace eigenvalue problem.
e Kac showed (based on the work of Weyl, Minakshisundaram-Pleijel):

Ze‘*kt = (47t)"% {Vold(Q) - ﬁVOId—l(aQ)}+O (t¥) as t | 0.
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Universal (or Payne-Pdlya-Weinberger) Inequalities
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Isoperimetric Inequalities

(Faber-Krahn)

Volg(92) -11
2
o 4 . .
° + < 7 ~ 2.5387 if d =2  (Ashbaugh-Benguria)
Vo Jd g,
2 7

@ ji1 is the first zero of the Bessel function of order k, i.e.,
Jk(jk,1) = 0. In the above inequalities, the equality is attained iff Q is
a unit ball in R? in the first case while that is attained iff Q is a ball
of arbitrary radius in RY in the second case.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions SIAM Imag. Sci. Conf. 11 /36



Other Properties

@ Domain monotonicity property:
If Q1 C €y, then

A1) > M(Q22), keN.

@ Scaling property:

A (Q
() = ka(z ), a>0, keN.
This implies:
Al ) = AlS2) k, me N.

Am(@Q)  An(Q)’
From this, we see that the ratios of Laplacian eigenvalues are scale
invariant.
@ Laplacian eigenvalues are translation and rotation invariant.
o Note the related work on “Shape DNA" by Reuter et al. (2005), and
classification of tree leaves by Khabou et al. (2007).
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Eigenfunctions of Laplacian ... Difficulties

@ The key difficulty is to compute such eigenfunctions; directly solving
the Helmholtz equation (or eigenvalue problem) on a general domain
is tough.

@ Unfortunately, computing the Green's function for a general Q

satisfying the usual boundary condition (i.e., Dirichlet, Neumann) is
also very difficult.
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© Integral Operators Commuting with Laplacian
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Integral Operators Commuting with Laplacian

@ The key idea is to find an integral operator commuting with the
Laplacian without imposing the strict boundary condition a priori.

@ Then, we know that the eigenfunctions of the Laplacian is the same
as those of the integral operator, which is easier to deal with, due to
the following

Theorem (G. Frobenius 18787; B. Friedman 1956)

Suppose X and L commute and one of them has an eigenvalue with finite
multiplicity. Then, X and L share the same eigenfunction corresponding
to that eigenvalue. That is, Lo = Ap and Ky = pp.
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Integral Operators Commuting with Laplacian ...

@ Let's replace the Green's function G(x,y) by the fundamental
solution of the Laplacian:

—Ix—y ifd =1,
K(x,y) = —%Iog|x—y| ifd =2,
ey if d > 2
(d—2)wq :

@ The price we pay is to have rather implicit, non-local boundary
condition although we do not have to deal with this condition directly.
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Integral Operators Commuting with Laplacian ...

o Let X be the integral operator with its kernel K(x,y):

Kf(x) 2 /Q K(x,y)f(y)dy, feL2(Q).

Theorem (NS 2005)

The integral operator X commutes with the Laplacian L = — A with the
following non-local boundary condition:

[ K2 st = ~5000 + o] Z W oty asty)

y vy

for all x € T', where @ is an eigenfunction common for both operators.
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Integral Operators Commuting with Laplacian ...

Corollary (NS 2005)

The integral operator X is compact and self-adjoint on L?(). Thus, the
kernel K(x,y) has the following eigenfunction expansion (in the sense of
mean convergence):

K(x,y) ~ Y pi(x)ei(y);
j=1

and {¢;}; forms an orthonormal basis of L2(2).
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@ Discretization of the Problem
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Discretization of the Problem

@ Assume that the whole dataset consists of a collection of data
sampled on a regular grid, and that each sampling cell is a box of size
H7:1 Ax;.

@ Assume that an object of our interest 2 consists of a subset of these
boxes whose centers are{x;} " ;.

@ Under these assumptions, we can approximate the integral eigenvalue
problem K¢ = u¢p by the following simple quadrature rule (i.e., the
midpoint rule) with accuracy O(N—2/9):

N d
Z wiK(xi, xj)o(x;) = pe(x;), i=1,...,N, wj= HAX;.
e i=1

o Let K,'J é WjK(X,',XJ'), ©i é QO(X,'), and ¢ é (Spl, .. .,SON)T e RN,
Then, the above equation can be written in a matrix-vector format
as: K¢ = pp, where K = (Kjj) € RN*N - Under our assumptions,
the weight w; does not depend on j, which makes K symmetric.
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3D Example

@ Consider the unit ball Q in R3. Then, our integral operator K with

the kernel K(x,y) = ﬁ.

@ Top 9 eigenfunctions cut at the equator viewed from the south:

D00

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions SIAM Imag. Sci. Conf. 21 /36



Outline

© Clustering Mouse’s Retinal Ganglion Cells
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Preliminary Study on Mouse Retinal Ganglion Cells

Use either 2D plane projection data or full 3D data

Compute the smallest k Laplacian eigenvalues using our method (i.e.,
the largest k eigenvalues of X) for each image

@ Construct a feature vector per image

@ Possible feature vectors reflecting geometric information:
Fi=0n- ) Fo= (s o) Fa= (/D2 A/ M) T
Fa=(pa/p2, - /i)

@ Do visualization and clustering
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Preliminary Study on Mouse RGCs ...
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(a) Cluster 1 (b) Cluster 6
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(A1, A2) of 2D Dataset
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(A1/A2, A1/ A3, A1/ Aq) of 3D Dataset
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Clustering Results by the
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Laplacian Eigenfunctions on a Mouse RGC
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Laplacian Eigenfunctions on a Mouse RGC ...
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@ Challenges
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Challenges to Mouse Retinal Ganglion Cell Analysis

A big issue is how to encode the domain.

Interpretation of our eigenvalues are not yet fully understood
compared to the Dirichlet-Laplacian case that have been well studied:
Payne-Pdélya-Weinberger; Faber-Krahn; Ashbaugh-Benguria, etc.

How to use eigenfunctions

Reduce computational burden = The Fast Randomized Algorithm
of Martinsson-Rokhlin-Tygert

Heat propagation/random walks on the dendrites may give us
interesting and useful information; after all the dendrites are network
to disseminate information via chemical reaction-diffusion mechanism.
Construct actual graphs based on the connectivity and analyze them
directly via spectral graph theory and diffusion maps = the Cheeger
constant of a graph is related to the time to transmit “information”
among its nodes! (T. Sunada)

Automatic segmentation of the dendrite patterns is needed.
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An Issue on Domain Encoding: An Example

o Consider two great circles perpendicularly crossing at both the north
and south poles on the unit sphere in R3.

@ Let our domain consist of such two great circles minus the south pole
@ Then the four endpoints around the south pole are further apart
although the Euclidean distances among them are small.

@ Use the connectivity (or geodesic) distances for constructing the
kernel matrix rather than the Euclidean distances.
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Effect of Different Distances on Eigenfunctions

(a) Euclidean
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References

@ Laplacian Eigenfunction Resource Page
http://www.math.ucdavis.edu/"saito/lapeig/ contains
o All the talk slides of the minisymposium “Laplacian Eigenfunctions and
Their Applications, " which Mauro Maggioni and | organized for ICIAM
2007 at Ziirich; and
o My Course Note (elementary) on “Laplacian Eigenfunctions: Theory,
Applications, and Computations”

@ The following article is available at
http://www.math.ucdavis.edu/“saito/publications/
e N. Saito: “Data analysis and representation using eigenfunctions of
Laplacian on a general domain,” Applied & Computational Harmonic
Analysis, vol. 25, no. 1, pp. 68-97, 2008.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions SIAM Imag. Sci. Conf. 35/ 36



Acknowledgment

@ Leo Chalupa (UCD, Neurobiology)

@ Julie Coombs (UCD, Neurobiology)

@ Ernest Woei (UCD, Math)

@ Allen Xue (formerly, UCD, Math, currently Epic Systems Corp.)
@ Zhihua Zhang (UCD, Math)

o NSF

e ONR

Thank you very much for your attention!

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions SIAM Imag. Sci. Conf. 36 /



	Motivations
	Why Laplacian Eigenfunctions/Eigenvalues?
	Integral Operators Commuting with Laplacian
	Discretization of the Problem
	Clustering Mouse's Retinal Ganglion Cells
	Challenges
	References/Acknowledgment

