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Announcement: IPAM Workshop Feb. 9–13, 2009

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions SIAM Imag. Sci. Conf. 4 / 36



Clustering Mouse Retinal Ganglion Cells . . . 3D Data
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Clustering Mouse’s Retinal Ganglion Cells

Objective: To understand how the structural/geometric properties of
mouse retinal ganglion cells (RGCs) relate to the cell types and their
functionality

Why mouse? =⇒ great possibilities for genetic manipulation

Data: 3D images of dendrites of RGCs

State of the Art =⇒ a manually intensive procedure using specialized
software:

Segment dendrite patterns from each 3D cube;
Extract geometric/morphological parameters (totally 14 such
parameters);
Apply the conventional bottom-up “hierarchical clustering” algorithm

The extracted morphological parameters include: somal size; dendric
field size; total dendrite length; branch order; mean internal branch
length; branch angle; mean terminal branch length, etc.

It takes half a day per cell with a lot of human interactions!
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Clustering Results by the Manually Intensive Method
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Why Laplacian Eigenfunctions/Eigenvalues?

The Laplacian eigenfunctions defined on the domain Ω provides the
orthonormal basis of L2(Ω).

The Laplacian eigenvalues encode geometric information of the
domain Ω =⇒ “Can we hear the shape of a drum?” (Mark Kac,
1966).

Consider the Laplacian eigenvalue problem in Ω ∈ Rd with the
Dirichlet boundary condition:{

−∆u = λu in Ω

u = 0 on ∂Ω.

Let 0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · → ∞ be the sequence of
eigenvalues of the above Dirichlet-Laplace eigenvalue problem.

Kac showed (based on the work of Weyl, Minakshisundaram-Pleijel):

∞∑
k=1

e−λk t = (4πt)−
d
2

{
Vold(Ω)−

√
πt

4
Vold−1(∂Ω)

}
+o

(
t

1−d
2

)
as t ↓ 0.
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Universal (or Payne-Pólya-Weinberger) Inequalities

For m = 1, 2, . . .

λm+1 − λm ≤ 4

md

m∑
j=1

λj .

λm+1

λm
≤ 1 +

4

d
.

m∑
j=1

λj

λm+1 − λj
≥ md

4
(Hile-Protter).

m∑
j=1

(λm+1 − λj)
2 ≤ 4

d

m∑
j=1

λj(λm+1 − λj) (Yang).

λm+1 ≤
(

1 +
4

d

)
· 1

m

m∑
j=1

λj (Yang).
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Isoperimetric Inequalities

λ1 ≥
(

Vold(B1)

Vold(Ω)

) 2
d

j2d
2
−1,1

(Faber-Krahn)

λ2

λ1
≤

j2d
2
,1

j2d
2
−1,1

≈ 2.5387 if d = 2 (Ashbaugh-Benguria)

jk,1 is the first zero of the Bessel function of order k, i.e.,
Jk(jk,1) = 0. In the above inequalities, the equality is attained iff Ω is
a unit ball in Rd in the first case while that is attained iff Ω is a ball
of arbitrary radius in Rd in the second case.
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Other Properties

Domain monotonicity property:
If Ω1 ⊂ Ω2, then

λk(Ω1) ≥ λk(Ω2), k ∈ N.

Scaling property:

λk(α Ω) =
λk(Ω)

α2
, α > 0, k ∈ N.

This implies:
λk(α Ω)

λm(α Ω)
=

λk(Ω)

λm(Ω)
, k, m ∈ N.

From this, we see that the ratios of Laplacian eigenvalues are scale
invariant.

Laplacian eigenvalues are translation and rotation invariant.

Note the related work on “Shape DNA” by Reuter et al. (2005), and
classification of tree leaves by Khabou et al. (2007).
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Eigenfunctions of Laplacian . . . Difficulties

The key difficulty is to compute such eigenfunctions; directly solving
the Helmholtz equation (or eigenvalue problem) on a general domain
is tough.

Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann) is
also very difficult.
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Integral Operators Commuting with Laplacian

The key idea is to find an integral operator commuting with the
Laplacian without imposing the strict boundary condition a priori.

Then, we know that the eigenfunctions of the Laplacian is the same
as those of the integral operator, which is easier to deal with, due to
the following

Theorem (G. Frobenius 1878?; B. Friedman 1956)

Suppose K and L commute and one of them has an eigenvalue with finite
multiplicity. Then, K and L share the same eigenfunction corresponding
to that eigenvalue. That is, Lϕ = λϕ and Kϕ = µϕ.
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Integral Operators Commuting with Laplacian . . .

Let’s replace the Green’s function G (x, y) by the fundamental
solution of the Laplacian:

K (x, y) =


−1

2 |x − y | if d = 1,

− 1
2π log |x− y| if d = 2,

|x−y|2−d

(d−2)ωd
if d > 2.

The price we pay is to have rather implicit, non-local boundary
condition although we do not have to deal with this condition directly.
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Integral Operators Commuting with Laplacian . . .

Let K be the integral operator with its kernel K (x, y):

Kf (x)
∆
=

∫
Ω

K (x, y)f (y) dy, f ∈ L2(Ω).

Theorem (NS 2005)

The integral operator K commutes with the Laplacian L = −∆ with the
following non-local boundary condition:∫

Γ
K (x, y)

∂ϕ

∂νy
(y) ds(y) = −1

2
ϕ(x) + pv

∫
Γ

∂K (x, y)

∂νy
ϕ(y) ds(y),

for all x ∈ Γ, where ϕ is an eigenfunction common for both operators.
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Integral Operators Commuting with Laplacian . . .

Corollary (NS 2005)

The integral operator K is compact and self-adjoint on L2(Ω). Thus, the
kernel K (x, y) has the following eigenfunction expansion (in the sense of
mean convergence):

K (x, y) ∼
∞∑
j=1

µjϕj(x)ϕj(y),

and {ϕj}j forms an orthonormal basis of L2(Ω).
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Discretization of the Problem

Assume that the whole dataset consists of a collection of data
sampled on a regular grid, and that each sampling cell is a box of size∏d

i=1 ∆xi .

Assume that an object of our interest Ω consists of a subset of these
boxes whose centers are{xi}N

i=1.

Under these assumptions, we can approximate the integral eigenvalue
problem Kϕ = µϕ by the following simple quadrature rule (i.e., the
midpoint rule) with accuracy O(N−2/d):

N∑
j=1

wjK (xi , xj)ϕ(xj) = µϕ(xi ), i = 1, . . . ,N, wj =
d∏

i=1

∆xi .

Let Ki ,j
∆
= wjK (xi , xj), ϕi

∆
= ϕ(xi ), and ϕ

∆
= (ϕ1, . . . , ϕN)T ∈ RN .

Then, the above equation can be written in a matrix-vector format
as: Kϕ = µϕ, where K = (Kij) ∈ RN×N . Under our assumptions,
the weight wj does not depend on j , which makes K symmetric.
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3D Example

Consider the unit ball Ω in R3. Then, our integral operator K with
the kernel K (x, y) = 1

4π|x−y| .

Top 9 eigenfunctions cut at the equator viewed from the south:
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Preliminary Study on Mouse Retinal Ganglion Cells

Use either 2D plane projection data or full 3D data

Compute the smallest k Laplacian eigenvalues using our method (i.e.,
the largest k eigenvalues of K) for each image

Construct a feature vector per image

Possible feature vectors reflecting geometric information:
F1 = (λ1, . . . , λk)T ; F2 = (µ1, . . . , µk)T ; F3 = (λ1/λ2, . . . , λ1/λk)T ;
F4 = (µ1/µ2, . . . , µ1/µk)T .

Do visualization and clustering
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Preliminary Study on Mouse RGCs . . .

(a) Cluster 1 (b) Cluster 6
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(λ1, λ2) of 2D Dataset
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(λ1/λ2, λ1/λ3, λ1/λ4) of 3D Dataset
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Clustering Results by the Manually Intensive Method
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Laplacian Eigenfunctions on a Mouse RGC
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Laplacian Eigenfunctions on a Mouse RGC . . .
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Challenges to Mouse Retinal Ganglion Cell Analysis

A big issue is how to encode the domain.

Interpretation of our eigenvalues are not yet fully understood
compared to the Dirichlet-Laplacian case that have been well studied:
Payne-Pólya-Weinberger; Faber-Krahn; Ashbaugh-Benguria, etc.

How to use eigenfunctions

Reduce computational burden =⇒ The Fast Randomized Algorithm
of Martinsson-Rokhlin-Tygert

Heat propagation/random walks on the dendrites may give us
interesting and useful information; after all the dendrites are network
to disseminate information via chemical reaction-diffusion mechanism.

Construct actual graphs based on the connectivity and analyze them
directly via spectral graph theory and diffusion maps =⇒ the Cheeger
constant of a graph is related to the time to transmit “information”
among its nodes! (T. Sunada)

Automatic segmentation of the dendrite patterns is needed.
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An Issue on Domain Encoding: An Example

Consider two great circles perpendicularly crossing at both the north
and south poles on the unit sphere in R3.
Let our domain consist of such two great circles minus the south pole.
Then the four endpoints around the south pole are further apart
although the Euclidean distances among them are small.
Use the connectivity (or geodesic) distances for constructing the
kernel matrix rather than the Euclidean distances.
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Effect of Different Distances on Eigenfunctions

(a) Euclidean (b) Geodesic
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