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Introduction A classification problem

Given

Training Data: X = {x1, · · · , xN1} ⊂ Rn.
Each data point xj has a known class label ∈ {C1, · · · ,CK}.

Unlabeled (or Test) Data: Y = {y1, · · · , yN2
} ⊂ Rn.

Objective

Find a class label among {C1, · · · ,CK} for each y1, · · · , yN2
.
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Introduction A classification problem

Our Approach

Following the Diffusion Framework:

Construct a similarity graph from the training data X , then expand
the graph to the unlabeled data Y .

For each node, compute a histogram of node connectivity (distribution
of its similarity to all the nodes), and let hxj and hyk

denote the
histogram corresponding to xj ∈ X and yk ∈ Y , respectively.

Compare hxj and hyk
using appropriate distance measure d(·, ·).

Infer the label of xj∗ to yk if

xj∗ = arg min
xj∈X

d(hxj ,hyk
)
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Diffusion Framework Basics in the Diffusion Framework

First, build a connected Similarity Graph from the given data Z = X∪Y .

Γ
•z1

•z2 •z3

•z4

W12

������� W13

???????

W23 W34
MMMMMM

W14

W24

Gaussian Weights: Wij
∆
= e−‖zi−zj‖2/ε2

, ε > 0.
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Diffusion Framework Basics in the Diffusion Framework

Next, do Graph-Laplacian normalization to get the diffusion matrix:

Let D be the diagonal matrix:

Dii
∆
=

N1+N2∑
k=1

e−‖zi−zk‖2/ε2
, i = 1, 2, · · · ,N1 + N2.

where Dii is the degree of node zi .

The diffusion matrix (size (N1 + N2)× (N1 + N2)) is:

P
∆
= D−1W

saito@math.ucdavis.edu (UCD Math Dept.) Matching Node Connectivities SSP09 8 / 28



Diffusion Framework Basics in the Diffusion Framework

Properties of the diffusion matrix

P is non-negative and row-stochastic (
∑

k Pik = 1).

P represents a transition matrix of a Markov process on Γ.
Pij = probability of moving from zi to zj in one step.

Spectrum of P: 1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λN1+N2 ≥ 0.

P has spectral decomposition:

Pij =
∑
k

λkφk(i)ψk(j),

where
B {φk} and {ψk} are (orthonormal) left and right eigenvectors,
B φk(i) = the ith entry of the vector φk .

Markov process can be forwarded in time t ∈ N with
Pt

ij =
∑

k λ
t
kφk(i)ψk(j) = prob. of moving from zi to zj in t steps.

Markov process has stationary distribution: π
∆
= D1

1T D1
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Diffusion Framework Basics in the Diffusion Framework

Properties of the diffusion matrix (cont.)

The ith row Pi · can be viewed as a distribution of connectivity
(degree) of zi to all other nodes.

Definition of the diffusion distance

With t ∈ N given a priori, the diffusion distance Dt(zi , zj) at time t is
defined as:

Dt(zi , zj)
2 ∆

=
∥∥Pt

i · − Pt
j ·
∥∥2

L2(X , 1
π

)

=
∑
`

(
Pt

i` − Pt
j`

)2

π(`)

=
∑
`

λ2t
` (ψ`(i)−ψ`(j))2 .

(1)
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Diffusion Framework Basics in the Diffusion Framework

Advantages of the diffusion distance Dt(zi , zj)

preserves local neighborhood;

measures the difference of how zi and zj are connected to all other
nodes in Γ;

takes into account all incidences relating zi and zj ;

is robust to noise.
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Diffusion Framework Basics in the Diffusion Framework

Approximation of the diffusion distance

Since eigenvalues λ` are decreasing to 0, diffusion distance can be
approximated to a chosen accuracy τ > 0:

Dt(zi , zj)
2 ≈

s(τ,t)∑
`=1

λ2t
` (ψ`(i)−ψ`(j))2 ,

for some s(τ, t) ∈ N.
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Diffusion Framework Basics in the Diffusion Framework

Diffusion Map

The Diffusion Map Ψt : Z → Rs(τ,t) is defined by

Ψt : zi 7→
(
λt

1ψ1(i), λt
2ψ2(i), · · · , λt

s(τ,t)ψs(τ,t)(i)
)T

.

Ψt embeds Z into a low-dimensional diffusion space, s(τ, t)� n.

Dt(zi , zj) ≈ ‖Ψt(zi )−Ψt(zj)‖, diffusion distance is approximated by
Euclidean distance within the diffusion space.
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Diffusion Framework Practical Considerations

In practice for signal classification problems

We do not compute diffusion maps on Z = X ∪ Y .

B Compute the similarity graph Γ only from the training data X .
⇒ diffusion maps are defined only for X , Ψt : X → Rs(τ,t).

B Extend Ψt to Y (out-of-sample extension) using

Geometric harmonics multiscale extension scheme
(Lafon-Keller-Coifman, 2006); or
Nyström extension (Fowlkes-Belongie-Chung-Malik, 2004).

⇒ After which Ψt : X ∪ Y → Rs(τ,t).

B Diffusion distance between xi ∈ X and yj ∈ Y is approximately
Dt(xi , yj) ≈ ‖Ψt(xi )−Ψt(yj)‖.
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Node Connectivities Matching

Our Proposed Method: Node Connectivities Matching

A modification to the diffusion distance approach.

No computation of eigenvalues/eigenvectors.

Bypass the out-of-sample extension step, hence avoid error admitted
during the extension process.

Still close to the diffusion distance, hence inherits nice
local-neighborhood preserving property from the diffusion distance.
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Node Connectivities Matching Set up

Set up a connected Similarity Graph Γ̃ from training data X .

Γ̃ •x1

•x2

•x3

W12









W23
WWWWWWW

W13

/////////

Let hxj

∆
= 1PN1

`=1 Wj`

(Wj1, · · · ,WjN1) ∈ R1×N1 , the degree distribution or

histogram of connectivities of node xj to all other nodes in Γ̃.
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Node Connectivities Matching Set up

Add nodes corresponding to unlabeled points in Y . Only add edges
connecting between X and Y with weights wj` = e−‖yj−x`‖2/ε2

.

Γ̃

•x1

•x2

•x3

•y1

•y2









WWWWWWW

/////////

w11

w13

�����������

w12

w22

w23

OOOOOOO

???????????????????

Let hyj

∆
= 1PN1

`=1 wj`

(wj1, · · · ,wjN1) ∈ R1×N1 , the degree distribution or

histogram of connectivities of node yj to all x` nodes in Γ̃.
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Node Connectivities Matching Set up

Γ̃ differs from the original fully connected similarity graph Γ on
Z = X ∪ Y only in the absence of the edges (yj , yk).

Γ

•x1

•x2

•x3

•y1

•y2









WWWWWWW

/////////

w11

w13

�����������

w12

w22

w23

OOOOOOO

??????????????????? �O
�O
�O
�O
�O
�O
�O
�O
�O
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Node Connectivities Matching Set up

Matching Node Connectivities

Discriminate the histogram hyj
from hxk

using various measures:

L2 measure: L2(hyj
,hxk

) =
√∑N1

`=1 |hyj
(`)− hxk

(`)|2.

Jeffreys divergence:

dJ(hyj
,hxk

) =
∑N1

`=1

(
hyj

(`) log
hyj (`)

hxk
(`) + hxk

(`) log
hxk

(`)

hyj (`)

)
.

Hellinger distance: dH(hyj
,hxk

) =
∑N1

`=1

(√
hyj

(`)−
√

hxk
(`)
)2

.

χ2 Statistics: χ2(hyj
,hxk

) =
∑N1

`=1

“
hyj (`)−m(`)

”2

m(`) ,

where m(`) = 1
2

(
hyj

(`) + hxk
(`)
)

.

Earth Mover’s Distance See defn of EMD .
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Numerical Experiments and Results
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Numerical Experiments and Results Synthetic Data

Triangular Waveform Classification

Triangular Waveforms

Figure: Five samples of three triangular waveform classes.
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Numerical Experiments and Results Synthetic Data

Triangular Waveform Classification

Triangular Waveform Data Generation

Three classes of signals generated via:

x (1)(j) = uh1(j) + (1− u)h2(j) + ε(j).

x (2)(j) = uh1(j) + (1− u)h3(j) + ε(j).

x (3)(j) = uh2(j) + (1− u)h3(j) + ε(j).

where

j = 1, · · · , 32.

h1(j) = max{6− |j − 7|, 0}; h2 = h1(j − 8); h3(j) = h1(j − 4).

u is a uniform random variable on interval (0, 1).

ε is a standard normal variate.
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Numerical Experiments and Results Synthetic Data

Triangular Waveform Classification

Experimental Procedure

Generate 100 training signals/class and 1000 test signals/class.

Repeat the procedure 10 times to get average misclassification rates.

Figure: A 2D projection of the triangular waveform dataset.

saito@math.ucdavis.edu (UCD Math Dept.) Matching Node Connectivities SSP09 21 / 28



Numerical Experiments and Results Synthetic Data

Triangular Waveform Classification

Results (The Bayes rate is ∼ 14%)

Misclassification rates (average over 10 simulations)
NCM in Error rate (%)

L2 Distance 20.07
Jeffreys Divergence 19.47
Hellinger Distance 19.45
χ2 Statistics 19.43
EMD 16.43

Classification by Nearest Neighbor Method
Error rate (%)

Diff Maps extended by GHME: 19.21
Diff Maps computed on Z = X ∪ Y 18.05
No Diff Maps (the original coordinates) 21.21
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Numerical Experiments and Results Hyperspectral Data

Hyperspectral Images of Natural Scenes

Each pixel is a vector of 43 reflectance values at various wavelengths.

Reference:
D. L. Ruderman, Statistics of cone responses to natural images:
implications for visual coding, J. Opt. Soc. Am., vol. 15, no. 8,
pp. 2036–2045, August 1998.
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Numerical Experiments and Results Hyperspectral Data

Recognition of Pixel Type

Data preparation

Extract a window around each pixel

1× 1

∈ R43

3× 3

∈ R9×43

5× 5

∈ R25×43

=⇒ the data point associated with a pixel is x ∈ R43, R9×43, or R25×43.
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Numerical Experiments and Results Hyperspectral Data

Recognition of Pixel Type

Recognition of pixel types from given samples

Three selected regions input as seeds Recognition result
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Numerical Experiments and Results Hyperspectral Data

Quantitatively Controlled Recognition of Pixel Type

Data Preparation

Hand segment regions of leaves, rocks, trunks from different images.

Green: leaves; Blue: rocks; Red: trunks.
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Numerical Experiments and Results Hyperspectral Data

Quantitatively Controlled Recognition of Pixel Type

Experimental Procedure

Three-class recognition problem: Leaf, Rock, and Trunk pixels.

Randomly select ≈ 400 pixels per class for training and ≈ 1200 pixels
per class for test.

Training and test data come from different images.

Repeat procedure 20 times to get average misclassification rates.
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Numerical Experiments and Results Hyperspectral Data

Quantitatively Controlled Recognition of Pixel Type

Results
Classification via NCM

Misclassification rates (average over 20 simulations)
1× 1 3× 3 5× 5

Measure Error (%)

L2 42.63
Jeffreys 29.48
Hellinger 27.13
χ2 28.89
EMD 46.03

Measure Error (%)

L2 20.00
Jeffreys 23.77
Hellinger 21.92
χ2 27.39
EMD 30.76

Measure Error (%)

L2 20.06
Jeffreys 21.76
Hellinger 20.00
χ2 20.85
EMD 22.93

Classification via nearest neighbor in

Measure Error (%)

L2 dist. 31.83
Diff. dist. 24.85

Measure Error (%)

L2 dist. 31.26
Diff. dist. 57.23

Measure Error (%)

L2 dist. 30.05
Diff. dist. 50.92
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Conclusion

Summary

Node Connectivity Matching (NCM)

Is derived from diffusion distance;

Bypasses computation of eigenvalues/eigenvectors of diffusion
operator;

Avoids out-of-sample extension.

=⇒ Admits less error !
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Definition of Earth Mover’s Distance (EMD)

Suppose p = (p1, · · · , pn1 ) and q = (q1, · · · , qn2 ) are two histograms or two discrete
distributions. The Earth Mover’s Distance (EMD) is defined by

EMD(p, q)
∆
=

P
i,j gijdijP

i,j gij

where

dij , i = 1, · · · , n1, j = 1, · · · , n2: ground distance; the dissimilarity between bins i
and j ; the cost of moving one unit of feature in the feature space between the ith
and jth feature,

gij ≥ 0, i = 1, · · · , n1, j = 1, · · · , n2: the optimal flow between two histograms

that minimizes the total cost
P

i,j gijdij , subject to the following constraints

B
∑

i gij ≤ qj ,
B
∑

j gij ≤ pi ,
B
∑

ij gij = min{
∑

i pi ,
∑

j qj}

Y. Rubner, C. Tomasi, L. J. Guibas, The Earth Mover’s Distance as a Metric for Image Retrieval, International Journal of

Computer Vision, 40(2): 99–121, 2000.
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