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Motivation

John Donne
“no man is an island”

“no data point is an island”
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“No data point is an island”

In most applications data points are part of a set/manifold

Data manifolds can be represented by graphs
4 / 21



Graph based similarity: going beyond Page Rank

Data sets as graphs

Nodes {xi}n1
Edges eij = d (xi, xj)

d (·, ·) is an application specific distance/affinity measure

5 / 21



Graph based similarity: going beyond Page Rank

Recognition I

Given a query sample y and a set {xi}n1 , find

i∗ = arg min
i
d (y, xi)

The problem:

we can only approximate d (·, ·)
d (·, ·) might be corrupted by noise
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Recognition II

Useful for a gamut of applications:

Shape and object recognition
Target acquisition
HMM (state space) modeling
Soft Vs. Hard recognition
Can be part of a multi-layer system
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Low level one-to-one shape matching

Algorithm Performance
CSS Mokhtarian96 75.44%
Visual Parts Latecki00 76.45%
Shape Contexts Belongie03 76.51%
Curve Edit Distance Sebastian03 78.17%
MDS+SC+DP Ling07 84.35%
Planar Graph cuts Schmidt-cvpr09 85%
IDSC+DP Ling07 85.40%
IDSC+DP+EMD-L1 86.56%
Shape-tree 87.7%
GM+IDSC 87.47%
GM+SC 88.11%
Contour Flexibility 89.31%

Application specific
Mediocre accuracy
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Graph based recognition

Basic idea
My friend’s friend is my friend
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Mathematical formulation

The graph is analyzed by simulating a Markov random walk and
analyzing its properties:

1 Represent the graph by an affinity matrix A
2 Row-normalize A to compute the Markov matrix
M = D−1A, where dii =

∑
j

aij

xTM = λxT x is the asymptotic Markov state probability
Mx = λx x a diffusion vector
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Probability propagation

Personalized PageRank (Brin,Page,’98)
xTn+1 = (1− c) xTnM + cr, c ∈ [0, 1]

Fast Random Walk with Restarts (C. Faloutsos’s group , CMU)
repeat the above N times

Theoretical analysis Fan Chung (UCSD) and Dan Spielman
(Yale)
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Diffusion propagation I

Xiang et al. , Learning Context Sensitive Shape Similarity by
Graph Transduction, PAMI2009.

Algorithm Performance
IDSC+DP+EMD-L1 86.56%
Graph Transduction 92.3%

The algorithm
xn+1 = Mxn
xn+1 (i0) = 1
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Xiang et al. actually compute the leading constrained
eigenvector of the sub-graph.

13 / 21



Graph based similarity: going beyond Page Rank

Commute time/diffusion distance

Commute time/diffusion distance
C (u, v) is the expected time for a random walk to travel

between u and v and back

Commute time: Qiu and Hancock PAMI2007
Diffusion distance: Lafon and Coifman ACHA2006

C (u, v) = ‖Ψt(u)−Ψt(v)‖2L2
=

n−1∑
l=0

λ2t
l (ψl(u)− ψl(v))2
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Our approach: structural similarity

Instead of node similarity

use structural similarity
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Formally

Let G1 ⊆ G and G2 ⊆ G, where G1 and G2 are K −NN graphs.
We aim to compute d (G1, G2).

First idea: K-NN graph intersection

d (G1, G2) = |G1 ∩G2|

A. Egozi and Y. Keller2009

Algorithm Performance
IDSC+DP+EMD-L1 86.56%
Graph Transduction 92.3%
K-NN intersection 93.1%
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The mixing time of Markov chains I

Mixing time of a Markov chain
The time a Markov chain takes to converge to its stationary
distribution
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The mixing time of Markov chains II

τ1 � τ2

Second idea: use the mixing time of Gi ∪Gj
Compute τ ij = τ (Gi ∪Gj)
τ ij ≈ τ ii : xi and xj are similar
τ ij � τ ii : xi and xj are dissimilar
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Computing the mixing time

Given a graph G and a corresponding Markov matrix M , the
mixing time τ (G) can be approximated by

τ (G) = 1
1−λ1

where λ0 = 1 ≥ λ1 ≥ λ2 are the eigenvalues of M .

Algorithm Performance
IDSC+DP+EMD-L1 86.56%
Graph Transduction 92.3%
K-NN intersection 93.1%
K-NN mixing time 95.2%
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Conclusions

Many data sources are derived from data manifolds
Manifolds can be represented by graphs
The graph structure can be used to improve
general-purpose recognition
Graphs can be analyzed by Markov walk theory
Probability and diffusion can be propagated
Intrinsic Markov walk properties such as the commute and
mixing times can be used
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Thanks You!

21 / 21


	Graph based similarity: going beyond Page Rank

