Connections in Mathematical Analysis: The Case of Fourier Series

Enrique A. Gonzalez-Velasco

American Mathematical Monthly, Volume 99, Issue 5 (May, 1992), 427-441.

Your use of the JSTOR database indicates your acceptance of JISTOR’s Terms and Conditions of Use. A copy of
JSTOR’s Terms and Conditions of Use is available at http://www.jstor.org/about/terms.html, by contacting JSTOR
at jstor-info@umich.edu, or by calling JSTOR at (888)388-3574, (734)998-9101 or (FAX) (734)998-9113. No part
of a JSTOR transmission may be copied, downloaded, stored, further transmitted, transferred, distributed, altered, or
otherwise used, in any form or by any means, except: (1) one stored electronic and one paper copy of any article
solely for your personal, non-commercial use, or (2) with prior written permission of JSTOR and the publisher of
the article or other text.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

American Mathematical Monthly is published by Mathematical Association of America. Please contact
the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained
at http://www jstor.org/journals/maa.html.

American Mathematical Monthly
©1992 Mathematical Association of America

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2000 JSTOR

http://www.jstor.org/
Tue Mar 28 19:59:19 2000



Connections in Mathematical Analysis:
the Case of Fourier Series

Enrique A. Gonzalez-Velasco

INTRODUCTION. Napoleon Bonaparte’s expedition to Egypt took place
in the summer of 1798, the expeditionary forces arriving on July 1 and capturing
Alexandria the following day. On the previous March 27 a young professor at the
newly founded Ecole Polytechnique, Jean-Joseph Fourier (1768-1830), was sum-
moned by the Minister of the Interior in no uncertain terms [16, p. 64]:

Citizen, the Executive Directory having in the present circumstances a
particular need of your talents and of your zeal has just disposed of you for
the sake of public service. You should prepare yourself and be ready to
depart at the first order.

It was in this manner, perhaps not entirely reconcilable with the idea of Liberté,
that Fourier joined the Commission of Arts and Sciences of Bonaparte’s expedi-
tion. The military forces conquered Cairo on July 24, and by August 20 Bonaparte
had decreed the foundation of the Institut d’Egypte in Cairo to promote the
advancement of science in Egypt. Its first meeting, with Fourier appointed as its
permanent secretary, was held on August 25.

After several military encounters the French surrendered to invading British
forces on August 30, 1801, and were forced to depart from Egypt. Upon his return
to France, Fourier resumed his post at the Ecole Polytechnique but only briefly. In
February of 1802 Bonaparte appointed him Préfet of the Department of Isére in
the French Alps. It was here, in the city of Grenoble, that Fourier returned to his
research endeavors, with which we shall presently occupy ourselves.

But Fourier’s stay in Egypt had left a permanent mark on his health that was to
influence the direction of his research. He contracted rheumatic pains during the
siege of Alexandria and the sudden change of climate, from that of Egypt to that
of the Alps, was distressing to him. The facts are that he lived in overheated
rooms, that he covered himself* with an excessive amount of clothing even in the
heat of summer, and that his preoccupation with heat extended to the subject of
heat propagation in solid bodies, heat loss by radiation and heat conservation. It
was then on the subject of heat that he concentrated his main research efforts.

The results were first presented to the Institut de France on December 21, 1807
as a Mémoire sur la propagation de la chaleur. It was not entirely well received, and
the committee that was to judge it and publish a report on it never did so (it
appeared first in [11]). Instead, criticisms were made personally to Fourier in one
of his visits to Paris in 1808 or 1809. They came mainly from Laplace and Lagrange
and referred to two major points: Fourier’s derivation of the equations of heat
propagation and his use of some series of trigonometric functions known today as
Fourier series. He replied to these objections and, as a means to settle the question,
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suggested that a public competition be set up and a prize awarded by the Institut
to the best work on the propagation of heat. Laplace—who had by then become
supportive of Fourier’s work—was probably instrumental in converting this sugges-
tion into reality, and this was indeed the subject chosen for a prize essay for the
year 1811. Another committee, including Lagrange and Laplace, was to judge on
the only two entries, and on January 6, 1812, the prize was awarded to Fourier’s
Théorie du mouvement de la chaleur dans les corps solides. However, the committee’s
report expressed some reservations, specifically stating that [11, p. 452]

the manner in which the Author arrives at his equations is not exempt from
difficulties, and that his analysis, to integrate them, still leaves something to
be desired in the realms of both generality and even rigor.

Fourier protested but to no avail, and his new work, like his previous memoir, was
not published by the Institut at that time. He was to ultimately prevail, and in 1822
he gathered the larger part of his researches on heat in his monumental work
Théorie analytique de la chaleur [10].

There is no doubt that today this book stands as one of the most daring,
innovative, and influential works of the nineteenth century on mathematical
physics. The methods that Fourier used to deal with heat problems were those of a
true pioneer because he had to work with concepts that were not yet properly
formulated. He worked with discontinuous functions when others dealt with
continuous ones, used integral as an area when integral as an antiderivative was
popular, and talked about the convergence of a series of functions before there
was a definition of convergence. At the end of his 1811 prize essay, he even
integrated ‘functions’ that have value « at one point and are zero elsewhere. But
such methods were to prove fruitful in other disciplines such as electromagnetism,
acoustics and hydrodynamics. It was the success of Fourier’s work in applications
that made necessary a redefinition of the concept of function, the introduction of a
definition of convergence, a reexamination of the concept of integral, and the ideas
of uniform continuity and uniform convergence. It also provided motivation for the
discovery of the theory of sets, was in the background of ideas leading to measure
theory, and contained the germ of the theory of distributions. In the remaining
sections we shall examine the steps that led from Fourier’s work to the develop-
ment of each of these pillars of classical analysis.

CONVERGENCE AND UNIFORM CONVERGENCE. One of the first problems
studied by Fourier was that of a thin bar made of some conducting material, which,
for convenience, we shall assume to be of length 7 and located along the x-axis
with endpoints at x = 0 and ¥ = =. If the temperature at a point x at time ¢ is
denoted by u(x, t), Fourier deduced that it satisfies the equation

u, = kuxx’ (1)

where k is a positive constant. If its endpoints are maintained at zero temperature
for ¢t > 0 and if its initial temperature distribution is given by a known function f,
we must solve (1) subject to the conditions u(0,t) = u(w,t) =0 for ¢t > 0 and
u(x,0) = f(x) for 0 < x < 7. Fourier f(gund that, for any positive integer n and
any real constant c,, the function c,e ™" %' sin nx is a solution of (1) that vanishes
at the endpoints. So is the sum of any number of such functions, but none of these
sums need satisfy the initial condition because f may not be a sum of sine
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functions. Fourier then proposed an infinite sum

©

u(x,t) = Y c,e "* sin nx, (2)

n=1

and set out to find the constants ¢, such that

u(x,0) = ilcnsinn.x=f(x). 3)

This is easy if we assume that the last equality holds, if each term of (3) is
multiplied by sin mx, and if the resulting expression can be integrated term by
term. Then

2
¢n = = [ f(x)sin nxdx. (4)
™70

The series in (3) is a particular instance of a more general form that contains
cosine terms in addition to sine terms, the usual Fourier series.

Now, the idea that an infinite sum of trigonometric functions can add up to an
arbitrary function was rejected by the mathematical establishment. The main
obstacle was precisely the concept of function popular at the time. Mathematicians
were used to functions given by analytic expressions such as roots, logarithms and
so on. How, they demanded, can f(x) = e* be the sum of an infinite series of sines
on an interval [—,7]? Why, this function is not even periodic while the sine
functions are and, consequently, so is the sum of a series of sines. Surprisingly,
they failed to realize that it could coincide with a periodic function over a bounded
interval. Fourier gave numerous examples in which adding more and more terms
of (3), where the ¢, are computed from a given function f, results in a sum that is
closer and closer to f. But an abundance of examples is not a proof that (3)
converges. The problem that mathematicians faced in the early nineteenth century
is that there was no definition of convergence. Surely, the concept did exist in
some vague manner, but mathematics deals with quantities and comparisons
between quantities, with equalities and inequalities. What was needed was a
definition of convergence involving comparisons between the partial sums of a
series and its proposed sum, such comparisons to be established by means of
inequalities. One of the first definitions of convergence along these lines was given
by Fourier himself in his prize essay of 1811, later incorporated into his book of
1822. He stated that to establish the convergence of a series [10, pp. 196-197]

it is necessary that the values at which we arrive on increasing continually the
number of terms, should approach more and more a fixed limit, and should
differ from it only by a quantity which becomes less than any given magni-
tude: this limit is the value of the series.

The use of inequalities is already implicit in his less than any given magnitude.
More precise and influential was the definition of convergence given by Augustin-
Louis Cauchy (1789-1857). He was the first to understand the importance of rigor
in analysis and the first to use inequalities in his definitions of limits and
continuity. We shall never know whether or not Fourier’s earlier definition helped
him in shaping his own ideas. But once in possession of a rigorous definition of
lirr}it, Cauchy published the following in his 1821 textbook Cours d’analyse de
I’ Ecole Royale Polytechnique [6, series 2; 3, p. 114]:
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Let s, = u,+u; +u, + -+ +u,_, be the sum of the first n terms [of the
series under consideration], » being any natural number. If, for always
increasing values of n, the sum s, approaches a certain limit s, the series will
be called convergent and the limit in question will be called the sum of the
series.

This is essentially the modern definition. More remarkably, Cauchy did not limit
himself to stating it. On the next page he gave theorems containing tests for
convergence: the Cauchy criterion and the root and ratio tests. A proof of the
convergence of Fourier series was attempted by Poisson in 1820, by Cauchy in 1823
and, of course, by Fourier himself throughout his life. He never succeeded, but one
of his sketches for a proof [10, pp. 438—440] would be of value to the man who
finally did.

In 1822 a West Prussian teenager, Johann Peter Gustav Lejeune-Dirichlet
(1805-1859), came to Paris to study mathematics. There he became acquainted
with Fourier, who encouraged him to complete his sketch of the convergence
proof. It would be some time, however, before Dirichlet could do so. In 1829,
already a professor at Berlin, he published a paper entitled Sur la convergence des
séries trigonométriques qui servent a représenter une fonction arbitraire entre des
limites données [7, 1, pp. 117-132]. After replacing a certain trigonometric identity
in Fourier’s sketch of proof with one of his own, he succeeded in giving sufficient
conditions for convergence: if f is piecewise continuous and has a finite number of
maxima and minima, then its Fourier series converges to the average of the
right-hand and left-hand limits of f at each x.

Dirichlet’s theorem is in flagrant contradiction with an earlier one by Cauchy.
In his Cours d’analyse Cauchy had stated that the sum of a convergent series of
continuous functions is continuous [6, series 2, 3, p. 120]. Already in 1826 Abel had
remarked that this theorem is wrong [1, 1, pp. 224-225], and then, in 1829,
Dirichlet’s theorem made this abundantly clear. This is not mentioned to show a
blemish in Cauchy’s work, but because of its connection with an important
discovery. Probably at Dirichlet’s prompting, one of his students, Phillip Ludwig
von Seidel (1821-1896), was led to investigate this matter in 1847. Here is his
report: if 7% _,u,(x) is a convergent series of continuous functions with sum f(x),
I is an interval in the domain of these functions, and & > 0 is given, let N be the
smallest positive integer such that

n=N+1

<eg

for all x in I. Then the given series is said to converge arbitrarily slowly on I if
N — ® as ¢ = 0. Using this new concept, that was unavailable to Cauchy in 1821,
Seidel was able to prove Cauchy’s theorem provided that the convergence is not
arbitrarily slow on any interval [20]. However, he did not pursue the matter, nor
did he realize that he had put forth a powerful new kind of convergence.

As it happens, this idea of a different kind of convergence was not entirely new.
Already in 1838 Christof Gudermann (1798-1852) had referred to a kind of
convergence at the same rate—im ganzen gleichen Grad—that is the precursor of
the modern concept of uniform convergence [13, pp. 251-252]. But its importance
escaped him, as it would escape Seidel later on. This realization was left to
Gudermann’s student Karl Theodor Wilhelm Weierstrass (1815-1897), one of the
giants of modern mathematics. Uninspired by the lectures at the University of
Bonn, where he was a student, he went to Miinster in 1839 to attend Gudermann’s
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lectures. Gudermann was to influence Weierstrass’ research and it is quite likely
that, while at Minster, they discussed the new concept of convergence. Weierstrass
never finished his doctorate and became a Gymnasium teacher in 1841. During his
tenure, until 1854, he produced an incredible amount of first-rate research in
manuscript form that, regretably, remained unpublished. The fact that he referred
to uniform convergence—gleichmdssige Convergenz—in an 1841 manuscript [23, 1,
pp. 68—69] supports the idea that he may have learned about it from Gudermann.
Weierstrass’ many research achievements eventually earned him a position at the
University of Berlin in 1856, where he frequently discussed uniform convergence.
He defined it formally, for functions of several variables, in [23; 2, pp. 201-233,
Art. 1]. Adapted to the one variable case, his definition was:

An infinite series 1) _,u, converges uniformly in a subset B of the region of
convergence if given an arbitrarily small positive quantity § a whole number
m can be found such that the absolute value of the sum X _, u, is smaller
than 6 for each value of n > m, and for each value of the variable in B.

Still, the importance of Weierstrass’ contribution stems from the fact that he
realized the usefulness of uniform convergence and incorporated it in theorems on
the integrability and differentiability of series of functions term by term.

G. Lejeune-Dirichlet

Reproduced with the permission of Chelsea Publishing Company, Inc., New York.
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THE CONCEPT OF FUNCTION. A lasting controversy over the concept of
function started in 1747 when Jean Le Rond d’Alembert (1717-1783), of Paris,
published his researches on the vibrating string [3]. If a piece of string, initially
located along the x-axis and tied down at its endpoints at x = 0 and x = q, is
displaced and then released, and if its vertical displacement at x at time ¢ is
denoted by u(x, t), d’Alembert showed that it satisfies the equation

u,=c’u,, (5)
where c is a constant. He also showed that if the initial displacement is given by a
known function f, then the displacement of the string at any point x and at any
time ¢t > 0 is given by

u(x,t) = %[f(x +ct) + f(x - ct)],

where f is the odd periodic extension of f to R of period 2a. It is quite clear that
f has to be twice differentiable for u to satisfy (5). However, this differentiability
was rejected by Leonhard Euler (1707-1783) who, in a paper of 1748 written at
Berlin, allowed a function with a discontinuous derivative as a better model for a
plucked string than a twice differentiable function [8, series 2; 10, pp. 63-771.
d’Alembert would not accept such functions [2], and this disagreement marked the
beginning of a lively mathematical argument between the two men. The fact is that
Euler’s proposal represented something very new, since the concept of function at
the time was that of an analytic expression or formula. In fact, this was the year of
publication of Euler’s enormously influential treatise Introductio in analysin infini-
torum [8, series 1, 8 and 9], the standard text on analysis for the next half century.
At the very beginning, in the fourth paragraph, he defined a function of a variable
quantity as

any analytic expression made up in any manner whatever from that variable
quantity and numbers and constants.

But then, that very same year, the vibrating string problem made him realize that
this definition was too narrow to fit the needs of applied mathematics.

d’Alembert’s solution completely describes the motion of the string, for it
specifies the position of each of its points at each time. Mathematically that is all
very well, but where is the musical description of the phenomenon? Where are the
vibrations? This solution does not show a periodicity in ¢. It was Euler who stated
that the motion of the string is periodic in time and made up of individual
vibrations. In fact, in 1748 he wrote down the equation

! . hw nw
u(x,t) = Y. c,sin —x cos —t, (6)
a c

meant to be valid only if f is a sum of sines, but did not specify whether these
sums are finite or infinite. Upon reading d’Alembert’s and Euler’s papers, Daniel
Bernoulli (1700-1782), of Basel, decided to publish his own ideas on the subject,
which he did in 1753 [4]. Perhaps there was an element of irritation in the fact that
Euler now stated what he had known for some time. In a previous paper Bernoulli
had already stated that the shape of the string at a given instant is the superposi-
tion of individual vibrations. Now, after having a bit of fun criticizing d’Alembert
and Euler—he referred to the former as a great mathematician in abstractis—he
asserted that this shape can be represented by an infinite series of sines. In
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particular, for ¢ = 0,

f(x) = i c, sin %tx. (7)

n=1

If we accept this equation, we can combine it with (6) to arrive at the following
expression for the solution of the vibrating string problem.

it . hmw nir
u(x,t) = Y c,sin —x cos —1.
a c

n=1

Although Bernoulli never actually wrote this equation, it is called nowadays
Bernoulli’s solution, and it clearly shows that the motion of the string is periodic in
time. Bernoulli based his equation (7) on physical considerations alone and
provided no mathematical reasons whatsoever to back it up. Euler pounced on it
immediately, the very same year, refusing to accept it [8, series 2; 10, pp. 232-254].
For one thing, its right-hand side is a periodic function, which f need not be.
Moreover, harping on his earlier idea that f need not be differentiable at all
points, he rejected (7) because the sine functions on the right are differentiable.
d’Alembert published a similar attack on Bernoulli’s paper, but he did not
surrender his position for, he said, he had infinitely many coefficients to choose to
make the equality true. All this created a heated controversy that raged through
the 1770’s, without any of the participants giving an inch to the others’ point of
view. It was later revived through Fourier’s researches on heat and eventually
settled once and for all: the sum of an infinite series of sines can be a function that
is not differentiable at all points.

With all this, Euler’s wider concept of function emerged as the winner over the
idea of function as a formula. In his Institutiones calculi differentialis of 1755, Euler
himself gave the new definition as follows [8, series 1; 10, p. 41

If some quantities depend on other quantities so that they change when the
latter are varied, then the former quantities are called functions of the latter.

This would not be the last word, however. For one thing, it is vague, lacking the
precision demanded by the publication of Cauchy’s Cours d’analyse. For another it
was not totally accepted. What definitely won the day was Fourier’s work, his use
of discontinuous functions, and Dirichlet’s proof of Fourier’s assertion that a
trigonometric series could converge to such a function. After this there was no
turning back to the purely analytic concept of function. Fourier himself tried his
hand at a new definition as follows [10, p. 432]:

The function f(x) denotes a function completely arbitrary, that is to say a

succession of given values, subject or not to a common law, and answering to

all the values of x between 0 and any magnitude X.

But, in spite of this completely arbitrary qualifier (what does it mean, anyway?), it
is clear from an examination of his work that Fourier never had in mind a function
with more than a finite number of discontinuities.

Neither did Dirichlet up to a point. But then he realized that a full generaliza-
tion of his convergence theorem should allow integrable functions with infinitely
many discontinuities [7, p. 131]. If this motivated him to search for a general
definition of function, then he must have lost track of what he was after for the
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fact is that, contrary to what many have asserted, he never stated such a definition.
Later on, during the years 1847-1849, Dirichlet had the good fortune of counting a
very gifted young man among his students at the University of Berlin. Georg
Friedrich Bernhard Riemann (1826—-1866) had transferred from the University of
Géttingen to Berlin, and here Dirichlet was his favorite teacher and was instru-
mental in shaping some of Riemann’s research interests. We do not know whether
or not they discussed the concept of function before Riemann returned to
Gottingen, where he received his doctorate in 1851. The fact is that in the opening
paragraphs of his thesis we read [18, p. 3]:

If we let z be a variable quantity that can gradually assume all possible real
values, when to each of its values there corresponds a unique value of the
undetermined quantity w, then we say that w is a function of z... this
definition does not specify any fixed law between the individual values of the
function, because, after it is defined on a particular interval, the way it can be
extended outside remains entirely arbitrary.

Bernhard Riemann

Dirk J. Struik, A Concise History of Mat\hematics, 1948, Dover Publications, Inc., New York. Reprinted
with permission.

Which is what Fourier had been saying all along: no common law, and it does not
matter how the function is extended beyond [ —r, 7]. But with Riemann we have
precision, we have this correspondence of a unique value of the function to each
value of the variable. In short, the first entirely general and modern definition of
function. With it ends, once and for all, an era of misconception. For it may once
have been believed, when functions were just given by analytic expressions, that
every continuous function has a derivative but not necessarily an integral. In fact,
the opposite is true: not every continuous function has a derivative, while they all
have integrals. But this is another topic.
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INTEGRATION. The popular concept of integral in the eighteenth century was
that of antiderivative. Leibniz had defined the integral much earlier as a sum, but
his idea did not quite catch for some time. How could it, involving, as it does, the
sum of infinitely many infinitely small quantities? Fourier changed that. He was
used to handling functions not given by analytic expressions, but by curves and
pieces of curves, and found antiderivatives to be impractical. Instead he remarked
that, whether or not f is continuous, the integral defining the constant ¢, in (4)
can be viewed as the area under the graph of f(x)sin nx from 0 to = [10, p. 186].
It may have been responding to this interpretation of the integral as an area that
Cauchy gave the following definition in his Resumé des lecons donnés a I’ Ecole
Royale Polytechnique sur le calcul infinitésimal of 1823 [6, series 2, 4, p. 125], which
we reproduce in the current notation. If f is continuous on an interval [a, b] and if
Xgs X15- -+, X, are points such that a = xy <x; < -+ <x, = b, then

[ = Jim % FCei) (x5, ®)

provided that x; — x;,_; — 0 for each i as n — «. Cauchy was then able to prove
—not rigorously because he lacked the concept of uniform continuity—the exis-
tence of this limit. Notice also that if f is piecewise continuous it is still integrable
because [a, b] can be partitioned into a finite number of subintervals where f is
continuous, and then the integrals over each of these subintervals can be added
together. Incidentally, this notation for the definite integral, adopted by Cauchy, is
due to Fourier [10, p. 463].

This definition suffices to prove Dirichlet’s convergence theorem. In fact,
Dirichlet had limited the discontinuities of his functions to a finite number to
make them integrable. In order to generalize the theorem to functions with
infinitely many discontinuities, he only needed to make sure that they could be
integrated. That is, what he needed is what Cauchy’s definition did not provide,
namely, a condition for integrability. Dirichlet never achieved his goal of integrat-
ing functions with infinitely many discontinuities, but Riemann, who had acquired
an interest in these topics from Dirichlet, would succeed. In 1854, wishing to
qualify for a position at Gottingen as Privatdozent, he wrote a Habilitationsschrift,
which at Dirichlet’s suggestion was Uber die Darstellbarkeit einer Function durch
eine trigonometrische Reiche. Here he modified Cauchy’s definition by replacing the
factor f(x;_,) in (8) by f(¢,), where ¢, is any point in the subinterval [x;_,, x;], and
by removing the continuity requirement on f. Instead, he turned things around
and defined f to be integrable if the limit

\nh,_I}:o Y f(t)(x = x,20), %)

i=1

exists, provided that, for each i,x; —x;,_; = 0 as n — « [18, p. 239]. Next he
stated a theorem giving conditions for the integral to exist [18, pp. 240-241], and to
show the wide applicability of his definition, he gave an example of an integrable
function with infinitely many discontinuities [18, p. 242].

Of course, not every function is integrable. For instance, at the end of his 1829
paper, Dirichlet pointed out that if ¢ and d are constants and if f(x) = ¢ when x
is rational and f(x) = d when x is irrational, then the integrals that define the
Fourier coefficients of f lose all significance [7, p. 132]. Indeed, the sum in (9) has
value c if each ¢, is rational and value d if each ¢, is irrational, so that the limit
does not exist. However, this is a rather weird function and the fact that it is not
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integrable was regarded as unimportant. It seemed for quite some time that
Riemann’s definition of integral was the most general imaginable. Reality, in its
usual fashion, would soon dispel this illusion.

THE THEORY OF SETS. The coefficients in (3) were obtained by assuming that
the series converges and can be integrated term by term. Can it? A theorem of
Weierstrass states that it can if the convergence is uniform. Then we ask: when
does a Fourier series converge uniformly? We are not just posing a purely
theoretical question because the needs of applications demand an answer. For
instance, in order for (2) to be the solution of the problem posed earlier, it must be
continuous for t > 0 and 0 < x < 7. This is true if (2) converges uniformly, as
shown by Abel, unknowingly using the idea of uniform convergence [1; 1,
pp. 224-225]. But then, in particular, the convergence of (2) must be uniform for
t = 0, that is, the Fourier series in (3) must be uniformly convergent. So, once
again, when does a Fourier series converge uniformly? This is the question that
Heinrich Eduard Heine (1821-1881), of the University of Halle, posed himself,
and in 1870 he showed that if a function satisfies Dirichlet’s conditions on
[—, 7], then its Fourier series converges uniformly on the set that results after
removing arbitrarily small neighborhoods of the points where it is discontinuous
[15].

Now, in his integration paper Riemann had also considered trigonometric series
on [—1r, ] of the usual form

1a,+ Y, (a,cos nx + b, sin nx) (10)

n=1

but with arbitrary coefficients, not necessarily the Fourier coefficients of some
function [18, p. 245]. In principle, there may be several choices of the coefficients
for which (10) converges to the same function. But this is impossible if (10)
converges uniformly, for then term by term integration shows that they must be the
Fourier coefficients of its sum. It was at this point that Heine posed a second
problem: how to weaken the hypothesis of uniform convergence and still be able to
conclude that the coefficients are unique. He found that if (10) converges uni-
formly on the subset of [—ar, ] that remains after removing arbitrarily small
neighborhoods of a finite number of points, then the coefficients are unique [15].

Notice that Heine, even though geographically removed from the
Weierstrassian world at Berlin, used uniform convergence. He had been a student
of Weierstrass and may have learned about it before leaving Berlin, or he may
have heard about it from a: new arrival from Berlin, Georg Ferdinand Louis
Philippe Cantor (1845-1918), who had become a Privatdozent in 1869 at Halle. In
any case, Heine encouraged Cantor to do some further work on the problem of
uniqueness of the coefficients of (10). Cantor started with the idea of discarding
uniform convergence entirely, and succeeded fairly soon, but had to assume that
(10) converges at every point [5, pp. 80—-83]. Then, in 1871, he was able to allow
(10) to diverge a finite number of points and still conclude that its coefficients are
unique [5, pp. 84-86]. But Cantor was ambitious and found these results short of
what he wanted to do, namely to reach the same conclusion after allowing the
convergence of (10) to fail at infinitely many points. But then, what kind of infinite
set of points should this be? In 1872, Cantor found that, in order to construct such
a set, he needed to develop first a theory of the real numbers. Having accom-
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plished this, he defined the concept of limit point [5, p. 98]:

Given a set of points P, if there are an infinite number of points of P in
every neighborhood, no matter how small, of a point p, then p is said to be a
limit point of the set P.

By a neighborhood of p Cantor meant an open interval containing p. Then he
defined the derived set P' of P as the set of all limit points of P, the second
derived set P” of P as the derived set of P’, and so on until, after k iterations, the
k-th derived set P® of P is the derived set of P*~D. Then he proved his most
general uniqueness theorem in the following form: if (10) vanishes for all values of
x in [—ar, ] except for those corresponding to a subset P such that P is empty
for some k, then all its coefficients are zero [5, p. 99].

Having found his motivation on questions about trigonometric series, Cantor
had just laid the foundations on which he would then build his acclaimed and
controversial theory of sets.

MEASURE-THEORETIC INTEGRATION. This is, then, the way it was: in 1870
Cantor gave the first steps toward the theory of sets by investigating the set of
points where (10) may fail to vanish and still conclude that a, = b, = 0. This is,
instead, the way it could have been: in 1870 Hermann Hankel (1839-1873) could
have given the first steps toward the theory of sets by investigating the set of points
where a function may be discontinuous and still integrable. A professor at
Tiibingen, Hankel had been a student of Riemann at G6ttingen and was seeking a
necessary and sufficient condition for integrability. In view of Riemann’s example
of a highly discontinuous integrable function, Hankel wanted to characterize
integrability in terms of the set of points where a function is discontinuous, and
started by defining the jump of f at a point x, to be the largest—i.e., the
supremum—of all numbers o > 0 such that in any interval containing x, there is
an x for which [f(x) — f(x,)| > o [14, p. 87]. Then, if S, denotes the set of points
where the jump of f is greater than o, Hankel concluded that a bounded function
is integrable if and only if for every o > 0 the set S, can be enclosed in a finite
collection of intervals of arbitrarily small total length, a fact that we express by
saying that S, has content zero. On the other hand, if a set cannot be so enclosed it
is said to have positive content. With this result Hankel initiated the set-theoretic
approach to integration.

But instead of developing these ideas, Hankel next made a mistake and stated
the wrong theorem. First he defined a set to be scattered—the modern term, due
to Cantor, is nowhere dense—if between any two of its points there is an entire
interval that contains no points of the set. And then, erroneously thinking that a
set has content zero if and only if it is scattered, he stated that a bounded function
is integrable if and only if for every o > 0 the set S, is scattered. Henry John
Stephen Smith (1826-1883), of Oxford, carefully read Hankel’s paper, found the
error and, in 1875, gave several methods to construct nowhere dense sets of
positive content [21, p. 148]. It is easy to see that if S is one such set contained in
an interval / andif f=1o0on S and f=0on I — S then f is not integrable.

Then, in 1881 Vito Volterra (1860-1940), a student at Pisa, used a nowhere
dense set of positive content to construct a function f on [0, 1] such that f’ exists
and is bounded at every point, but is not integrable [22]. Therefore, while f’ always
has an integral in the sense of antiderivative, it may not have an integral in
Riemann’s sense. It can then be said that Riemann’s definition is beginning to
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show some rough edges. Furthermore, it was known, at least since 1875, that it is
not always possible to interchange passage to the limit and integration in a
sequence of integrable functions.

All this meant that the definition of integrability had to come up for review and,
in view of Hankel’s characterization of it in terms of sets of content zero, the new
approach had to be set-theoretic. After some preliminary work by Marie-
Ennemond Camille Jordan (1838-1922), this was accomplished by Henri-Léon
Lebesgue (1875-1941) in his doctoral dissertation of 1902 at the Sorbonne, later
expanded into a book [17]. Here he introduced a theory of the measure of sets and,
based on it, a definition of integral that generalizes that of Riemann but is free of
the defects pointed out above [17, pp. 110-121].

THE THEORY OF DISTRIBUTIONS. In his 1811 memoir Fourier considered
heat propagation in an ideal bar of infinite length whose initial temperature is a
known function f. A series solution was not possible in this case and he proposed,
instead, an integral solution. To satisfy the initial condition, it must equal f for
t = 0, leading—in modern notation—to the integral equation

f(x) = [ flo)e™ do, (11)
that must be solved for the unknown function f The solution is
Y 1 * —iwx
floy = = [ f(x)eax. (12)

Fourier’s proof was unrigorous but interesting because it contains the germ of
further "discoveries, and we shall examine it next. If we substitute (12) into the
right-hand side of (11), reverse the order of integration and simplify, we obtain

sin p(x —s)

—s)dow|ds = — 1 —ds. (1
j f(s)( [ cos w(x —s) w) s f f(s) im o s. (13)
Then Fourier stated that the right-hand side is equal to

/w £( )m;sl ds, (14)

e m(x —5)
where, he said, p = «. Let’s just say that if p > 0 is fixed and very large (14) is an
approximation of the right-hand side of (11). For p very large, sin p(x — s)
undergoes a complete oscillation on every interval [x + k7 /p, x + (k + 2)w /p],
where k is any integer, and f(s)/(x — s) is approximately constant in each for
k # —1. In the remaining interval f(s) = f(x), and then

x+m/p sin p(x )

—mp m(x =)

® sin p(x — )
J 1) =)

But, as above, the integral of the quotient on the right over the rest of the real line
is negligible, and then

ds = f(x )/#/p sin pu

—-m/p TU

ds = f(x )[ du.

j.oo £(s) sin p(x — )

w Sin pu X) e Sint
D du=f( )[
m(x —5) t

w — o0

ds = f(x)[ dt = f(x).

(15)

Fourier, however, kept p = o throughout his argument [10, pp. 426-429]. It seems
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that he would have us believe that there is a function 6 defined by
sin px

8(x) = lim
p—>® mTX

and such that, as suggested by (15),

S F(9)8(x = 5) ds = f(x). (16)

(15) also suggests that the integral of 8 over the whole real line is one, while the
argument following (14) shows that its integral over any interval that excludes the
origin is zero. In short, § = 0 outside the origin and §(0) = o.

There is, of course, no such function. But we wish there were for the sake of
applications. For instance, in An essay on the application of mathematical analysis
to the theories of electricity and magnetism of 1828, George Green (1793-1841), of
Cambridge, considered the problem of solving the equation

uxx+uyy+uzz=f (17)

in a bounded region of space that contains the origin. Here u is the electrostatic
potential created by a charge distribution given by f. He showed that he could
solve this problem if he could first solve it for the restricted case in which there is
just one point charge—infinite charge density—at the origin and none elsewhere
[12, pp. 32-33]. Now, let’s say that there is a & function on R3 with the properties
listed above except that the integrals are three-dimensional. Since, in particular,
& = 0 outside the origin and §(0) = x, we can rephrase Green’s claim as follows: a
solution of (17) can be obtained from a solution of

Ue, T Uy, +Uu,, =38. (18)

Indeed, let u® be a solution of (18), denote the function of x defined by the
left-hand side of (16) by f * §, and define f *u® in the same way but replacing 8
with u? in the integrand. Then u = f*u® is a solution of (17) because, if
differentiation under the integral sign is permitted,

u“+uyy+uu=f*(uix+u§y+u‘zz)=f*6=f,

where the last equality is just (16).

The power of wishful thinking cannot be underestimated. During the period
1945-1948 Laurent Schwartz (1915— ), working in isolation at Grenoble as Fourier
had done before, developed a complete, rigorous, and applicable theory of this &
and similar ‘functions’, which he called distributions, culminating in the publication
of his two-volume work Théorie des distributions [19].

EPILOGUE. Back in 1811, disappointed by the committee’s reaction to his mem-
oir, Fourier returned to Grenoble and, being far from Paris, lacked the power and
the influence to have his prize essay published by the Institut. But new political
events would soon change his fortune. A European Alliance against Napoleon
forced his unconditional abdication on April 11, 1814, restoring the monarchy in
the person of Louis XVIII. Fourier remained as Préfet of Isere under the new
regime, a tribute to his diplomatic abilities, but early the following March he
learned that Napoleon had returned from his exile at Elba. Fearing the conse-
quences of his temporary allegiance to the Crown, he fled to Lyons, but by the
time he arrived there the Emperor had forgiven his ungrateful behavior and
appointed him Préfer of the Rhoéne. He was dismissed from this position on
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May 17 and, having been granted a pension of 6,000 francs by Napoleon, Fourier
finally returned to Paris. A new allied army defeated Napoleon on June 18, 1815,
at the Battle of Waterloo, and he was forever banished to the island of St. Helena.
Fourier’s pension never materialized under the King’s restored government, and
he found himse,lf penniless. However, with the influence of a friend and former
student at the Ecole Polytechnique, the Count of Chabrol de Volvic, he secured the
position of Director of the Bureau of Statistics of the Department of the Seine,
and this allowed him to remain in Paris permanently and to set down to business.

First, there was the publication of the prize essay, a matter in which he
succeeded after a considerable amount of insistence. It finally appeared in 1824
and 1826 in volumes 4 and 5 of the Mémoires de I’ Académie Royale des Sciences de
UInstitut de France [9; 2, pp. 1-94]. But before this, in May of 1816, two new
members of the Academy of Sciences were to be elected. Fourier lobbied vigor-
ously on his own behalf and, after several rounds of voting, was elected to the
second position. The King, resentful of Fourier’s activities during Napoleon’s
second period in power, refused to give his approval. But a regular vacancy was
created again in 1817, and on the election of May 12 Fourier obtained forty seven
of the fifty votes. The King was then compelled to grant his approval.

Fourier’s scientific standing was no longer in doubt. In 1822 his Théorie
analytique de la chaleur was printed in Paris, and on November 18 of the same year
he became Permanent Secretary of the mathematics section of the Academy of
Sciences. His last years were marked by honors and poor health. He was elected to
the Royal Society of London and to the Académie Francaise in 1826. Then, the
next year, he became president of the Conseil de perfectionnement de I’Ecole
Polytechnique. But already in 1826, in a letter to Auger, permanent secretary of the
French Academy, he claimed to see the other bank where one is healed of life (16,
p. 137]. In addition to his rheumatism, which never left him, he developed a
shortness of breath that was particularly acute if not standing up. Resourceful to
the very end, he invented a contraption in the form of a box with holes for his arms
and head to protrude, and carried on in this fashion. The end came at about four
o’clock in the afternoon of May 16, 1830 in the form of a heart attack, and shortly
afterward he died.
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