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6 Hint: Solve by Laplace transforms the differential equation

G"-a’G=s(t-t", Gy =Gy =0.

13. By text equation (8.17)

X
(1)  y=-(cos x)f (sinx') £(x") dx’
0

m/2
-(sinx)f {cosx")f(x') dx'.
X
We sketch the given function £(x")

x' 0<x'<n/4,

(2) f(x') =

g—-x', %(x'<%.

&)=
—
|=
NI

Now we use the graph to see what

%
A
&~
»
\2

f(x') is in each of the integrals

in (1). This depends on whether

il

x<4

or x>-2—.
For x<%:

In the integral from O to x, we see from the graph that
£(x') =x'. But the integral from x'=x to x' =-§ must be written
in two parts. For x' between x and 71:-, we have f(x') =x', but
for x' between ZT:' and -E, we have f(x') =g—-x'. Thus the inte-

grals in (1) are:

X X
f (sinx")f(x") dx'=f (sinx')x'dx' =sinx - xcos x,
0 0

/2 /4
f (cos x")f(x") dx'=f x' cos x' dx'
X X

n/2 .
+f (I-x')cos x' dx’
n/4
n/4

+% sinx' - (cosx' +x' sinx")

/2
=cosx'+x'sinx'

x m/4

=-cosx-xsinx+ /Z




13.

(continued)

(after some algebra). Substitute these results into (1) to

find y(x) when x<£ .
y(x) = -(cos x) (sinx - x cos x) - (sinx) (- cosx - x sin x+ /7)

=x-/Zsinx, x<£—.

m
For x>-5 :

This time the integral from 0 to x must be written as a sum
of two integrals. For x' between O and w/4, we have f(x') =x'
(see graph), and for x' between m/4 and x, we have f(x') =127‘X'.
For the integral from x to n/2, we have f(x') =£-—x'. Substi-
tute these into the integrals in (1) and evaluate as above to

get y(x) for x>£-, Thus find

x - /Z sin x, x<£—,

y{x) =
-E--x—/?cosx, x>£—.

It is straightforward to verify that y" +y=£f(x) and that

y(0) =y(n/2) =0 (check these).
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Section 9
Take the t Laplace transform of the heat flow equation for u(x,t),

3.
2
u_ 1 3u
1 T.Z 29t
X a '
with u. =u(x,0) =100x/2. This gives the differential equatilon
0 »
for U(x,p):
3. (continued)
2
U _1 1 100x
(2) L= (pU-u.) =— pU- )
ax? o 07 42 a?e
2 \
The solutions of 3_1.21-_-.220 are sinh(x ,'Ez )and cosh(x\/-—%_) ’
X Q a N

2
If U=k, then 2U=0, and %u=1°2ﬂ if K=-1%.
X a a L |3

Thus the general solution of (2) is

(3)  U(x,p) =Asinh(xp'/?/a) + B cosh(xp'/?/a) +—lg?—" .

Since the temperature at x=0 is held at 0° for all t, we have

u(0,t) =0 so
U(0,p) = [Laplace transform of u(0,t)] =0.
Similarly

u(g,t) =0, u(e,p) =0.
Substitute these values into (3) to get

-100
p sinh(epl/2/q)

B=0, Asinh(ep!/2/a)+ ¥=o, A=

Thus (3) becomes

_ 100 sinh(xp'/?/q) , 100x
p sinh(epl/2/4) pt

U(x,p) =

We assume the expansion given:

100 sinh(xp'/2/0) _100x 200> (-1)™lsin(nmx/t)
psinh(epl/2/a)  PE T & npp+ (anas/0) 2]

Take inverse Laplace transforms of each of the terms using L2

(text page 636) to get
o n+1 2
u(x,t) =%QZ——L——('IH e~ (nma/E)"¢ sin(nnx/£)
n=1

as on text page 552, equation (3.15).
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Section £

1. Let us find P2 using text equation (2.7)., For £=2, we see that
the coefficient of x* is zero and, by text equation (2.6), all
the following coefficients of even powers of x are 2Z2T0 also.
Thus the a, series is just 1-3x2. Remember that a, and a, are
arbitrary. We set a1==0 here since the a, series is an infinite

series and we want a polynomial. Then (with £=2, a; =0)
_ 2
y=ay(l- 3x°).
Legendre polynomials are required to be 1 when x=1. We get
1=aO(1-3) or a0=~1/2, so
P, () = - (1 - 3 =20x2-1)

as in text equation (2.8). Similarly, to find P3(x) from text
equation (2.7), let £=3, ao==0, and find a, to make y =1 when
x=1. To find Pa, let £=4, etc. To check your answers, see

Problems 4.3 and 5.3 below.

3, Graphs of Legendre polynomials.

Po(x)

Pg(x)

P3(x) Py (x)

Note that the graphs agree with the following facts:
Pl(l) =1 for all £,

Pl(O) =0 for odd £ (but not for even £).

1, £ even,
Py(-1) = (-1)t-

-1, £ odd.
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