$$| \frac{1}{1} \frac{$$

$$= \frac{1}{\sqrt{2}} \left[\cos w(+-+\delta) \left(\cos w(+-+\delta) \left(\frac{1}{2} - 1 \right) + \sin w(+-+\delta) \left(\frac{1}{2} - 1 \right) \right]$$

$$\int \int \partial u = \partial$$

$$y = \frac{1}{3} \int_{0}^{+} f(\tau - t_{0}) \sinh 3(t - \tau) d\tau$$

$$\begin{cases}
\frac{1}{3} \sinh 3(+-+0) & + > +0 \\
+ < +0
\end{cases}$$

6. Hint: Solve by Laplace transforms the differential equation

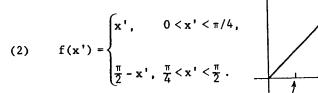
$$G'' - a^2 G = \delta(t - t'), \qquad G_0 = G_0' = 0.$$

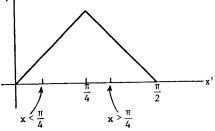
13. By text equation (8.17)

(1)
$$y = -(\cos x) \int_0^x (\sin x') f(x') dx'$$

$$-(\sin x)\int_{x}^{\pi/2}(\cos x')f(x') dx'.$$

We sketch the given function f(x')





Now we use the graph to see what f(x') is in each of the integrals in (1). This depends on whether $x < \frac{\pi}{4}$ or $x > \frac{\pi}{4}$.

For $x < \frac{\pi}{4}$:

In the integral from 0 to x, we see from the graph that f(x') = x'. But the integral from x' = x to $x' = \frac{\pi}{2}$ must be written in two parts. For x' between x and $\frac{\pi}{4}$, we have f(x') = x', but for x' between $\frac{\pi}{4}$ and $\frac{\pi}{2}$, we have $f(x') = \frac{\pi}{2} - x'$. Thus the integrals in (1) are:

$$\int_{0}^{x} (\sin x') f(x') dx' = \int_{0}^{x} (\sin x') x' dx' = \sin x - x \cos x,$$

$$\int_{x}^{\pi/2} (\cos x') f(x') dx' = \int_{x}^{\pi/4} x' \cos x' dx' + \int_{\pi/4}^{\pi/2} \left(\frac{\pi}{2} - x'\right) \cos x' dx'$$

$$= \cos x' + x' \sin x' \Big|_{x}^{\pi/4} + \frac{\pi}{2} \sin x' - (\cos x' + x' \sin x') \Big|_{\pi/4}^{\pi/2}$$

$$= -\cos x - x \sin x + \sqrt{2}$$

13. (continued)

(after some algebra). Substitute these results into (1) to find y(x) when $x<\frac{\pi}{4}$.

$$y(x) = -(\cos x)(\sin x - x \cos x) - (\sin x)(-\cos x - x \sin x + \sqrt{2})$$

= $x - \sqrt{2} \sin x$, $x < \frac{\pi}{4}$.

For $x > \frac{\pi}{4}$:

This time the integral from 0 to x must be written as a sum of two integrals. For x' between 0 and $\pi/4$, we have f(x') = x' (see graph), and for x' between $\pi/4$ and x, we have $f(x') = \frac{\pi}{2} - x'$. For the integral from x to $\pi/2$, we have $f(x') = \frac{\pi}{2} - x'$. Substitute these into the integrals in (1) and evaluate as above to get y(x) for $x > \frac{\pi}{4}$. Thus find

$$y(x) = \begin{cases} x - \sqrt{2} \sin x, & x < \frac{\pi}{4}, \\ \frac{\pi}{2} - x - \sqrt{2} \cos x, & x > \frac{\pi}{4}. \end{cases}$$

It is straightforward to verify that y'' + y = f(x) and that $y(0) = y(\pi/2) = 0$ (check these).

7.)
$$V(+) = \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ \cdot + i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+ i) e^{-t'} dt$$

$$= \int_{0}^{+} \frac{1}{a} \cdot \sinh a(+$$

$$= \left(\frac{e^{-\alpha t} - e^{-t}}{e^{\alpha^2 - 1}}\right)$$

$$= \frac{15.9}{71 \, \text{K}} \left[\frac{1}{1000} \left(\frac{1}{1000} \right) \right]^{3} \left(\frac{1}{1000} \right)^{3} \left(\frac{1}{100$$

3. Take the t Laplace transform of the heat flow equation for u(x,t),

(1)
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \frac{1}{\alpha^2} \frac{\partial \mathbf{u}}{\partial \mathbf{t}}$$

with $u_0 = u(x,0) = 100x/\ell$. This gives the differential equation for U(x,p):

(continued)

(2)
$$\frac{\partial^2 U}{\partial x^2} = \frac{1}{\alpha^2} (pU - u_0) = \frac{1}{\alpha^2} pU - \frac{100x}{\alpha^2 \ell}$$
.

The solutions of $\frac{\partial^2 U}{\partial x^2} = \frac{p}{\alpha^2} U$ are $\sinh\left(x\sqrt{\frac{p}{\alpha^2}}\right)$ and $\cosh\left(x\sqrt{\frac{p}{\alpha^2}}\right)$.

If
$$U = Kx$$
, then $\frac{\partial^2 U}{\partial x^2} = 0$, and $\frac{p}{\alpha^2} U = \frac{100x}{\alpha^2 \ell}$ if $K = \frac{100}{p\ell}$.

Thus the general solution of (2) is

(3)
$$U(x,p) = A \sinh(xp^{1/2}/\alpha) + B \cosh(xp^{1/2}/\alpha) + \frac{100x}{p\ell}$$
.

Since the temperature at x=0 is held at 0° for all t, we have u(0,t)=0 so

$$U(0,p) = [Laplace transform of u(0,t)] = 0.$$

Similarly

$$u(\ell,t)=0$$
, $U(\ell,p)=0$.

Substitute these values into (3) to get

B = 0, A
$$\sinh(\ell p^{1/2}/\alpha) + \frac{100}{p} = 0$$
, $A = \frac{-100}{p \sinh(\ell p^{1/2}/\alpha)}$.

Thus (3) becomes

$$U(x,p) = -\frac{100 \sinh(xp^{1/2}/\alpha)}{p \sinh(\ell p^{1/2}/\alpha)} + \frac{100x}{p\ell}.$$

We assume the expansion given:

$$\frac{100 \sinh(xp^{1/2}/\alpha)}{p \sinh(\ell p^{1/2}/\alpha)} = \frac{100x}{p\ell} - \frac{200}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin(n\pi x/\ell)}{n[p + (n\pi\alpha/\ell)^{2}]}.$$

Take inverse Laplace transforms of each of the terms using L2 (text page 636) to get

$$u(x,t) = \frac{200}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} e^{-(n\pi\alpha/\ell)^2 t} \sin(n\pi x/\ell)$$

as on text page 552, equation (3.15).

$$\frac{15.9}{5.1} \quad \frac{15.9}{4!} = \frac{39}{100} = 0$$

$$\frac{15.9}{4!} = 0$$

$$\frac{15.9}{4!} = 0$$

$$\frac{\int_{y}^{\sqrt{x}} = \left(\frac{\Lambda}{\sqrt{x}}\right)_{3}}{\int_{y}^{\sqrt{x}} = \left(\frac{\Lambda}{\sqrt{x}}\right)_{3}}$$

$$U = 35in3t$$
 at $X = 0$ $\Rightarrow U = L(25in3t) = \frac{6}{p^{2+3a}} at x=0$

$$5.) \cot U = 6$$

$$P^{2} + 3^{2}$$

$$L^{-1}(U)\cdot 2L(S(+-\frac{1}{2}))L(sin 3+)$$

$$U(x_1+1=2)^{+}\int_{0}^{+}\int_{0}^{+}(\tau-x)\sin 3(+\tau)d\tau$$

$$= \left(2\sin 3(+-\frac{x}{v})\right) + \frac{x}{v}$$

$$0.w.$$

4.)
$$V'' + V = 4 \sin 3x$$

$$V = \sum_{n=0}^{\infty} a_n x^n = D_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^4 + a_5 x^4 + a_5 x^5 + a$$

$$y'' = \sum_{n=0}^{\infty} c_n n(n-1) x^{n-2} = 2c_x + b c_3 x + 12c_4 x^2 + 20c_5 x^4.$$

$$5 \ln 3 \chi = 3 \chi - \frac{3^3}{3!} \chi^3 + \frac{3^5}{5!} \chi^5 - \frac{3^5$$

$$G_0 + 2G_2 = 0 \longrightarrow G_2 = -\frac{1}{2}G_0$$

$$G_3 + 20as = -18 - 7$$
 $G_5 = -\frac{9}{10} - \frac{9}{20}$

$$= -\frac{9}{10} - \frac{1}{20} \left(2 - \frac{1}{6}a_1\right)$$

$$= -1 + \frac{9}{120}$$

$$V = \alpha_0 + \alpha_1 x - \frac{\alpha_0}{2!} x^2 + (2 - \frac{1}{4!}) x^3 + \frac{\alpha_0}{4!} x^4 + (-1 + \frac{\alpha_1}{100}) x^5 + \dots$$

$$A \frac{1}{3!} \frac{1}{4!} \frac{1}{5!} \frac{1}{5!}$$

$$V = B + (A - \frac{3}{2}) \times (A - \frac{3}{2}) \times (A - \frac{3^{3}}{2}) \times (A - \frac{3^{3}}{2}) \times (A - \frac{3^{3}}{2}) \times (A - \frac{3^{3}}{2}) \times (A - \frac{3}{2}) \times (A -$$

$$|A + B = G_0 | (A - \frac{3}{\lambda}) = G_1 - \frac{1}{6}(A - \frac{3}{\lambda}) \cdot \frac{3}{\lambda} \cdot \frac{2}{\lambda} - \frac{17}{\lambda}$$

$$V = a_0 + a_1 x - a_0 x^2 + \frac{1}{6} (12 - a_1) + \cdots$$

12.)
$$V'' = (X^{2} + 1)$$

$$V = \begin{cases} C_{1} \times 1 \\ C_{2} \times 2 \\ C_{3} \times 4 \end{cases} = C_{3} \times 1 + C_{3} \times 2 + C_{3} \times 3 + C_{4} \times 4 + C_{5} \times 4 + C_{5}$$

$$G_{0} = (2 \cdot 1) G_{2}$$

$$G_{4} = \frac{1}{12} \left(C_{3} + C_{0} \right) = \frac{1}{12} \left(\frac{C_{0}}{2} + C_{0} \right) = \left(\frac{1}{124} \cdot \frac{Z}{2} \right) G_{0} = \frac{G_{0}}{8}$$

$$G_{6} = \frac{1}{30} \left(\frac{G_{4} + G_{2}}{7} \right) = \frac{1}{30} \left(\frac{G_{0}}{7} + \frac{G_{0}}{2} \right) = \frac{1}{30} \left(\frac{g_{0}}{7} \right) = \frac{G_{0}}{47}$$

$$G_{5} = \frac{1}{20} \left(a_{1} + c_{3} \right) = \frac{1}{20} \left(\frac{1}{6} c_{1} + c_{1} \right) = \frac{1}{20} \left(\frac{7}{6} c_{1} - \frac{7}{120} c_{1} \right)$$

$$G_7 = \frac{1}{42} \left(\frac{G_5 + G_3}{42} \right) - \frac{1}{42} \left(\frac{7}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 + \frac{1}{6} \alpha_1 \right) = \frac{1}{42} \left(\frac{27}{120} \alpha_1 + \frac{1}{6} \alpha_1 + \frac{1}{6$$

Let us find P_2 using text equation (2.7). For $\ell=2$, we see that 1. the coefficient of \mathbf{x}^4 is zero and, by text equation (2.6), all the following coefficients of even powers of \mathbf{x} are zero also. Thus the a_0 series is just $1-3x^2$. Remember that a_0 and a_1 are arbitrary. We set $a_1 = 0$ here since the a_1 series is an infinite series and we want a polynomial. Then (with $\ell=2$, $a_1=0$)

$$y = a_0 (1 - 3x^2)$$
.

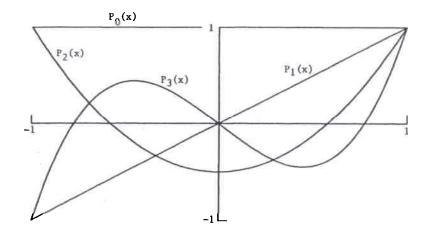
Legendre polynomials are required to be 1 when x = 1. We get

$$1 = a_0(1 - 3)$$
 or $a_0 = -1/2$, so

$$P_2(x) = -\frac{1}{2}(1 - 3x^2) = \frac{1}{2}(3x^2 - 1)$$

as in text equation (2.8). Similarly, to find $P_3(x)$ from text equation (2.7), let $\ell=3$, $a_0=0$, and find a_1 to make y=1 when x=1. To find P_4 , let $\ell=4$, etc. To check your answers, see Problems 4.3 and 5.3 below.

Graphs of Legendre polynomials.



Note that the graphs agree with the following facts:

$$P_{\ell}(1) = 1$$
 for all ℓ .

$$P_{\ell}(0) = 0$$
 for odd ℓ (but not for even ℓ).

$$P_{\ell}(-1) = (-1)^{\ell} = \begin{cases} 1, & \ell \text{ even,} \\ \\ -1, & \ell \text{ odd.} \end{cases}$$

2.) Pe(XI When I is fush Pe(X) consists of a sum of only even functions 10 it 10 even Pe(X) = Pe(-X) Win lie odd Pelyl consists of a sum of only odd functions 50 it is odd Pe(XI=-Pe(-X) and my havy Pe(11 = 1 l evin

 $+ \frac{1}{2} = \frac{$ l 000)

0~ Pe(-11 = (-1)^l