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Problem 1 (10 pts) Let f (x) ∈ C [0,π]∩PS[0,π] but f (0) 6= f (π). Consider the expansion of f
into the Fourier cosine series, the Fourier sine series, and the Fourier series using complex
exponentials. Which of the three series has the fastest decay in the size (i.e., magnitude) of
the coefficients? Explain your reasoning.

Answer: The decay of the coefficients of the Fourier cosine series is the fastest because the Fourier
cosine expansion of such f is the same as the Fourier series expansion of the evenly-extended
function

fe (x)
∆=

{
f (x) for 0 ≤ x ≤π;

f (−x) for −π≤ x ≤ 0.

This function fe is in C [−π,π]∩PS[−π,π] and 2π-periodic without any discontinuity. There-
fore, an , the nth Fourier coefficient of fe (i.e., the nth Fourier cosine coefficients of f ) decays
at the rate of O(n−2).

On the other hand, the coefficients of the Fourier sine series expansion of f is the same as
the Fourier series expansion of the odd extension of f , i.e.,

fo(x)
∆=

{
f (x) for 0 ≤ x ≤π;

− f (−x) for −π≤ x ≤ 0.

This function is discontinuous at x = 0 unless f (0) = 0. Moreover, viewing fo as a 2π-
periodic function, it is also discontinuous at x =π, i.e., f (π−) 6= f (π+) because f (π−) = f (π)
and f (π+) = f (−π) = − f (π) unless f (π) = 0. Therefore, in general, fo is discontinuous.
Thus, its nth Fourier coefficient (i.e., the nth Fourier sine coefficient) decays only with the
speed O(n−1).

Finally, as for the Fourier series expansion of f over [0,π] as a function of period π, since
f (0) 6= f (π), the π-periodic extension of f is discontinuous at x = kπ, k ∈Z. Thus, the decay
of the nth Fourier coefficient is O(n−1), the same as that of the Fourier sine series expansion.

Score of this page:_______________



2

Problem 2 (20 pts) Solve Laplace’s equation on the 2D annulus Ω = {(r cosθ,r sinθ) |1 < r <
2,−π≤ θ ≤π} with the following boundary condition:

u(1,θ) = 0 for −π≤ θ ≤π;

u(2,θ) =
{
−1 if −π< θ < 0;

1 if 0 < θ <π.

Hint: Laplace’s equation in the polar coordinates (r,θ) is:

ur r + 1

r
ur + 1

r 2
uθθ = 0.

Answer: Let us use the separation of variable, i.e., let us assume that u(r,θ) = R(r )Θ(θ). Plug this
into the above equation gives us

R ′′Θ+ 1

r
R ′Θ+ 1

r 2
RΘ′′ = 0

r 2R ′′+ r R ′

R
=−Θ

′′

Θ
= ν2,

where ν is a constant independent of (r,θ). Let us first solve Θ′′+ν2Θ = 0. Its boundary
condition is simply the periodic boundary condition thinking about the domain shape. That
is Θ(−π) =Θ(π). With this periodic boundary condition, we must have ν= n ∈Z and

Θ(θ) =Θn(θ) = einθ.

Now, let us consider the other equation in R:

r 2R ′′+ r R ′−n2R = 0.

Since this is an Euler equation, we seek the solution of the form R(r ) = rλ for some λ.
Inserting this to the above equation gives us

λ(λ−1)+λ−n2 = 0 ⇐⇒λ2 −n2 = 0 ⇐⇒λ=±n.

Thus, we have the solution of the form:

R(r ) =
{

Anr n +Bnr−n if n 6= 0;

A0 +B0 lnr if n = 0.

Thus, the solution to Laplace’s equation can be written as their linear superpositions, i.e.,

u(r,θ) = A0 +B0 lnr +∑
n

′
(Anr n +Bnr−n)einθ,

where
∑′

n means the summation over all n ∈ Z except n = 0. Now, we have to determine
An ,Bn using the boundary conditions.

u(1,θ) = A0 +
∑
n

′
(An +Bn)einθ = 0 for any θ.
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Therefore, we must have A0 = 0 and Bn =−An for all n. Now the solution is of the form

u(r,θ) = B0 lnr +∑
n

′
An(r n − r−n)einθ.

Let us now use the other boundary condition.

u(2,θ) = B0 ln2+∑
n

′
An(2n −2−n)einθ =

{
−1 if −π< θ < 0;

1 if 0 < θ <π.

The Fourier series expansion of the righthand side is:

i

π

∑
n

′ 1− (−1)n

n
einθ.

By matching these, we have

B0 = 0, An(2n −2−n) =− i

π

1− (−1)n

n
.

Therefore, we have:

u(r,θ) = − i

π

{ ∑
n>0

r n − r−n

2n −2−n

1− (−1)n

n
einθ+ ∑

n>0

r n − r−n

2n −2−n

1− (−1)−n

−n
e−inθ

}
= − i

π

∑
n>0

r n − r−n

2n −2−n

1− (−1)n

n
2isinnθ

= 2

π

∞∑
n=1

r n − r−n

2n −2−n

1− (−1)n

n
sinnθ

= 4

π

∞∑
m=1

r 2m−1 − r−2m+1

(2m −1)
(
22m−1 −2−2m+1

) sin(2m −1)θ .
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Problem 3 (20 pts) Solve the following 1D heat equation with the inhomogeneous boundary
condition and the simple initial condition.

ut = kuxx 0 ≤ x ≤ `, t ≥ 0

with
ux(0, t ) = 100; u(`, t ) = 0; u(x,0) = 100.

Answer: Consider first the steady state solution u0(x) to get rid of the inhomogeneous boundary
condition. u0 satisfies

u′′
0 = 0 u′

0(0) = 100 u0(`) = 0.

By integrating this ODE twice and with those boundary conditions, we get u0(x) = 100(x−`).

Now, consider the residual v(x, t ) = u(x, t )−u0(x). This function v(x, t ) satisfies

vt = kvxx , with vx(0, t ) = 0; v(`, t ) = 0; v(x,0) = 100−u0(x) = 100(−x +`+1).

Now, we use the separation of variables as usual. Let v(x, t ) = X (x)T (t ). Inserting this to
the heat equation, we get

X T ′ = k X ′′T =⇒ T ′

kT
= X ′′

X
=−ν2 ∈R.

Thus we have
X ′′+ν2X = 0 with X ′(0) = 0; X (`) = 0.

The solution of this ODE is of the form:

X (x) = A cosνx +B sinνx,

where A,B are some constants. (The other cases of But because of the boundary conditions,
we have

X ′(0) = νB = 0 X (`) = A cosν`= 0.

Thus we must have
ν`= π

2
+nπ=

(
n + 1

2

)
π n ∈Z.

Thus the eigenvalues are

νn =
(
n + 1

2

)
π

`
.

At this point, n can be any integer. However, we can show only nonnegative integers are
allowed as n below.

We can now solve the equation T ′ =−kν2
nT easily as

T (t ) = e−kν2
n t = exp

{
−k

((
n + 1

2

)
π

`

)2

t

}
.
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In order to prevent the blow up of the heat distribution, we must have n ≥ 0. Thus, the
eigenvalues are Thus the desired eigenvalues are

νn =
(
n + 1

2

)
π

`
n = 0,1, . . .

Now, using the superposition principle, we can write the solution v(x, t ) as

v(x, t ) =
∞∑

n=0
an exp

{
−k

((
n + 1

2

)
π

`

)2

t

}
cos

(
n + 1

2

)
π

`
x,

where the coefficients {an} must be determined to match with the initial condition, i.e.,

v(x,0) =
∞∑

n=0
an cos

(
n + 1

2

)
π

`
x = 100(−x +`+1).

In other words, an is simply the Fourier cosine coefficients over [0,`] of the function 100(−x+
`+1). Hence, we have

an = 2

`

∫ `

0
100(−x +`+1)cos

(
n + 1

2

)
π

`
x dx

= 200

`

∫ `

0
(−x +`+1)cos

(
n + 1

2

)
π

`
x dx

= 200

`


[

sin
(
n + 1

2

)
πx/`(

n + 1
2

)
π/`

(−x +`+1)

]`
0

+ 1(
n + 1

2

)
π/`

∫ `

0
sin

(
n + 1

2

)
π

`
x dx


= 200

`

{
(−1)n(

n + 1
2

)
π/`

+ 1((
n + 1

2

)
π/`

)2

}

= 200(
n + 1

2

)
π

{
(−1)n + `(

n + 1
2

)
π

}
.

Thus, we have

v(x, t ) = 200
∞∑

n=0

1(
n + 1

2

)
π

{
(−1)n + `(

n + 1
2

)
π

}
exp

{
−k

((
n + 1

2

)
π

`

)2

t

}
cos

(
n + 1

2

)
π

`
x.

Finally, we have the following solution

u(x, t ) = u0(x)+v(x, t ) = 100(x −`)+200
∞∑

n=0

1(
n + 1

2

)
π

{
(−1)n + `(

n + 1
2

)
π

}
exp

{
−k

((
n + 1

2

)
π

`

)2

t

}
cos

(
n + 1

2

)
π

`
x.
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Problem 4 (10 pts) Let [0,1] ⊂R be a unit interval.

(a) (5 pts) Prove that
L2[0,1] ⊂ L1[0,1].

Hint: Use the Cauchy-Schwarz inequality!

Answer: Take any f ∈ L1[0,1]. Then consider

‖ f ‖1 =
∫ 1

0
| f (x)|dx.

Our objective is to prove ‖ f ‖1 <∞ if f ∈ L2[0,1]. To do so, we can use the Cauchy-Schwarz
inequality as follows.

∫ 1

0
| f (x)|dx =

∫ 1

0
1 · | f (x)|dx ≤

√∫ 1

0
12 dx ·

√∫ 1

0
| f (x)|2 dx =

√∫ 1

0
| f (x)|2 dx = ‖ f ‖2 <∞

since f ∈ L2[0,1].

(b) (5 pts) Give an example of a function f (x) that belongs to L1[0,1] but not to L2[0,1].

Answer: We need to come up with a function f (x) such that
∫ 1

0 | f (x)|dx <∞ but
∫ 1

0 | f (x)|2 dx =
i n f t y . So, the easiest example is f (x) = 1p

x
. In fact,

∫ 1

0
| f (x)|dx =

∫ 1

0
x1/2 dx = [

2x1/2]1
0 = 2

while ∫ 1

0
| f (x)|2 dx =

∫ 1

0

1

x
dx = [ln x]1

0 =∞.
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Problem 5 (20 pts) Prove the following basic Fourier transform properties:

(a) (5 pts) For any f ∈ L1,
τ̂a f (ξ) = e−2πiξa f̂ (ξ),

where τa is the translation (i.e., shift) operator on R, and a ∈R.

Answer:

τ̂a f (ξ) =
∫

f (x −a)e−2πiξx dx

=
∫

f (y)e−2πiξ(y+a) dy via y = x −a;

= e−2πiξa
∫

f (y)e−2πiξy dy

= e−2πiξa f̂ (ξ).

(b) (5 pts) For any f ∈ L2,
δ̂s f (ξ) = δ1/s f̂ (ξ),

where δs is the dilation (i.e., scaling) operator on R, i.e.,

δs f (x)
∆= 1p

s
f
(x

s

)
for s > 0.

Answer:

δ̂s f (ξ) =
∫

1p
s

f
(x

s

)
e−2πiξx dx

= 1p
s

∫
f (y)e−2πiξs y ds y via y = x/s;

= p
s
∫

f (y)e−2πisξy dy

= p
s f̂ (sξ)

= δ1/s f̂ (ξ).
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(c) (5 pts) Let

g (x;µ,σ)
∆= 1p

2πσ
e−

(x−µ)2

2σ2

Suppose we know that

F

{
g

(
x;0,

1p
2π

)}
=F

{
e−πx2

}
= e−πξ

2
.

Then, using the formula (a) and (b) prove

F
{

g (x;µ,σ)
}= e−2π(iµξ+πσ2ξ2).

Answer: First of all, it is easy to see

g (x;µ,σ) = τµ g (x;0,σ).

Now, using the dilation operator, notice that

δ2πσ2 e−πx2 = 1p
2πσ

e−x2/2σ2
.

Hence, we have
g (x;µ,σ) = τµδ2πσ2 e−πx2

.

Taking the Fourier transform and using the formulas in (a), (b), we have

F
{

g (x;µ,σ)
}= e−2πiξµ δ 1

2πσ2
e−πξ

2 = e−2π(iµξ+πσ2ξ2).

(d) (5 pts) Assuming that f ∈C (R)∩PS(R) and f , f ′ ∈ L1,

f̂ ′(ξ) = 2πiξ f̂ (ξ).

Answer:

f̂ ′(ξ) =
∫ ∞

−∞
f ′(x)e−2πiξx dx

=
[

f (x)e−2πiξx
]∞
−∞−

∫ ∞

−∞
f (x)(−2πiξ)e−2πiξx dx

(∗)= 2πiξ
∫ ∞

−∞
f (x)e−2πiξx dx

= 2πiξ f̂ (ξ).

The equality (*) above is valid because f → 0 as x →±∞.
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Problem 6 (20 pts)

(a) (7 pts) Compute the Fourier transform of f (x) = χ(− 1
2 , 1

2

)(x), i.e., the characteristic function
(also known as the indicator function) of the 1D interval

(−1
2 , 1

2

)
.

Answer: This is an easy exercise.

f̂ (ξ) =
∫
χ(− 1

2 , 1
2

)(x)e−2πiξx dx

=
∫ 1

2

− 1
2

e−2πiξx dx

=
[

e−2πiξx

−2πiξ

] 1
2

− 1
2

= e−πiξ−eπiξ

−2πiξ

= sinπξ

πξ
.

(b) (7 pts) State Heisenberg’s inequality for f ∈ L2. Note that you need to define all the necessary
quantities to state this inequality precisely. Also state when the equality holds.

Answer: Let us define the spread of such f about x = a as

∆a f
∆=

∫
(x −a)2| f (x)|2 dx

‖ f ‖2
2

.

Then, Heisenberg’s inequality is stated as

(
∆x0 f

)(
∆ξ0 f̂

)≥ 1

16π2
,

where x0,ξ0 are arbitrary constants in R, and the equality holds if and only if f is a constant
multiple of a Gaussian function.

Score of this page:_______________



10

(c) (6 pts) Check whether f and f̂ in Part (a) satisfies Heisenberg’s inequality.

Answer: Let’s compute ∆x0 f and ∆ξ0 f̂ . But first of all, let’s compute ‖ f ‖2.

‖ f ‖2
2 =

∫ ∞

−∞
χ(− 1

2 , 1
2 )(x)dx

∫ 1
2

− 1
2

1dx = 1.

So, ‖ f ‖2 = 1. Using the Plancherel equality, we also have ‖ f̂ ‖2 = ‖ f ‖2 = 1. Since ‖ f̂ ‖2 =
‖ f ‖2 = 1, we do not have to worry about the normalization by them.

∆x0 f =
∫ ∞

−∞
(x −x0)2| f (x)|2 dx/‖ f ‖2

2

=
∫ 1

2

− 1
2

(x −x0)2 dx

=
[

(x −x0)3

3

] 1
2

− 1
2

= x2
0 +

1

12
.

On the other hand,

∆ξ0 f̂ =
∫ ∞

−∞
(ξ−ξ0)2| f̂ (x)|2 dξ/‖ f̂ ‖2

2

=
∫ ∞

−∞
(ξ−ξ0)2

(
sinπξ

πξ

)2

dx

=
∫ ∞

−∞
ξ2

(
sinπξ

πξ

)2

dx −2ξ0

∫ ∞

−∞
sin2πξ

πξ
dx +ξ2

0

∫ ∞

−∞

(
sinπξ

πξ

)2

dx

=
∫ ∞

−∞
sin2πξ

π2
dx −2ξ0 ·0+ξ2

0 ·1

= ∞.

So, even though ∆x0 f is finite, ∆ξ0 f̂ diverges to ∞. So, Heisenberg’s inequality still holds.
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