MAT 129: Homework \#1 Due Monday, April 5, 2010

Exercise 1.1.1 Show that $u(x, t)=t^{-1 / 2} \exp \left(-x^{2} / 4 k t\right)$ satisfies the heat equation $u_{t}=k u_{x x}$ for $t>0$.

Exercise 1.1.3 Show that $u(x, y)=\log \left(x^{2}+y^{2}\right)$ satisfies Laplace's equation $u_{x x}+u_{y y}=0$ for $(x, y) \neq(0,0)$.

Exercise 1.1.4 Show that $u(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$ satisfies Laplace's equation $u_{x x}+u_{y y}+$ $u_{z z}=0$ for $(x, y, z) \neq(0,0,0)$.

