Problem 3.4.6 If f_n is a sequence in $L^2(a,b)$ where $a > -\infty, b < \infty$, $f_n \to 0$ uniformly implies that $f_n \to 0$ in norm. However, if $a = -\infty$ or $b = \infty$, it's not true. Let

$$f_n(x) = \frac{1}{n}$$
 when $0 < x \le n^2$

Otherwise, $f_n = 0$. Since $\sup |f_n(x)| = \frac{1}{n} \to 0$ when $n \to \infty$, $f_n \to 0$ uniformly. However, $||f||_{L^2(0,\infty)} = \int_0^{n^2} \frac{1}{n^2} dx = 1 \to 0$ when $n \to \infty$, which means $f_n \to 0$ in norm.

- 3.47. (a) Using Corollary 3.1., we need to find an exet for L'[0, π]. Normalizing 31. $\cos x$, $\cos 2x$, we get $3\frac{\pi}{4}$, $\frac{\pi}{16}\cos x$, $\frac{\pi}{16}\cos 2x$. Thus, the best approx. in norm to the x on $(0,\pi)$ is $(x, \frac{\pi}{16}) \cdot \frac{\pi}{16} + (x, \frac{\pi}{16}\cos x) \cdot \frac{\pi}{16}\cos x + (x, \frac{\pi}{16}\cos 2x) \cdot \frac{\pi}{16}\cos 2x$. $= \frac{\pi}{2} \frac{4}{16}\cos x$.

 - (c). In the same way as in (a) $f \approx -\frac{4}{\pi} \cos z + 2 \sin x.$