9. $f(\theta)=|\cos \theta|$

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi}|\cos \theta| \cdot d \theta=\frac{2}{\pi} \int_{0}^{\pi}|\cos \theta| \cdot d \theta \\
& =\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} \cos \theta \cdot d \theta-\left.\frac{4}{4} \sin \theta\right|_{0} ^{\frac{\pi}{2}}=\frac{4}{\pi} \cdot 3 \cdot \\
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi}|\cos \theta| \cdot \cos n \theta \cdot d \theta \\
& =\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \cos \theta \cdot \cos n \theta \cdot d \theta-\frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} \cos \theta \cdot \cos n \theta d \theta
\end{aligned}
$$

Using the identity $\quad \cos \theta_{2} \cdot \cos \theta_{2}=\frac{1}{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+\cos \left(\theta_{1}-\theta_{2}\right)\right)$;

$$
\begin{aligned}
& =\frac{2}{\pi}\left[\frac{n \cos \theta \sin n \theta-\cos \theta \sin ^{n} \theta}{n^{2}-1}\right]_{0}^{\frac{\pi}{2}}-\frac{2}{\pi}\left[\frac{n \cos \theta \cdot \sin n \theta-\cos n \theta \cdot \sin \theta}{n^{n}-1}\right]_{\frac{1}{2}}^{\pi} \\
& =\frac{2}{\pi}\left[\frac{-c)^{n}}{4 n^{2}-1}\right]-\frac{2}{\pi}\left[\frac{\left(-0^{n}\right.}{4 n^{2}-1}\right]=-\frac{4}{\pi}\left[\frac{\epsilon-)^{n}}{4 n^{2}-1}\right]
\end{aligned}
$$

$b_{n}=0$. for all x sine $f(0)$ is even, thus forsinno is odd.

$$
\therefore f(\theta)=\frac{2}{\pi}-\frac{4}{\pi} \sum_{i}^{\infty} \frac{\epsilon_{0} 0^{n} \cos \sin \theta}{4 n^{2}-1}
$$

\rightarrow an. decays as fast as $\left(\frac{1}{n^{2}}\right)$; smoother than \#4.
12.

$$
f(\theta)= \begin{cases}(2 a)^{-1} & |\theta|<a . \\ 0 & a<|\theta|<\pi\end{cases}
$$

Since $f(\theta)$ is even., $b_{n}=0$.

$$
\begin{aligned}
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi} f(\theta) d \theta=\frac{2}{\pi} \int_{0}^{a} \frac{1}{2 a} d \theta=\frac{2}{\pi} \frac{a}{2 a}=\frac{1}{\pi} \\
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \cos n \theta d \theta=\frac{2}{\pi} \int_{0}^{a} \frac{1}{2 a} \cos n \theta d \theta=\frac{1}{\pi a} \int_{0}^{a} \cos n \theta d \theta \\
& =\left.\frac{1}{\pi a} \frac{1}{n} \sin n \theta\right|_{0} ^{a}=\frac{\sin n a}{\pi a n}
\end{aligned}
$$

Fourier coefficients.

$$
\begin{aligned}
& \frac{1}{2} a_{0}+\sum_{1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) \\
= & \frac{1}{2 \pi}+\frac{1}{\pi} \sum_{1}^{\infty} \frac{\sin n a}{n a} \cos n \theta
\end{aligned}
$$

If we periodize $f(\theta)$, it's discontinuous, so Fourier coeffeients an decays like $O\left(\frac{1}{n}\right)$, which is very slow.

Conclusion: Function in 9 is continuous, so Fourier coefficients decay like $\mathrm{O}(1 / \mathrm{n} \wedge 2)$
Function in 12 is discontinuous, so Fourier coefficients decay like $\mathrm{O}(1 / \mathrm{n})$
Both function and its derivative in 17 are continuous, so Fourier coefficients decay like $\mathrm{O}\left(1 / \mathrm{n}^{\wedge} 3\right)$.

The smoother the function is, the faster its Fourier coefficients decay.

